Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
Abstract
1. Introduction
2. Results and Discussion
2.1. Total Phenolics, Total Flavonoids, Total Anthocyanin, and Antioxidant Activity
2.2. Fatty Acid Profile of Grape Pomace
2.3. Multivariate Statistical Analysis
2.4. Functional Quality
3. Materials and Methods
3.1. Chemicals
3.2. Samples
3.3. Total Phenolics, Total Flavonoids, and Antioxidant Activity
3.4. Preparation of Fatty Acid Extracts
3.5. GC-FID Conditions
3.6. Functional Quality
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) |
AI | Atherogenic index |
C10:0 | Decanoic acid |
C12:0 | Lauric acid |
C16:0 | Palmitic acid |
C18:0 | Stearic acid |
C18:1 | Oleic acid |
C18:2 | Linoleic acid |
C18:3 | Linolenic acid |
C20:0 | Arachidic acid |
C22:0 | Behenic acid |
C3GE | Cyanidin-3-glucoside equivalents |
COX | Oxidative stability |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
DW | Dry weight |
FAMEs | Fatty acid methyl esters |
GAE | Gallic acid equivalent |
GP | Grape pomace |
H/H | Hypocholesterolemic/hypercholesterolemic ratio |
MUFAs | Monounsaturated fatty acids |
mgGAE | Milligrams of gallic acid equivalent |
mgQE | Milligrams of quercetin equivalent |
mgC3GE | Milligrams of cyanidin-3-glucoside equivalent |
mgTE | Milligrams of Trolox equivalent |
µmolTE | Micromoles of Trolox equivalent |
ORAC | Oxygen radical absorbance capacity |
LOD | Limit of detection |
LOQ | Limit of quantification |
PBS | Phosphate-buffered saline |
PUFAs | Polyunsaturated fatty acids |
QE | Quercetin equivalent |
%RSD | Percentage of relative standard deviation |
SFA | Saturated fatty acid |
UI | Unsaturation index |
TE | Trolox equivalent |
TFC | Total flavonoid content |
TI | Thrombogenic index |
TPC | Total phenolic content |
References
- Machado, A.R.; Voss, G.B.; Machado, M.; Paiva, J.A.P.; Nunes, J.; Pintado, M. Chemical Characterization of the Cultivar ‘Vinhão’ (Vitis vinifera, L.) Grape Pomace towards Its Circular Valorisation and Its Health Benefits. Meas. Food 2024, 15, 100175. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Serrano, A.; Díaz-Navarrete, P.; Mora, R.; Ciudad, G.; Ortega, J.C.; Pinto-Ibieta, F. Acid Hydrothermal Amendment of Grape Wine Pomace: Enhancement of Phenol and Carbohydrate Co-Solubilization. Agronomy 2023, 13, 1501. [Google Scholar] [CrossRef]
- Pham, T.-N.; Cazier, E.A.; Gormally, E.; Lawrence, P. Valorization of Biomass Polyphenols as Potential Tyrosinase Inhibitors. Drug Discov. Today 2024, 29, 103843. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable Green Processing of Grape Pomace for the Production of Value-Added Products: An Overview. Environ. Technol. Innov. 2021, 23, 101592–101616. [Google Scholar] [CrossRef]
- Leon-Bejarano, M.; Ovando-Martínez, M.; Simsek, S. Valorization of Mexican Cabernet Sauvignon Grape Pomace: A Source of Oil and Lipophilic Bioactive Compounds. J. Am. Oil. Chem. Soc. 2025, 102, 477–481. [Google Scholar] [CrossRef]
- Wang, C.; You, Y.; Huang, W.; Zhan, J. The High-Value and Sustainable Utilization of Grape Pomace: A Review. Food Chem. X 2024, 24, 101845. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. [Google Scholar] [CrossRef]
