Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts
Abstract
1. Introduction
2. Results
2.1. Effects of MeJA Treatment on the Total Phenolics and the Total Flavonoid Content of Finger Millet Sprouts
2.2. Effects of MeJA Treatment on the Growth and Development of Finger Millet Sprouts
2.3. Effects of MeJA Treatment on the Antioxidant Capacity of Finger Millet Sprouts
2.4. Effects of MeJA Treatment on Activity and Gene Expression Level of Antioxidant Enzyme in Finger Millet Sprouts
2.5. Effects of MeJA Treatment on Activity and Gene Expression Level of Key Enzymes Associated with Flavonoid Biosynthesis in Finger Millet Sprouts
2.6. Effects of MeJA Treatment on Gene Expression in the Middle and Downstream Pathways of Flavonoid Metabolism in Finger Millet Sprouts
2.7. Effects of MeJA Treatment on Stress-Related Gene Expression in Finger Millet Sprouts
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Instrumentation
4.3. Determination of Sprout Length and Dry Weight
4.4. Determination of Total Flavonoid and Total Phenolic Content
4.5. Determination of H2O2 and O2−• Content, DPPH, and ABTS
4.6. Determination of Flavonoid Biosynthetic Enzyme Activities
4.7. Determination of Antioxidant Enzyme Activities
4.8. RNA Extraction and Quantitative Real-Time PCR Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Majeed, I.; Nisa, M.U.; Rahim, M.A.; Ramadan, M.F.; Al-Asmari, F.; Alissa, M.; Zongo, E. Role of Seed Therapy on Estrous and Non-estrous Cycle in Healthy Female Rats. Food Sci. Nutr. 2025, 13, e4692. [Google Scholar] [CrossRef] [PubMed]
- Canivenc-Lavier, M.C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef] [PubMed]
- Abshirini, M.; Omidian, M.; Kord-Varkaneh, H. Effect of Soy Protein Containing Isoflavones on Endothelial and Vascular Function in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Menopause 2020, 27, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Appleby, P.N.; Boeing, H.; Gil, L.; Kyrø, C.; Ricceri, F.; Murphy, N.; Trichopoulou, A.; Tsilidis, K.K.; Khaw, K.-T.; et al. Circulating Isoflavone and Lignan Concentrations and Prostate Cancer Risk: A Meta-Analysis of Individual Participant Data from Seven Prospective Studies Including 2828 Cases and 5593 Controls. Int. J. Cancer 2018, 143, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Hillman, G.G.; Singh-Gupta, V. Soy Isoflavones Sensitize Cancer Cells to Radiotherapy. Free Radic. Biol. Med. 2011, 51, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Zhang, Y.J.; Zhu, G.Y.; Shi, X.C.; Chen, X.; Herrera-Balandrano, D.D.; Liu, F.Q.; Laborda, P. Occurrence of Isoflavones in Soybean Sprouts and Strategies to Enhance Their Content: A Review. J. Food Sci. 2022, 87, 1961–1982. [Google Scholar] [CrossRef] [PubMed]
- Nickhil, C.; Singh, R.; Deka, S.C.; Nisha, R. Exploring Finger Millet Storage: An in-Depth Review of Challenges, Innovations, and Sustainable Practices. Cereal Res. Commun. 2025, 53, 57–79. [Google Scholar] [CrossRef]
- Udeh, H.O.; Duodu, K.G.; Jideani, A.I.O. Finger Millet Bioactive Compounds, Bioaccessibility, and Potential Health Effects—A Review. Czech J. Food Sci. 2017, 35, 7–17. [Google Scholar] [CrossRef]
- Gaikwad, V.; Kaur, J.; Rasane, P.; Kaur, S.; Singh, J.; Kumar, A.; Kumar, A.; Sharma, N.; Mehta, C.M.; Patel, A.S. Nutritional Significance of Finger Millet and Its Potential for Using in Functional Products. Foods Raw Mater. 2023, 12, 110–123. [Google Scholar] [CrossRef]
- Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger Millet (Ragi, Eleusine coracana L.): A Review of Its Nutritional Properties, Processing, and Plausible Health Benefits. Adv. Food Nutr. Res. 2013, 69, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wan, Z.; Perry, L.; Lu, H.; Wang, Q.; Zhao, C.; Li, J.; Xie, F.; Yu, J.; Cui, T.; et al. Early Millet Use in Northern China. Proc. Natl. Acad. Sci. USA 2012, 109, 3726–3730. [Google Scholar] [CrossRef] [PubMed]
- Shingare, S.P.; Thorat, B.N. Effect of Drying Temperature and Pretreatment on Protein Content and Color Changes during Fluidized Bed Drying of Finger Millets (Ragi, Eleusine coracana) Sprouts. Dry. Technol. 2013, 31, 507–518. [Google Scholar] [CrossRef]
- George, N.; Mildred, N.; Wanzala, E.; Munga, J.; Oduori, C.; Kinyuru, J.; Hudson, N. Nutritional Composition and Anti-Nutrient Levels in Raw and Processed Varieties of Finger Millet Promoted for Nutritional Security. Food Nutr. Sci. 2023, 14, 1183–1205. [Google Scholar] [CrossRef]
- Yan, H.; Chen, H.; Xia, M.; Liao, Q.; Zhao, J.; Peng, L.; Zou, L.; Zhao, G. The Impacts of Plant Hormones on the Growth and Quality of Sprouts. Food Bioprocess Technol. 2024, 17, 2913–2942. [Google Scholar] [CrossRef]
- Cao, J.; Li, M.; Chen, J.; Liu, P.; Li, Z. Effects of MeJA on Arabidopsis Metabolome under Endogenous JA Deficiency. Sci. Rep. 2016, 6, 37674. [Google Scholar] [CrossRef] [PubMed]
- Kortbeek, R.W.J.; Van Der Gragt, M.; Bleeker, P.M. Endogenous Plant Metabolites against Insects. Eur. J. Plant Pathol. 2019, 154, 67–90. [Google Scholar] [CrossRef]
- Pilaisangsuree, V.; Somboon, T.; Tonglairoum, P.; Keawracha, P.; Wongsa, T.; Kongbangkerd, A.; Limmongkon, A. Enhancement of Stilbene Compounds and Anti-Inflammatory Activity of Methyl Jasmonate and Cyclodextrin Elicited Peanut Hairy Root Culture. Plant Cell Tissue Organ Cult. 2018, 132, 165–179. [Google Scholar] [CrossRef]
- Shang, C.; Liu, X.; Chen, G.; Zheng, H.; Khan, A.; Li, G.; Hu, X. SlWRKY80-Mediated Jasmonic Acid Pathway Positively Regulates Tomato Resistance to Saline–Alkali Stress by Enhancing Spermidine Content and Stabilizing Na+/K+ Homeostasis. Hortic. Res. 2024, 11, uhae028. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.; del Castillo, M.L.R. Influence of Preharvest and Postharvest Methyl Jasmonate Treatments on Flavonoid Content and Metabolomic Enzymes in Red Raspberry. Postharvest Biol. Technol. 2014, 97, 77–82. [Google Scholar] [CrossRef]
- Hama, J.R.; Hooshmand, K.; Laursen, B.B.; Vestergård, M.; Fomsgaard, I.S. Clover Root Uptake of Cereal Benzoxazinoids (BXs) Caused Accumulation of BXs and BX Transformation Products Concurrently with Substantial Increments in Clover Flavonoids and Abscisic Acid. J. Agric. Food Chem. 2022, 70, 14633–14640. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jin, P.; Cao, S.; Shang, H.; Yang, Z.; Zheng, Y. Methyl Jasmonate Reduces Decay and Enhances Antioxidant Capacity in Chinese Bayberries. J. Agric. Food Chem. 2009, 57, 5809–5815. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Mu, L.; Yan, G.; Liang, N.; Pan, Q.; Wang, J.; Reeves, M.J.; Duan, C. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.d.L.; Blanch, G.P.; Flores, G.; del Castillo, M.L.R. Impact of Postharvest Methyl Jasmonate Treatment on the Volatile Composition and Flavonol Content of Strawberries. J. Sci. Food Agric. 2010, 90, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; He, W.; Li, D.; Bao, Y.; Riaz, A.; Xiao, Y.; Song, J.; Liu, C. Effect of Methyl Jasmonate on Carotenoids Biosynthesis in Germinated Maize Kernels. Food Chem. 2020, 307, 125525. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Xue, J.; Hu, J.; Yang, Z.; Fang, W. Exogenous Methyl Jasmonate Combined with Ca2+ Promote Resveratrol Biosynthesis and Stabilize Sprout Growth for the Production of Resveratrol-Rich Peanut Sprouts. Plant Physiol. Biochem. 2023, 203, 107988. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, P.; Menzies, N.W.; Lombi, E.; Kopittke, P.M. Effects of Methyl Jasmonate on Plant Growth and Leaf Properties. J. Plant Nutr. Soil Sci. 2018, 181, 409–418. [Google Scholar] [CrossRef]
- Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.D.; Ogé, L.; Hamama, L.; Atanassova, R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int. J. Mol. Sci. 2018, 19, 2506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, C.; Huang, J.; Xu, D.; Zhang, C.; Chen, J. Effect of Exogenous Abscisic Acid and Salicylic Acid on Germination and Physiological Characteristics of Wheat Seed. Chin. J. Appl. Environ. Biol. 2014, 20, 139–143. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, J.; Yang, Z.; Fang, W.; Yang, J. Effects of Methyl Jasmonate and NaCl Treatments on the Resveratrol Accumulation and Defensive Responses in Germinated Peanut (Arachis hypogaea L.). Plant Physiol. Biochem. 2023, 194, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ding, Y.; Wang, Q.; Wang, P.; Han, Y.; Gu, Z.; Yang, R. NaCl Treatment on Physio-Biochemical Metabolism and Phenolics Accumulation in Barley Seedlings. Food Chem. 2020, 331, 127282. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Gonzalez, J.J.; Guttikonda, S.K.; Tran, L.S.; Aldrich, D.L.; Zhong, R.; Yu, O.; Nguyen, H.T.; Sleper, D.A. Differential Expression of Isoflavone Biosynthetic Genes in Soybean during Water Deficits. Plant Cell Physiol. 2010, 51, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Yu, O.; Lau, S.M.; O’Keefe, D.P.; Odell, J.; Fader, G.; McGonigle, B. Identification and Expression of Isoflavone Synthase, the Key Enzyme for Biosynthesis of Isoflavones in Legumes. Nat. Biotechnol. 2000, 18, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liu, B.; Geng, X.; Ding, X.; Yan, N.; Sun, X.; Wang, W.; Sun, X.; Zheng, C. Biological Function and Stress Response Mechanism of MYB Transcription Factor Family Genes. J. Plant Growth Regul. 2023, 42, 83–95. [Google Scholar] [CrossRef]
- Han, K.; Zhao, Y.; Sun, Y.; Li, Y. NACs, Generalist in Plant Life. Plant Biotechnol. J. 2023, 21, 2433–2457. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhu, L.; Xu, L.; Guo, W.; Zhang, X. GhATAF1, a NAC Transcription Factor, Confers Abiotic and Biotic Stress Responses by Regulating Phytohormonal Signaling Networks. Plant Cell Rep. 2016, 35, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Wang, J.; Zou, G.; Wang, L.; Li, X. Two Responses to MeJA Induction of R2R3-MYB Transcription Factors Regulate Flavonoid Accumulation in Glycyrrhiza Uralensis Fisch. PLoS ONE 2020, 15, e0236565. [Google Scholar] [CrossRef] [PubMed]
- Parmenter, B.H.; Croft, K.D.; Hodgson, J.M.; Dalgaard, F.; Bondonno, C.P.; Lewis, J.R.; Cassidy, A.; Scalbert, A.; Bondonno, N.P. An Overview and Update on the Epidemiology of Flavonoid Intake and Cardiovascular Disease Risk. Food Funct. 2020, 11, 6777–6806. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose–Response Meta-analysis. Mol. Nutr. Food Res. 2021, 65, 2001019. [Google Scholar] [CrossRef] [PubMed]
- Bińkowska, W.; Szpicer, A.; Stelmasiak, A.; Wojtasik-Kalinowska, I.; Półtorak, A. Utilization of Microencapsulated Polyphenols to Enhance the Bioactive Compound Content in Whole Grain Bread: Recipe Optimization. Appl. Sci. 2024, 14, 10156. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Gu, Z.; Sun, M.; Yang, R. Effects of Germination on Physio-Biochemical Metabolism and Phenolic Acids of Soybean Seeds. J. Food Compost. Anal. 2022, 112, 104717. [Google Scholar] [CrossRef]
