Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Sample Preparation
2.3. High-Resolution LC-ESI-QTOF-MS/MS and HPLC-DAD Analyses
2.4. Determination of Total Polyphenols, Antioxidant Capacity, and Reducing Power via Spectrophotometric Assays
2.5. Cell Culture Maintenance
2.6. MTT Viability Test
2.7. Determination of Intracellular ROS Production
2.8. Determination of Reduced and Oxidised Intracellular Glutathione and Cystein
2.9. Determination of NO Release
2.10. In Silico Studies
2.11. Statistical Analyses
3. Results and Discussion
3.1. Qualitative Determination of Bioactive Compounds in S. desoleana Steam-Distillation Water Residue
3.2. Quantitative Determination of Bioactive Compounds in S. desoleana Steam-Distillation Water Residue
3.3. Total Phenols and Antioxidant Activity
3.4. Cell Viability and Antioxidant Activity Against TBH-Induced ROS Release
3.5. Intracellular Antioxidant Levels
3.6. NO Release
3.7. Docking and Binding-Mode Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Antioxidant activity |
ABTS•+ | 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid |
CAc | Caffeic acid |
CUPRAC | Cupric-ion-reducing antioxidant capacity |
CyS | Cysteine |
CySS | Cystine |
dp | Dry plant residue |
DPPH• | 2,2-diphenyl-1-picrylhydrazyl radical |
dw | Dry weight |
FRAP | Ferric reducing antioxidant power |
GAE | Gallic acid equivalent |
GSH | Reduced glutathione |
GSSG | Oxidised glutathione |
LG | Luteolin-7-O-glucuronide |
MR | Methyl rosmarinate |
NO | Nitric oxide |
RAc | Rosmarinic acid |
ROS | Reactive oxygen species |
TBH | Tert-butyl hydroperoxide |
TP | Total polyphenol |
TPTZ | 2,4,6-tris(pyridin-2-yl)-1,3,5-triazine |
References
- Davinelli, S.; Medoro, A.; Hu, F.B.; Scapagnini, G. Dietary polyphenols as geroprotective compounds: From Blue Zones to hallmarks of ageing. Ageing Res. Rev. 2025, 108, 102733. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Murgia, M.A.; Baptista, J.; Marcone, M.F. Sardinian dietary analysis for longevity: A review of the literature. J. Ethn. Foods 2022, 9, 33. [Google Scholar] [CrossRef]
- Mattalia, G.; Sõukand, R.; Corvo, P.; Pieroni, A. Wild food thistle gathering and pastoralism: An inextricable link in the biocultural landscape of Barbagia, central Sardinia (Italy). Sustainability 2020, 12, 5105. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Gül Dikme, T. Use of medicinal and aromatic plants in food. ECAM 2023, 11, 6–10. Available online: https://ia601901.us.archive.org/13/items/use-of-medicinal-and-aromatic-plants-in-food/10.4328.ECAM.10039.pdf (accessed on 17 May 2025).
