Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (444)

Search Parameters:
Keywords = methylated flavonoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 219
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 289
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Phytoconstituent Detection, Antioxidant, and Antimicrobial Potentials of Moringa oleifera Lam. Hexane Extract Against Selected WHO ESKAPE Pathogens
by Kokoette Bassey and Malebelo Mabowe
Horticulturae 2025, 11(8), 869; https://doi.org/10.3390/horticulturae11080869 - 23 Jul 2025
Viewed by 416
Abstract
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin [...] Read more.
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin layer chromatography bioautography and dot blot assays, because fewer studies have been conducted using seed samples from this country. The results obtained indicated that the best oil extract yield (24.04%) was obtained for hexane from 60.10 g of powdered seeds. The yield of the other extracts ranged from 6.2 to 9.5%. Positive test results were obtained for terpenoids, steroids, alkaloids, flavonoids, phenols, and tannins, with potentially good antioxidant properties for scavenging free radicals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) and good antimicrobial activity against Acinetobacter baumannii (BAA 747), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 27853), and Pseudomonas aeruginosa (ATCC 27853), with the best zone of inhibition of 314.2 mm2 obtained for oil extracted with hexane, followed by dichloromethane, methanol, and acetone oil extracts, respectively. The best minimum inhibitory concentration (MIC) of 0.032 mg/mL against P. aeruginosa was recorded for the hexane oil, compared with ciprofloxacin, which had an MIC of 0.0039 mg/mL against the same pathogen. The identification of the in-oil compounds proposed to mitigate inhibitory activity against the test microbes was carried out through GC-MS analysis matching our results with the GC-MS library. These compounds included ursane-3,16-diol, azetidin-2-one, 1-benzyl-4à-methyl, dibutyl phthalate, 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl, octopamine rhodoxanthin, 29,30-dinorgammacerane-3,22-diol, 21,21-dimethy, cholan-24-oic acid, 3,7-dioxo, and benzyl alcohol. These are in addition to the stability-indicating marker compounds like oleic acid (54.9%), 9-Octadecenoic acid (z)-, methyl ester (23.3%), n-hexadecanoic acid (9.68%), among others observed over a five year period. Full article
Show Figures

Figure 1

13 pages, 1628 KiB  
Article
Eco-Friendly Fabrication of Zinc Oxide Nanoparticles Using Gaultheria fragrantissima: Phytochemical Analysis, Characterization, and Antimicrobial Potential
by Bhoj Raj Poudel, Sujan Dhungana, Anita Dulal, Aayush Raj Poudel, Laxmi Tiwari, Devendra Khadka, Megh Raj Pokhrel, Milan Babu Poudel, Allison A. Kim and Janaki Baral
Inorganics 2025, 13(7), 247; https://doi.org/10.3390/inorganics13070247 - 19 Jul 2025
Viewed by 398
Abstract
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and [...] Read more.
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and hazardous chemicals, posing environmental and human health risks. To overcome these limitations, this research focuses on utilizing G. fragrantissima, rich in bioactive compounds such as phenolics and flavonoids, with the methyl salicylate previously reported in the literature for this species, which helps reduce and stabilize NPs. ZnO NPs were characterized through X-ray diffraction (XRD), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO NPs were found to have a well-defined crystalline structure, with their average crystallite size measured at around 8.26 nm. ZnO NPs exhibited moderate antimicrobial activity against selected microbial strains. These findings underscore the potential of G. fragrantissima-mediated synthesis as an environmentally sustainable and efficient method for producing ZnO NPs with multifunctional applications. This study provides a greener alternative to conventional synthesis approaches, demonstrating a method that is both eco-friendly and capable of yielding NPss with desirable properties. Full article
Show Figures