- Wang, G.; Wu, L.; Zhang, H.; Wu, W.; Zhang, M.; Li, X.; Wu, H. Regulation of the Phenylpropanoid Pathway: A Mechanism of Selenium Tolerance in Peanut (Arachis hypogaea L.) Seedlings. J. Agric. Food Chem. 2016, 64, 3626–3635. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity Effects on Polyphenol Content and Antioxidant Activities in Leaves of the Halophyte Cakile Maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhao, C.; Yang, M.; Yin, D. ZnCl2 Treatment Improves Nutrient Quality and Zn Accumulation in Peanut Seeds and Sprouts. Sci. Rep. 2020, 10, 2364. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, P.; Yang, R.; Zhou, T.; Gu, Z. UV-B Mediates Isoflavone Accumulation and Oxidative-Antioxidant System Responses in Germinating Soybean. Food Chem. 2019, 275, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, P.; Gu, Z.; Ma, M.; Yang, R. Spermidine Improves Antioxidant Activity and Energy Metabolism in Mung Bean Sprouts. Food Chem. 2020, 309, 125759. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M. Influence of Stress Conditions on the Quality of Obtained Sprouts—Modification of Their Chemical Composition. Qual. Assur. Saf. Crops Foods 2021, 13, 1–12. [Google Scholar] [CrossRef]
Instrument Name | Model | Manufacturer | Location (City, Country) |
---|---|---|---|
Intelligent light incubator | KM-68S | Ningbo Kemai Instrument Co., Ltd. | Ningbo, China |
Thermostatic water bath | DK-S12 | Shanghai Sumsung Laboratory Instrument Co., Ltd. | Shanghai, China |
Electronic balance | JA2003 | Cany Precision Instrument Co., Ltd. | Shanghai, China |
UV-vis spectrophotometer | UV-1150 | Shanghai Mapada Instruments Co., Ltd. | Shanghai, China |
Desktop centrifuge | DICO | Anhui USTC Zonkia Scientific Instruments Co., Ltd. | Hefei, China |
Real-time quantitative PCR system | StepOnePlusTM | Applied Biosystems (ABI) | Foster City, CA, USA |
High-pressure steam autoclave | SX-500 | TOMY Digital Biology Co., Ltd. (TOMMY) | Tokyo, Japan |
High-speed refrigerated centrifuge | H1650 | Changsha Xiangyi Centrifuge Instrument Co., Ltd. | Changsha, China |
Name | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
Actin | CTCACGCTCAAGTACCCAATC | GGCAACACGAAGCTCATTGTA |
EcPAL | CGTGCCGCTCTCCTACATTGC | CCTCTGCTGCGTTCACCTTGG |
EcC4H | GACTTCCGCTTCCTGCCGTTC | CACGAGCTTGCCGACGATGAG |
EcPOD | CCAGGTGCTCTACTCCGACGACC | GAGGTTGGTCATGGCGGCGAC |
EcSOD | CTCCTACGGCGACCTCTACCAGC | CTGAGGCTTGTCCTCCCTCCCTG |
EcAPX | CACCTGTTCCTCGACTTTGC | TTACGTTGCAGCAGTTGAGG |
EcCAT | ACCCGCCTTTACTACTTTTT | CATAGCCGAAAAGCATCCAT |
Ec4CL | GACGACAAGGCGACCAAGGC | CTCCACGCTGCTGATGTTCTCG |
EcCHI | GCCGCCGTGGAGAAGTTCAAG | ACCGACGAGTCCTTGGAGAACG |
EcCHS | ATGCTGTTCTCCGTCCCGAATTTC | CTTATCTTCCTGGCGAGCACCTTC |
EcCHR | AGTCTCAAGATCGCATTGCTGGTG | AACTTGTGGTGAGGTGTGCTGTG |
EcIFS | AAGCAAGCGGATGTGGTGTTCTC | GCTCCACGTCACAGCCATATTCAG |
EcMYB | AGGAGGAGGAAGATGCTGAAAGT | TTGAGGTGGTTGGATAGTGAGAG |
EcNAC | CGTGTGCAAGGTGTTCAACA | CCAAGTAGTCGCTGAAGGAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Zhang, J.; Tian, X.; Yang, Z.; Zhu, J.; Yin, Y. Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts. Plants 2025, 14, 2201. https://doi.org/10.3390/plants14142201
Ye Z, Zhang J, Tian X, Yang Z, Zhu J, Yin Y. Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts. Plants. 2025; 14(14):2201. https://doi.org/10.3390/plants14142201
Chicago/Turabian StyleYe, Zhangqin, Jing Zhang, Xin Tian, Zhengfei Yang, Jiangyu Zhu, and Yongqi Yin. 2025. "Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts" Plants 14, no. 14: 2201. https://doi.org/10.3390/plants14142201
APA StyleYe, Z., Zhang, J., Tian, X., Yang, Z., Zhu, J., & Yin, Y. (2025). Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts. Plants, 14(14), 2201. https://doi.org/10.3390/plants14142201