- Atzei, A.D.; Picci, V. «Salvia desoleana» Atzei et Pieci, specie nuova dell’isola di Sardegna. Webbia 1982, 36, 71–78. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Peana, A.T.; Sanna Passino, G.; Satta, M.; Tuberoso, C.I.G. Influence of environmental conditions on the composition of Salvia desoleana Atzei & Picci oil. Essent. Oil Res. 1999, 11, 635–641. [Google Scholar]
- Peana, A.T.; Moretti, M.D.L. Pharmacological activities and applications of Salvia sclarea and Salvia desoleana essential oils. Stud. Nat. Prod. Chem. Studies Natural Prod. Chem. 2002, 26, 391–423. [Google Scholar] [CrossRef]
- Maxia, A.; Piras, A.; Falconieri, D.; Maccioni, D.; Porcedda, S.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. New insights on the antifungal activity of essential oil of Salvia desoleana Atzei et Picci, an endemic plant from folk medicine of Sardinia, Italy. Indian J. Tradit. Knowl. 2020, 19, 757–760. [Google Scholar] [CrossRef]
- Rapposelli, E.; Melito, S.; Barmina, G.G.; Foddai, M.; Azara, E.; Scarpa, G.M. Relationship between soil and essential oil profiles in Salvia desoleana populations: Preliminary results. Nat. Prod. Commun. 2015, 10, 1615–1618. [Google Scholar] [CrossRef]
- Soković, M.D.; DBrkić, D.; Džamić, A.M.; Ristić, M.S.; Marin, P.D. Chemical composition and antifungal activity of Salvia desoleana Atzei & Picci essential oil and its major components. Flavour. Fragr. J. 2009, 24, 83–87. [Google Scholar] [CrossRef]
- Cagno, V.; Sgorbini, B.; Sanna, C.; Cagliero, C.; Ballero, M.; Civra, A.; Donalisio, M.; Bicchi, C.; Lembo, D.; Rubiolo, P. In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil. PLoS ONE 2017, 12, e0172322. [Google Scholar] [CrossRef]
- Machado, C.A.; Oliveira, F.O.; de Andrade, M.A.; Hodel, K.V.S.; Lepikson, H.; Machado, B.A.S. Steam distillation for essential oil extraction: An evaluation of technological advances based on an analysis of patent documents. Sustainability 2022, 14, 7119. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Pheko-Ofitlhile, T.; Makhzoum, A. Impact of hydrodistillation and steam distillation on the yield and chemical composition of essential oils and their comparison with modern isolation techniques. J. Essent. Oil Res. 2024, 36, 105–115. [Google Scholar] [CrossRef]
- Shafie, M.H.; Kamal, M.L.; Razak, N.A.A.; Hasan, S.; Uyup, N.H.; Rashid, N.F.A.; Zafarina, Z. Antioxidant and antimicrobial activity of plant hydrosol and its potential application in cosmeceutical products. Jundishapur J. Nat. Pharm. Prod. 2022, 17, e124018. [Google Scholar] [CrossRef]
- Miljanović, A.; Dent, M.; Grbin, D.; Pedisić, S.; Zorić, Z.; Marijanović, Z.; Jerković, I.; Bielen, A. Sage, rosemary, and bay laurel hydrodistillation by-products as a source of bioactive compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Skalicka-Woźniak, K.; Trifan, A. Post-distillation by-products of aromatic plants from Lamiaceae family as rich sources of antioxidants and enzyme inhibitors. Antioxidants 2023, 12, 210. [Google Scholar] [CrossRef]