Figure 1

14 pages, 1196 KiB  
Article
Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts
by Zhangqin Ye, Jing Zhang, Xin Tian, Zhengfei Yang, Jiangyu Zhu and Yongqi Yin
Plants 2025, 14(14), 2201; https://doi.org/10.3390/plants14142201 - 16 Jul 2025
Viewed by 323
Abstract
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which [...] Read more.
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which are regulated by developmental cues. Research has established that methyl jasmonate (MeJA) application enhances secondary metabolite production in plant systems. This investigation examined MeJA’s influence on flavonoid accumulation and physiological responses in finger millet sprouts to elucidate the molecular mechanisms underlying MeJA-mediated flavonoid accumulation. The findings revealed that MeJA treatment significantly suppressed sprout elongation while enhancing the biosynthesis of total flavonoids and phenolic compounds. MeJA treatment triggered oxidative stress responses, with hydrogen peroxide and superoxide anion concentrations increasing 1.84-fold and 1.70-fold compared to control levels at 4 days post-germination. Furthermore, the antioxidant defense mechanisms in finger millet were upregulated following treatment, resulting in significant enhancement of catalase and peroxidase enzymatic activities and corresponding transcript abundance. MeJA application augmented the activities of key phenylpropanoid pathway enzymes—phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H)—and upregulated their respective gene expression. At 4 days post-germination, EcPAL and EcC4H transcript levels were elevated 3.67-fold and 2.61-fold, respectively, compared to untreated controls. MeJA treatment significantly induced the expression of downstream structural genes and transcriptional regulators. This study provides a deeper understanding of the mechanism of flavonoid accumulation in foxtail millet induced by MeJA, and lays a foundation for exogenous conditions to promote flavonoid biosynthesis in plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 2985 KiB  
Article
Genome-Wide Transcriptome Analysis Reveals GRF Transcription Factors Involved in Methyl Jasmonate-Induced Flavonoid Biosynthesis in Hedera helix
by Feixiong Zheng, Zhangting Xu, Xiaoji Deng, Xiaoyuan Wang, Yiming Sun, Xiaoxia Shen and Zhenming Yu
Plants 2025, 14(14), 2094; https://doi.org/10.3390/plants14142094 - 8 Jul 2025
Viewed by 400
Abstract
Flavonoids are key bioactive compounds in plants that play important defense roles against abiotic stress and are involved in plant growth and development. Methyl jasmonate (MeJA) is a significant growth regulator that promotes the accumulation of flavonoids in a variety of plants, but [...] Read more.
Flavonoids are key bioactive compounds in plants that play important defense roles against abiotic stress and are involved in plant growth and development. Methyl jasmonate (MeJA) is a significant growth regulator that promotes the accumulation of flavonoids in a variety of plants, but the effect of MeJA in Hedera helix remains poorly understood. In the present study, the flavonoid content was significantly increased after MeJA treatment and peaked at 6 h post-treatment. A total of 31,931 genes were identified using transcriptome, and 6484 DEGs were identified at 6 h post-treatment. Through GO and KEGG enrichment analysis, it was shown that DEGs were primarily enriched in phenylpropanoid biosynthesis pathways. Based on the putative transcription factors derived from DEGs, growth-regulating factor (GRF), a transcription factor potentially linking MeJA signaling to flavonoid accumulation and participating in plant growth and stress responses, was further identified. A total of 20 Hh-GRFd genes were identified on the whole genome level and clustered into five phylogenetic groups with conserved subfamily characteristics. Abundant MeJA-responsive cis-elements were presented in the promoter regions of HhGRF1-HhGRF20. They exhibited a tissue-specific expression variation, and HhGRF10 was dominantly expressed in leaves of H. helix. Notably, HhGRF10 exhibited MeJA-induced expression that correlated temporally with flavonoid accumulation, suggesting that HhGRF10 might play a potential role in promoting flavonoid biosynthesis, and overexpression and knockout assay substantiated this conclusion. The finding provides the first transcriptome-wide resource for flavonoid biosynthesis in H. helix and identifies the candidate GRF-mediated regulator for flavonoid accumulation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

25 pages, 2198 KiB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 519
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

14 pages, 13737 KiB  
Article
Unravelling the Dynamic Physiological and Metabolome Responses of Wheat (Triticum aestivum L.) to Saline–Alkaline Stress at the Seedling Stage
by Wei Ren and Li Chen
Metabolites 2025, 15(7), 430; https://doi.org/10.3390/metabo15070430 - 23 Jun 2025
Cited by 1 | Viewed by 409
Abstract
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in [...] Read more.
Background/Objectives: Understanding metabolome adjustment under saline–alkaline conditions is crucial for enhancing crop tolerance capacity and ensuring food security. Although soil salinization impairs wheat seedlings’ growth, metabolome plasticity under saline–alkaline stress remains poorly understood. Here, we delved into dynamic physiological and metabolome shifts in wheat seedlings grown on SAS (saline–alkaline soil) on the 7th and 15th days post-germination (DPG). Methods: A self-developed and cultivated high-generation salt–alkali wheat variety (011) was grown on SAS and control soil, followed by comparative physiological, biochemical, and metabolomics analyses of seedlings. Results: The seedlings’ saline–alkaline stress responses were developmentally regulated with reduced growth, increasing accumulation of proline and soluble sugars, and differential antioxidant response. LC-MS-based global metabolomics analysis revealed significant metabolite profile differences, with 367 and 485 differential metabolites identified on the 7th and 15th DPG, respectively, between control and treatment. Upregulation of saccharides, flavonoids, organic acids (citrate cycle-related), phenolic acids, amino acids and derivatives, phytohormones, and sphingolipid metabolism was essential for seedlings’ growth on SAS. The key induced metabolites in seedlings grown on SAS include saccharic acid, trehalose, sucrose, glucose, L-citramalic acid, phellodendroside, scutellarin, anthranilate-1-O-sophoroside, lavandulifolioside, N-methyl-L-glutamate, etc. Up-regulated phytohormones include abscisic acid (3.8-fold, 7th DPG and 3.18-fold, 15th DPG), jasmonic acid (1.93-fold, 15th DPG), and jasmonoyl isoleucine (2.03-fold, 15th DPG). Conclusions: Our findings highlight the importance of ABA and jasmonic acid in regulating salt–alkali tolerance in wheat seedlings. Moreover, this study depicts key pathways involved in salt–alkali tolerance in wheat seedlings and unveils key DMs, offering resources for boosting wheat production on SAS. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

16 pages, 1373 KiB  
Article
Alteration of m6A Methylation in Breast Cancer Cells by Kalanchoe pinnata Aqueous Extract
by Carlos Rogelio Alvizo-Rodríguez, Fernando Calzada, Uriel López-Vázquez, Emmanuel Tomay Tiburcio, Juan A. Hernandez-Rivera, Alan Carrasco-Carballo and Marta Elena Hernández-Caballero
Molecules 2025, 30(12), 2634; https://doi.org/10.3390/molecules30122634 - 18 Jun 2025
Cited by 1 | Viewed by 690
Abstract
Kalanchoe pinnata is used in traditional medicine to treat cancer, as it contains flavonoids and phenols known to regulate key cellular processes associated with cancer. Breast cancer, the most common cancer among women globally, presents ongoing challenges in treatment. The discovery of m [...] Read more.
Kalanchoe pinnata is used in traditional medicine to treat cancer, as it contains flavonoids and phenols known to regulate key cellular processes associated with cancer. Breast cancer, the most common cancer among women globally, presents ongoing challenges in treatment. The discovery of m6A methylation and its regulation by methylosome proteins offers novel therapeutic avenues for cancer management. This study aimed to investigate the cytotoxic and epitranscriptomic effects of an aqueous extract from K. pinnata on MCF-7 (luminal A) and HCC1937 (triple-negative) breast cancer cells. Cell lines were treated with the aqueous K. pinnata extract, characterized by HPLC, for 72 h, followed by an assessment of cytotoxicity and migration. The expression of methylosome components METTL3 and FTO was measured using RT-PCR. m6A global methylation was assessed via colorimetry, and molecular docking studies were conducted. The results indicated that only HCC1937 cells exhibited altered migration capacity. This change was correlated in silico with the inhibition of METTL3 by luteolin and quercetin, constituents of the aqueous extract. METTL3, a methyltransferase, was overexpressed by scratch stimuli but was downregulated following K. pinnata treatment in both MCF-7 and HCC1937 cells. The FTO demethylase was overexpressed in both cell lines. In silico analysis suggested an interaction between FTO and compounds such as gallic acid and myricetin. Additionally, m6A global methylation decreased in MCF-7 cells but increased in HCC1937 cells, potentially affecting cell migration. Our findings indicate that K. pinnata influences both METTL3 and FTO, altering m6A methylation in a cell-type-dependent manner, with HCC1937 cells being particularly sensitive. Further research is required to elucidate the complete molecular mechanism of K. pinnata’s aqueous extract in breast cancer treatment. Full article
Show Figures