- Politeo, O.; Popović, M.; Veršić Bratinčević, M.; Koceić, P.; Ninčević Runjić, T.; Generalić Mekinić, I. Conventional vs. microwave-assisted hydrodistillation: Influence on the chemistry of sea fennel essential oil and its by-products. Plants 2023, 12, 1466. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M.M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- De Luca, M.; Tuberoso, C.I.G.; Pons, R.; García, M.T.; del Carmen Morán, M.; Ferino, G.; Vassallo, A.; Martelli, G.; Caddeo, C. Phenolic fingerprint, bioactivity and nanoformulation of Prunus spinosa L. fruit extract for skin delivery. Pharmaceutics 2023, 15, 1063. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.A.; Nothias, L.F.; Ludwig, M.; Fleischauer, M.; Gentry, E.C.; Witting, M.; Dorrestein, P.C.; Dührkop, K.; Böcker, S. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 2022, 40, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef]
- Bouzabata, A.; Montoro, P.; Gil, K.A.; Piacente, S.; Youssef, F.S.; Al Musayeib, N.M.; Cordell, G.A.; Ashour, M.L.; Tuberoso, C.I.G. HR-LC-ESI-Orbitrap-MS-Based metabolic profiling coupled with chemometrics for the discrimination of different Echinops spinosus organs and evaluation of their antioxidant activity. Antioxidants 2022, 11, 453. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bektaşoğlu, B.; Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem. Biophys. Res. Commun. 2006, 345, 1194–1200. [Google Scholar] [CrossRef]
- Santoru, M.L.; Piras, C.; Murgia, F.; Spada, M.; Tronci, L.; Leoni, V.P.; Serreli, G.; Deiana, M.; Atzori, L. Modulatory effect of nicotinic acid on the metabolism of Caco-2 cells exposed to IL-1β and LPS. Metabolites 2020, 10, 204. [Google Scholar] [CrossRef]
- Serreli, G.; Naitza, M.R.; Zodio, S.; Leoni, V.P.; Spada, M.; Melis, M.P.; Boronat, A.; Deiana, M. Ferulic acid metabolites attenuate LPS-induced inflammatory response in enterocyte-like cells. Nutrients 2021, 13, 3152. [Google Scholar] [CrossRef]
- Gil, K.A.; Nowicka, P.; Wojdyło, A.; Serreli, G.; Deiana, M.; Tuberoso, C.I.G. Antioxidant activity and inhibition of digestive enzymes of new strawberry tree fruit/apple smoothies. Antioxidants 2023, 12, 805. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.I.; Iqbal, Z.; Shah, Y.; Ahmad, L.; Nazir, S.; Watson, D.G.; Khan, J.A.; Nasir, F.; Khan, A.; et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 2011, 84, 789–801. [Google Scholar] [CrossRef]
- Tronci, L.; Serreli, G.; Piras, C.; Frau, D.V.; Dettori, T.; Deiana, M.; Murgia, F.; Santoru, M.L.; Spada, M.; Leoni, V.P.; et al. Vitamin C cytotoxicity and its effects in redox homeostasis and energetic metabolism in papillary thyroid carcinoma cell lines. Antioxidants 2021, 10, 809. [Google Scholar] [CrossRef] [PubMed]
- Serreli, G.; Melis, M.P.; Corona, G.; Deiana, M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem. Toxicol. 2019, 125, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Fischmann, T.O.; Hruza, A.; Da Niu, X.; Fossetta, J.D.; Lunn, C.A.; Dolphin, E.; Prongay, A.J.; Reichert, P.; Lundell, D.J.; Narula, S.K.; et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Mol. Biol. 1999, 6, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Lountos, G.T.; Rongrong, J.; Wellborn, W.B.; Thaler, T.L.; Bommarius, A.S.; Orville, A.M. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme. Biochemistry 2006, 45, 9648–9659. [Google Scholar] [CrossRef]
- Jnoff, E.; Albrecht, C.; Barker, J.J.; Barker, O.; Beaumont, E.; Bromidge, S.; Brookfield, F.; Brooks, M.; Bubert, C.; Ceska, T.; et al. Binding mode and structure–activity relationships around direct inhibitors of the Nrf2–Keap1 complex. Chem. Med. Chem. 2014, 9, 699–705. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Schrödinger Release 2024-4: LigPrep; Schrödinger, LLC: New York, NY, USA, 2024.
- Johnston, R.C.; Yao, K.; Kaplan, Z.; Chelliah, M.; Leswing, K.; Seekins, S.; Watts, S.; Calkins, D.; Elk, J.C.; Jerome, S.V.; et al. Epik: pKa and protonation state prediction through machine learning. J. Chem. Theory Comput. 2023, 19, 2380–2388. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision Glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef]
- Mróz, M.; Kusznierewicz, B. Phytochemical screening and biological evaluation of Greek sage (Salvia fruticosa Mill.) extracts. Sci. Rep. 2023, 13, 22309. [Google Scholar] [CrossRef]
- Serrano, C.A.; Villena, G.K.; Rodríguez, E.F.; Calsino, B.; Ludeña, M.A.; Ccana-Ccapatinta, G.v. Phytochemical analysis for ten Peruvian Mentheae (Lamiaceae) by liquid chromatography associated with high resolution mass spectrometry. Sci. Rep. 2023, 13, 10714. [Google Scholar] [CrossRef] [PubMed]
- Hatipoğlu, D.S. Phenolic acid contents of Salvia poculata Nab by LC-MS/MS. J. Chem. Metrol. 2016, 10, 12–15. [Google Scholar]
- Bae, J.Y.; Hong, S.S.; Kim, M.J. Anti-adipogenic effect of sage (Salvia officinalis L.) hot-water extract on 3T3-L1 adipocyte and HepG2 hepatocyte. Journal of Functional Foods 2025, 124, 106635. [Google Scholar] [CrossRef]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Pražnikar, Z.J. HPLC-DAD-ESI-QTOF-MS determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef]
- Xu, M.; Han, J.; Li, H.-F.; Fan, L.; Liu, A.-H.; Guo, D.-A. Analysis on the stability of total phenolic acids and salvianolic Acid B from Salvia miltiorrhiza by HPLC and HPLC-MS. Nat. Prod. Commun. 2008, 3, 669–676. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, R.; Sheng, S.; Fu, H.; Wang, X. Untargeted LC–MS/MS-based metabolomic profiling for the edible and medicinal plant Salvia miltiorrhiza under different levels of cadmium stress. Front. Plant Sci. 2022, 13, 889370. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Jiménez-Ferrer, E.; González-Cortazar, M.; Alejandro, Z.; Monterrosas-Brisson, N.; Herrera-Ruiz, M. Salvia elegans vahl counteracting metabolic syndrome and depression in mice on a high-fat diet. Molecules 2024, 29, 4070. [Google Scholar] [CrossRef]
- Al-Jaber, H.I.; Shakya, A.K.; Elagbar, Z.A. HPLC profiling of selected phenolic acids and flavonoids in Salvia eigii, Salvia hierosolymitana and Salvia viridis growing wild in Jordan and their in vitro antioxidant activity. PeerJ 2020, 8, e9769. [Google Scholar] [CrossRef] [PubMed]
- Onder, A.; Izgi, M.N.; Cinar, A.S.; Zengin, G.; Yilmaz, M.A. The characterization of phenolic compounds via LC-ESI-MS/MS, antioxidant, enzyme inhibitory activities of Salvia absconditiflora, Salvia sclarea, and Salvia palaestina: A comparative analysis. S. Afr. J. Bot. 2022, 150, 313–322. [Google Scholar] [CrossRef]
- Piątczak, E.; Owczarek, A.; Lisiecki, P.; Gonciarz, W.; Kozłowska, W.; Szemraj, M.; Chmiela, M.; Kiss, A.K.; Olszewska, M.A.; Grzegorczyk-Karolak, I. Identification and quantification of phenolic compounds in Salvia cadmica Boiss. and their biological potential. Ind. Crops Prod. 2021, 160, 113113. [Google Scholar] [CrossRef]