Figure 1

22 pages, 1351 KiB  
Article
Effect of Phenological Variation on the Phytochemical Composition and Antioxidant Activity of Different Organs of Capparis spinosa L.
by Saeid Hazrati, Zahra Mousavi, Saeed Mollaei, Hossein Rabbi Angourani and Silvana Nicola
Horticulturae 2025, 11(6), 702; https://doi.org/10.3390/horticulturae11060702 - 17 Jun 2025
Viewed by 562
Abstract
Capparis spinosa L. (caper) is an important medicinal plant whose bioactive compounds vary significantly depending on its growth stage. This directly affects its pharmaceutical and nutritional value. Collecting C. spinosa at the optimal growth stage is essential to achieving high phytochemical quality and [...] Read more.
Capparis spinosa L. (caper) is an important medicinal plant whose bioactive compounds vary significantly depending on its growth stage. This directly affects its pharmaceutical and nutritional value. Collecting C. spinosa at the optimal growth stage is essential to achieving high phytochemical quality and meeting consumer needs. This study aimed to evaluate the variation of these active compounds in the aerial parts of C. spinosa across four phenological stages (vegetative, flowering, unripe fruit, and ripe fruit). The result showed that EO content was highest in unripe fruits (0.18%) and lowest in the flowering stage (0.07%) in leaves, while extract yield was highest in leaves of the ripe fruit stage (14.65%) followed by the flowering stage in flowers (12.66%). Flowering stage leaves showed the highest total phenol (56.20 mg GAE/g) and flavonoid (17.10 mg QE/g) content, while the lowest concentrations were found in the ripe fruit stage of the leaves. EO analysis showed that methyl isothiocyanate reached the highest concentration in flowers at the flowering stage (41.6%), while isopropyl isothiocyanate reached the highest concentration in leaves at the ripe fruit stage (36.2%). Isobutyl isothiocyanate was found exclusively in fruits, with the highest concentration in ripe fruits (9.2%). Dimethyltrisulphide showed a maximum concentration in leaves at the vegetative stage, decreasing by 76.6% as the plant developed towards the ripe fruit stage. The dominant phenolic acids varied between phenological stages: cinnamic acid at the vegetative stage; rosmarinic and cinnamic acids at the flowering stage in leaves; caffeic and cinnamic acids in flowers; vanillic, cinnamic, and rosmarinic acids at the unripe fruit stage in leaves and fruits; and rosmarinic, cinnamic, and vanillic acids in ripe fruits. The results indicate that harvesting C. spinosa at the vegetative stage and in the leaves of the flowering stage is optimal for maximum secondary metabolite yield, providing valuable guidance for growers targeting food and pharmaceutical applications. Full article
Show Figures

Figure 1

17 pages, 1899 KiB  
Article
Extracts, Fractions, and Subfractions from Purple-Orange Sweet Potato (Ipomoea batatas L.): Xanthine Oxidase Inhibitory Potential and Antioxidant Properties
by Hendy Suhendy, Muhamad Insanu and Irda Fidrianny
Molecules 2025, 30(11), 2442; https://doi.org/10.3390/molecules30112442 - 3 Jun 2025
Viewed by 636
Abstract
Previous research has shown that fractions outperformed extracts in pharmacological activity and safety. This study assessed the total phenol and flavonoid content, as well as antioxidant and xanthine oxidase inhibitory (XOI) activities, of purple-orange sweet potato extracts, fractions, and subfractions. Using UV-visible spectrophotometry, [...] Read more.
Previous research has shown that fractions outperformed extracts in pharmacological activity and safety. This study assessed the total phenol and flavonoid content, as well as antioxidant and xanthine oxidase inhibitory (XOI) activities, of purple-orange sweet potato extracts, fractions, and subfractions. Using UV-visible spectrophotometry, the leaves showed the highest values for total phenol, flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), Cupric Ion Reducing Antioxidant Capacity (CUPRAC) assays, and XOI activity. The sequential extraction of the leaves yielded ethyl acetate extract as the most potent, with a yield of 10.4%, a DPPH assay result of 511.212 ± 0.416 mg ascorbic acid equivalent antioxidant capacity (AEAC)/g, and XOI activity of 45.192 ± 4.981 mg allopurinol equivalent xanthine inhibitory capacity (AEXIC)/g. CF5 had the greatest DPPH assay (158.475 ± 0.170 mg AEAC/g), FRAP assay (86.849 ± 0.048 mg AEAC/g), CUPRAC assay (1008.892 ± 1.620 mg AEAC/g), and XOI activity (6.062 ± 1.730 mg AEXIC/g) values. Subfraction CSF3 from fraction CF5 was analyzed using UPLC-MS/MS and revealed the presence of compounds such as cholest-4-en-3-one, 4-hydroxy-6-[2-(2-methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl) ethyl] oxan-2-one, tangeritin, 4-methyl benzophenone, benzophenone, (+)-ar-turmerone, 4-methoxycinnamic acid, and ricinine. This study was the first to report xanthine oxidase inhibitory activity in allopurinol equivalence. The leaves of the purple-orange sweet potato showed potential as a source of natural antioxidants. Full article
Show Figures