- Vergine, M.; Nicolì, F.; Negro, C.; Luvisi, A.; Nutricati, E.; Accogli, R.A.; Sabella, E.; Miceli, A. Phytochemical profiles and antioxidant activity of salvia species from southern Italy. Rec. Nat. Prod. 2019, 13, 205–215. [Google Scholar] [CrossRef]
- Romano, E.; Domínguez-Rodríguez, G.; Mannina, L.; Cifuentes, A.; Ibáñez, E. Sequential obtention of blood–brain barrier-permeable non-polar and polar compounds from Salvia officinalis L. and Eucalyptus globulus Labill. with neuroprotective purposes. Int. J. Mol. Sci. 2025, 26, 601. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Poliwoda, A.; Petecka, M.; Buslovych, O.; Shlyapnikov, V.A.; Wieczorek, P.P. Antioxidant phenolic compounds in Salvia officinalis L. and Salvia sclarea L. Ecol. Chem. Eng. S 2018, 25, 133–142. [Google Scholar] [CrossRef]
- Quradha, M.M.; Duru, M.E.; Kucukaydin, S.; Tamfu, A.N.; Iqbal, M.; Bibi, H.; Khan, R.; Ceylan, O. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea. Sci. Rep. 2024, 14, 1885. [Google Scholar] [CrossRef]
- Shojaeifard, Z.; Hemmatinejad, B.; Jassbi, A.R. Chemometrics-based LC-UV-ESIMS analyses of 50 Salvia species for detecting their antioxidant constituents. J. Pharm. Biomed. Anal. 2021, 193, 113745. [Google Scholar] [CrossRef]
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of salvia leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2014, 170, 378–385. [Google Scholar] [CrossRef]
- Exarchou, V.; Kanetis, L.; Charalambous, Z.; Apers, S.; Pieters, L.; Gekas, V.; Goulas, V. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. Extract with antifungal potential: Relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food Chem. 2015, 63, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.K.; Anwar, S.; Hasan, G.M.; Shamsi, A.; Islam, A.; Parvez, S.; Hassan, M.I. Comprehensive insights into biological roles of rosmarinic acid: Implications in diabetes, cancer and neurodegenerative diseases. Nutrients 2023, 15, 4297. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G.; et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Tuberoso, C.I.G.; Jerković, I. The role of rosmarinic acid in cancer prevention and therapy: Mechanisms of antioxidant and anticancer activity. Antioxidants 2024, 13, 1313. [Google Scholar] [CrossRef]
- Al-Saleem, M.; Al-Wahaibi, L.; Rehman, M.; AlAjmi, M.; Alkahtani, R.; Abdel-Mageed, W. Phenolic compounds of Heliotropium europaeum and their biological activities. Pharmacogn. Mag. 2020, 16, 108. [Google Scholar] [CrossRef]
- Lin, L.; Dong, Y.; Zhao, H.; Wen, L.; Yang, B.; Zhao, M. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem. 2011, 129, 884–889. [Google Scholar] [CrossRef]
- Aijaz, M.; Keserwani, N.; Yusuf, M.; Ansari, N.H.; Ushal, R.; Kalia, P. Chemical, biological, and pharmacological prospects of caffeic acid. Biointerface Res. App. Chem. 2023, 13, 1–26. [Google Scholar] [CrossRef]
- Cho, Y.C.; Park, J.; Cho, S. Anti-Inflammatory and anti-oxidative Effects of luteolin-7-O-glucuronide in LPS-stimulated murine macrophages through TAK1 inhibition and Nrf2 activation. Int. J. Mol. Sci. 2020, 21, 2007. [Google Scholar] [CrossRef]
- Pan, J.; Gong, X.; Qu, H. Degradation kinetics and mechanism of lithospermic acid under low oxygen condition using quantitative 1H NMR with HPLC-MS. PLoS ONE 2016, 11, e0164421. [Google Scholar] [CrossRef]
- Masala, V.; Jokić, S.; Aladić, K.; Molnar, M.; Casula, M.; Tuberoso, C.I.G. Chemical profiling and evaluation of antioxidant activity of artichoke (Cynara cardunculus var. scolymus) leaf by-products’ extracts obtained with green extraction techniques. Molecules 2024, 29, 4816. [Google Scholar] [CrossRef]
- Posadino, A.M.; Porcu, M.C.; Marongiu, B.; Cossu, A.; Piras, A.; Porcedda, S.; Falconieri, D.; Cappuccinelli, R.; Biosa, G.; Pintus, G. Antioxidant activity of supercritical carbon dioxide extracts of Salvia desoleana on two human endothelial cell models. Food Res. Int. 2012, 46, 354–359. [Google Scholar] [CrossRef]
- Vaskova, J.; Kocan, L.; Vasko, L.; Perjesi, P. Glutathione-related enzymes and proteins: A review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Go, Y.M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 2011, 50, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wang, H.; Cai, J.; Peng, Y.; Niu, Y.; Chen, H.; Bai, L.; Zhang, S.; Jin, J.; Liu, L.; et al. A novel oxidation-reduction method for highly selective detection of cysteine over reduced glutathione based on synergistic effect of fully fluorinated cobalt phthalocyanine and ordered mesoporous carbon. Sens. Actuators B Chem. 2019, 288, 180–187. [Google Scholar] [CrossRef]
- Hamed, A.R.; Nabih, H.K.; El-Rashedy, A.A.; Mohamed, T.A.; Mostafa, O.E.; Ali, S.K.; Efferth, T.; Hegazy, M.-E.F. Salvimulticanol from Salvia multicaulis suppresses LPS-induced inflammation in RAW264.7 macrophages: In vitro and in silico studies. 3 Biotech 2024, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Lee, S.; Lee, S.J.; Lim, H.; Jung, K.; Kim, Y.; Lee, S.; Rho, M.C. Anti-Inflammatory activity of eudesmane-type sesquiterpenoids from Salvia plebeia. J. Nat. Med. 2017, 80, 2666–2676. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef]
- Serreli, G.; Deiana, M. Role of dietary polyphenols in the activity and expression of Nitric Oxide Synthases: A review. Antioxidants 2023, 12, 147. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent advances of natural polyphenols activators for Keap1-Nrf2 signaling pathway. Chem. Biodivers. 2019, 16, e1900400. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I.; Hid, E.J.; Galleano, M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol. 2023, 67, 102927. [Google Scholar] [CrossRef] [PubMed]