Graphical abstract

17 pages, 1273 KiB  
Article
Phytochemical Analysis and Antioxidant Activities of Prunus africana Bark, Leea indica and Paullinia pinnata Leaf Extracts
by Md Rezaul Karim, Karl E. Miletti-Gonzalez, Alberta N. A. Aryee and Samuel A. Besong
Antioxidants 2025, 14(6), 666; https://doi.org/10.3390/antiox14060666 - 30 May 2025
Viewed by 1045
Abstract
The phytochemical profile and antioxidant activities of Prunus africana bark, Leea indica and Paullinia pinnata leaves from Cameroon were investigated in this study. The yields of pure methanolic extraction were 11.9%, 11.1% and 10.8% in P. africana bark, L. indica and P. pinnata [...] Read more.
The phytochemical profile and antioxidant activities of Prunus africana bark, Leea indica and Paullinia pinnata leaves from Cameroon were investigated in this study. The yields of pure methanolic extraction were 11.9%, 11.1% and 10.8% in P. africana bark, L. indica and P. pinnata leaves, respectively. The total phenolic content was 189.0 ± 16.93, 163.6 ± 14.73 and 114.6 ± 10.38 mg GAE/g and total flavonoid content was 43.25 ± 6.43, 28.31 ± 4.44, and 19.75 ± 4.03 mg RU/g in P. africana bark, L. indica and P. pinnata leaves, respectively. The antioxidant activities of the plants were evaluated by DPPH, ABTS and FRAP assays. The IC50 evaluated in P. africana bark, L. indica and P. pinnata leaves was 109.5 ± 13.2, 132.1 ± 18.7 and 156.1 ± 21.9 µg/mL for DPPH and 98.1 ± 4.8, 101.3 ± 12.1 and 133.9 ± 16.0 µg /mL for ABTS assay. The FRAP value was 61.1 ± 1.5, 50.5 ± 1.5 and 43.4 ± 2.1 µMFe2+/g in the same sequence. The functional groups for the corresponding phytochemicals, including alkane, alkene, aliphatic ether, ester, amine, α, β-unsaturated ester, alcohol, phenol, carboxylic acid, and aliphatic ketone, were identified through fourier-transform infrared analysis. The identified and quantified phenolic acids in this study were methyl-4-hydroxybenzoic, caffeic, protocatechuic and p-coumaric acid, identified using high-performance liquid chromatography. Full article
Show Figures

Graphical abstract

23 pages, 1347 KiB  
Article
Araçá-Boi Extract and Gallic Acid Reduce Cell Viability and Modify the Expression of Tumor Suppressor Genes and Genes Involved in Epigenetic Processes in Ovarian Cancer
by Felipe Tecchio Borsoi, Henrique Silvano Arruda, Amanda Cristina Andrade, Mônica Pezenatto dos Santos, Isabelle Nogueira da Silva, Leonardo Augusto Marson, Ana Sofia Martelli Chaib Saliba, Severino Matias de Alencar, Murilo Vieira Geraldo, Iramaia Angélica Neri Numa and Glaucia Maria Pastore
Plants 2025, 14(11), 1671; https://doi.org/10.3390/plants14111671 - 30 May 2025
Viewed by 619
Abstract
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a [...] Read more.
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a remarkable diversity of phytochemicals (organic acids, phenolic acids, and flavonoids), significant antioxidant potential, and efficient scavenging of reactive oxygen species, particularly hydroxyl and peroxyl radicals. Gallic acid, one of the phenolic acids present in the extract, was used alone to verify its contribution to cytotoxic activities. Exposure of human ovarian cancer cells (NCI/ADR-RES and OVCAR3) to the extract (0.15–150 μg/mL) and gallic acid (6–48 μg/mL) resulted in a significant reduction in cell viability, particularly after 48 h of treatment. Both treatments modulated genes involved in DNA repair, tumor suppression, and epigenetic regulation. However, no changes were observed in the methylation status of the BRCA1 gene promoter region with either araçá-boi extract or gallic acid. These findings reinforce the therapeutic potential of araçá-boi extract and its phenolic compounds against ovarian cancer and point to the need for further studies to better elucidate the molecular pathways involved and validate these effects in vivo. Full article
Show Figures