- Alim Toraman, G.O.; Senol, H.; Yazici Tutunis, S.; Tan, N.; Topcu, G. Phytochemical analysis and molecular docking studies of two endemic varieties of Salvia sericeotomentosa. Turk. J. Chem. 2023, 47, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Sun, D.; Li, G.; Lv, Y.; Li, J.; Wang, Q.; Dang, J. Ethyl acetate extract of Dracocephalum heterophyllum Benth ameliorates nonalcoholic steatohepatitis and fibrosis via regulating bile acid metabolism, oxidative stress and inhibiting inflammation. Separations 2022, 9, 273. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Palusiak, M.; Hoelm, M.; Zajdel, K.; Zajdel, R. In vitro evaluation and in silico calculations of the antioxidant and anti-inflammatory properties of secondary metabolites from Leonurus sibiricus L. root extracts. Molecules 2023, 28, 6550. [Google Scholar] [CrossRef] [PubMed]
Compounds | n° | SH2OA | SH2OB | SEtOHA | SEtOHB | SFH2O | SFEtOH |
---|---|---|---|---|---|---|---|
MS § | Mean ± sd | Mean ± sd | Mean ± sd | Mean ± sd | Mean ± sd | Mean ± sd | |
Total flavonoids | 34.39 ± 1.27 a | 1.7 ± 0.26 b | 29.83 ± 1.29 c | 7.34 ± 0.13 d | 15.40 ± 1.08 e | 20.54 ± 1.84 f | |
Luteolin 7-O-glucoside | 12 | 3.08 ± 0.16 a | 0.22 ± 0.00 b | 3.26 ± 0.03 a | 1.24 ± 0.00 c | nd | 6.85 ± 0.69 d |
Luteolin glucuronide A | 13 | 11.04 ± 0.10 a | 0.27 ± 0.00 b | 7.33 ± 0.04 c | nd | 8.15 ± 0.57 d | 2.15 ± 0.23 e |
Isorhamnetin hexoside B | 14 | 1.15 ± 0.03 a | 0.04 ± 0.00 b | 0.77 ± 0.01 c | nd | nd | 0.10 ± 0.01 d |
Apigenin hexoside C | 15 | 0.33 ± 0.00 a | nd | nd | nd | nd | 0.15 ± 0.02 b |
Apigenin glucuronide C | 17 | 5.05 ± 0.05 a | 0.20 ± 0.00 b | 4.05 ± 0.01 c | 0.49 ± 0.00 d | 3.01 ± 0.29 e | 4.52 ± 0.50 c |
Hispidulin glucuronide D | 18 | 5.30 ± 0.17 a | 0.18 ± 0.00 b | 4.05 ± 0.02 c | 0.25 ± 0.00 d | 2.99 ± 0.24 e | 3.92 ± 0.35 f |
Luteolin | 21 | 1.07 ± 0.06 a | 0.11 ± 0.00 b | 1.34 ± 0.09 c | 0.75 ± 0.00 d | nd | nd |
Isorhamnetin | 22 | 0.94 ± 0.02 a | 0.08 ± 0.00 b | 0.86 ± 0.40 a | 0.47 ± 0.00 a | nd | nd |
Apigenin acetyl-glucoside C | 23 | nd | nd | nd | 0.06 ± 0.09 a | nd | nd |
Apigenin | 24 | 0.54 ± 0.01 a | 0.07 ± 0.00 b | 0.69 ± 0.02 c | 0.40 ± 0.00 d | nd | nd |
Dimethyl-quercetin ethere A | 25 | 1.23 ± 0.01 a | 0.14 ± 0.00 b | 1.67 ± 0.01 c | 0.94 ± 0.01 d | nd | nd |
Hispidulin | 26 | 1.15 ± 0.01 a | 0.16 ± 0.00 b | 1.74 ± 0.08 c | 1.07 ± 0.02 d | nd | nd |
Cirsimaritin D | 27 | 0.52 ± 0.17 a | 0.08 ± 0.00 b | 0.69 ± 0.30 a | 0.41 ± 0.01 a | nd | 0.45 ± 0.04 a |
Genkwain D | 28 | 0.46 ± 0.00 a | 0.06 ± 0.00 b | 0.56 ± 0.00 c | 0.32 ± 0.00 d | nd | 0.39 ± 0.04 e |
Other Flavonoids | 2.53 ± 0.48 a | 0.14 ± 0.00 b | 2.81 ± 0.28 a | 0.95 ± 0.00 c | 1.25 ± 0.13 d | 2.01 ± 0.12 a | |
Total hydroxycinnamic acids | 361.27 ± 15.16 a | 25.10 ± 0.23 b | 518.64 ± 5.82 c | 197.09 ± 0.43 d | 158.69 ± 7.93 e | 57.35 ± 3.44 f | |
Caffeic acid | 7 | 15.33 ± 0.19 a | 1.19 ± 0.01 b | 26.69 ± 0.49 c | 11.86 ± 0.00 d | nd | 17.04 ± 1.02 e |
Ferulic acid | 11 | 7.20 ± 5.04 a | 0.65 ± 0.01 b | 15.31 ± 0.75 c | 2.37 ± 0.01 d | 1.32 ± 0.07 e | 3.54 ± 0.21 a |
Rosmarinic acid | 16 | 284.01 ± 4.43 a | 22.10 ± 0.20 b | 427.42 ± 1.99 c | 159.22 ± 0.26 d | 128.01 ± 11.52 e | nd |
Methyl rosmarinate E | 20 | 10.78 ± 0.05 a | 1.01 ± 0.01 b | 17.42 ± 1.03 c | 7.66 ± 0.03 d | nd | 10.25 ± 0.72 a |
Others hydroxycinnamic acids | 43.95 ± 5.45 a | 0.15 ± 0.00 b | 31.79 ± 1.57 c | 16.00 ± 0.12 d | 25.36 ± 1.78 e | 20.52 ± 1.23 f | |
Total hydroxybenzoic acids | 3.93 ± 0.92 a | 0.22 ± 0.02 b | 5.30 ± 0.35 c | 1.49 ± 0.03 d | 2.71 ± 0.16 e | 3.28 ± 0.26 a | |
Salvianic acid A (danshensu) F | 4 | 0.11 ± 0.00 a | nd | 0.16 ± 0.01 b | 0.15 ± 0.00 b | 0.10 ± 0.00 c | nd |
Protocatechuic acid hexoside F | 3 | 0.17 ± 0.01 a | nd | 0.24 ± 0.00 b | 0.12 ± 0.00 c | 0.09 ± 0.01 d | 0.12 ± 0.01 c |
Syringic acid | 10 | 0.44 ± 0.21 a | nd | 0.44 ± 0.03 a | 0.62 ± 0.00 b | nd | nd |
Others | 3.21 ± 0.69 a | 0.22 ± 0.02 b | 4.46 ± 0.31 c | 0.60 ± 0.02 d | 1.52 ± 0.14 e | 2.16 ± 0.15 f | |
Total other compounds | 0.04 ± 0.00 a | nd | 0.05 ± 0.00 b | 0.01 ± 0.00 c | 0.02 ± 0.00 d | 0.04 ± 0.00 a | |
Homovanillic acid | 6 | 0.04 ± 0.00 a | nd | 0.05 ± 0.00 b | 0.01 ± 0.00 c | 0.02 ± 0.00 d | 0.04 ± 0.00 a |
Total phenols | 399.64 ± 17.36 a | 27.07 ± 0.28 b | 553.82 ± 7.47 c | 205.93 ± 0.59 d | 176.82 ± 12.38 e | 81.21 ± 4.87 f |
Sample Code | TP A | CUPRAC B | FRAP B | DPPH• C | ABTS•+ C |
---|---|---|---|---|---|
(mg GAE/g dw) | (mmol Fe2+/g dw) | (mmol TEAC/g dw) | |||
SH2OA | 75.28 ± 1.97 a | 4.10 ± 0.04 a | 2.04 ± 0.05 a | 0.63 ± 0.02 a | 0.75 ± 0.02 a |
SH2OB | 3.52 ± 0.22 b | 0.15 ± 0.00 b | 0.08 ± 0.00 a | 0.02 ± 0.00 b | 0.03 ± 0.00 b |
SEtOHA | 106.02 ± 6.02 c | 7.57 ± 0.05 c | 4.04 ± 0.14 c | 0.97 ± 0.03 c | 1.29 ± 0.02 c |
SEtOHB | 32.44 ± 1.93 d | 1.42 ± 0.12 d | 0.84 ± 0.06 d | 0.13 ± 0.01 d | 0.23 ± 0.02 d |
Compound | iNOS | Keap1-Nrf2 | NOX |
---|---|---|---|
Rosmarinic acid | −7.901 | −9.655 | −9.026 |
Methyl rosmarinate | −6.809 | −8.191 | −7.478 |
Caffeic acid | −4.224 | −5.122 | −5.412 |
Luteolin-7-O-glucuronide | −4.864 | −11.649 | −11.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masala, V.; Serreli, G.; Laus, A.; Deiana, M.; Kowalczyk, A.; Tuberoso, C.I.G. Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities. Foods 2025, 14, 2365. https://doi.org/10.3390/foods14132365
Masala V, Serreli G, Laus A, Deiana M, Kowalczyk A, Tuberoso CIG. Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities. Foods. 2025; 14(13):2365. https://doi.org/10.3390/foods14132365
Chicago/Turabian StyleMasala, Valentina, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk, and Carlo Ignazio Giovanni Tuberoso. 2025. "Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities" Foods 14, no. 13: 2365. https://doi.org/10.3390/foods14132365
APA StyleMasala, V., Serreli, G., Laus, A., Deiana, M., Kowalczyk, A., & Tuberoso, C. I. G. (2025). Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities. Foods, 14(13), 2365. https://doi.org/10.3390/foods14132365