Graphical abstract

17 pages, 1099 KiB  
Review
The Phytochemistry and Pharmacology of Onocleaceae Plants: Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris—A Review
by Jungmoo Huh
Plants 2025, 14(11), 1608; https://doi.org/10.3390/plants14111608 - 25 May 2025
Viewed by 469
Abstract
The Onocleaceae family, a small group within the Pteridophytes, comprises four genera, but has been phytochemically studied mainly for Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris. To date, a total of 91 compounds have been isolated from these three species, [...] Read more.
The Onocleaceae family, a small group within the Pteridophytes, comprises four genera, but has been phytochemically studied mainly for Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris. To date, a total of 91 compounds have been isolated from these three species, including 15 flavonoids, 48 flavonoid glycosides, 6 stilbenes, 4 isocoumarins, 2 phthalides, 3 chromones, 2 lignan glycosides, 8 isoprenoid derivatives, and 3 phenolic compounds. Notably, most flavonoids and flavonoid glycosides possess C-methyl groups at the C-6 and/or C-8 positions, with several conjugated to (S)-3-hydroxy-3-methylglutaryl (HMG) moieties. Although not all isolates have been evaluated for their pharmacological activities, several compounds have demonstrated bioactivities such as antiviral, anti-inflammatory, α-glucosidase inhibitory, aldose reductase inhibitory, and antioxidant effects. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 1822 KiB  
Article
Postharvest Application of Abscisic Acid and Methyl Jasmonate on Fruit Quality of ‘Red Zaosu’ Pear
by Yuhao Wu, Xin Zou, Shangyun Li, Chao Tang, Haoru Tang and Yong Zhang
Agronomy 2025, 15(6), 1263; https://doi.org/10.3390/agronomy15061263 - 22 May 2025
Viewed by 646
Abstract
Subsequent to the harvesting of ‘Red Zaosu’ pears, a swift decline in quality becomes evident. This is characterized by the discoloration of the peel, the softening of the flesh and metabolic alterations during storage. To elucidate the regulatory roles of phytohormone in fruit [...] Read more.
Subsequent to the harvesting of ‘Red Zaosu’ pears, a swift decline in quality becomes evident. This is characterized by the discoloration of the peel, the softening of the flesh and metabolic alterations during storage. To elucidate the regulatory roles of phytohormone in fruit preservation, postharvest pears were treated with 100 μmol/L abscisic acid (ABA), 100 μmol/L methyl jasmonate (MeJA) or their combination (ABA + MeJA). The results indicated that the phytohormone treatment groups exhibited varying degrees of efficacy in improving the postharvest quality of pear fruits. The combined treatments did not show synergistic effects, but rather inhibited anthocyanin accumulation and antioxidant enzyme (POD, CAT, APX, POD) activities and significantly reduced soluble solids, acidity and flavonoids, although peel brightness was maintained. ABA alone treatment promoted anthocyanin accumulation and peel coloring, but reduced fruit firmness, crispness, chewiness and soluble solids, enhanced total flavonoids and CAT activity and reduced malondialdehyde accumulation, while MeJA alone treatment inhibited anthocyanin synthesis and coloring, but also reduced firmness and soluble solids, and enhanced total flavonoids and CAT activity. The results indicate that ABA and MeJA exhibit differential regulatory effects on fruit quality when applied individually, and their combined application showed inferior effects compared to individual treatments. This finding provides a theoretical basis for optimizing combined phytohormone-preservation techniques. Full article
Show Figures

Figure 1

Back to TopTop