- Romanini, E.B.; Rodrigues, L.M.; Stafussa, A.P.; Cantuaria Chierrito, T.P.; Teixeira, A.F.; Corrêa, R.C.G.; Madrona, G.S. Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. Plants 2023, 12, 3177. [Google Scholar] [CrossRef]
- Radulescu, C.; Olteanu, R.L.; Buruleanu, C.L.; (Tudorache), M.N.; Dulama, I.D.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G.; Banica, A.L. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants 2024, 13, 1133. [Google Scholar] [CrossRef]
- Arias, L.A.; Berli, F.; Fontana, A.; Bottini, R.; Piccoli, P. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; Igartuburu, J.M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules 2022, 27, 6980. [Google Scholar] [CrossRef]
- Ferreira, R.; Lourenço, S.; Lopes, A.; Andrade, C.; Câmara, J.S.; Castilho, P.; Perestrelo, R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021, 10, 2867. [Google Scholar] [CrossRef]
- Di Stefano, V.; Bongiorno, D.; Buzzanca, C.; Indelicato, S.; Santini, A.; Lucarini, M.; Fabbrizio, A.; Mauro, M.; Vazzana, M.; Arizza, V.; et al. Fatty Acids and Triacylglycerols Profiles from Sicilian (Cold Pressed vs. Soxhlet) Grape Seed Oils. Sustainability 2021, 13, 13038. [Google Scholar] [CrossRef]
- de Menezes, M.L.; Johann, G.; Diório, A.; Schuelter Boeing, J.; Visentainer, J.V.; Raimundini Aranha, A.C.; Curvelo Pereira, N. Comparison of the Chemical Composition of Grape Seed Oil Extracted by Different Methods and Conditions. J. Chem. Technol. Biotechnol. 2023, 98, 1103–1113. [Google Scholar] [CrossRef]
- Ćurko, N.; Lukić, K.; Tušek, A.J.; Balbino, S.; Vukušić Pavičić, T.; Tomašević, M.; Redovniković, I.R.; Ganić, K.K. Effect of Cold Pressing and Supercritical CO2 Extraction Assisted with Pulsed Electric Fields Pretreatment on Grape Seed Oil Yield, Composition and Antioxidant Characteristics. LWT 2023, 184, 114974. [Google Scholar] [CrossRef]
- Fernandes, M. Fertilizer with Biotechnology Can Enhance the Effects of Fertilizers and Reduce Production Costs. Available online: https://revistacultivar.com/news/fertilizer-with-biotechnology-can-enhance-the-effects-of-fertilizers-and-reduce-production-costs (accessed on 9 July 2025).
- Aksoy, F.S.; Tekin-Cakmak, Z.H.; KARASU, S.; Aksoy, A.S. Oxidative Stability of the Salad Dressing Enriched by Microencapsulated Phenolic Extracts from Cold-Pressed Grape and Pomegranate Seed Oil by-Products Evaluated Using OXITEST. Food Sci. Technol. 2022, 42, e57220. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A Potential Valorization Strategy of Wine Industry By-Products and Their Application in Cosmetics—Case Study: Grape Pomace and Grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Ayuda-Durán, B.; González-Manzano, S.; Gil-Sánchez, I.; Moreno-Arribas, M.; Bartolomé, B.; Sanz-Buenhombre, M.; Guadarrama, A.; Santos-Buelga, C.; González-Paramás, A. Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis Elegans. Foods 2019, 8, 75. [Google Scholar] [CrossRef]
- Marinaccio, L.; Gentile, G.; Llorent-Martínez, E.J.; Zengin, G.; Masci, D.; Flamminii, F.; Stefanucci, A.; Mollica, A. Valorization of Grape Pomace Extracts against Cranberry, Elderberry, Rose Hip Berry, Goji Berry and Raisin Extracts: Phytochemical Profile and in Vitro Biological Activity. Food Chem. 2025, 463, 141323. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Xiao, H. Excipient Foods: Designing Food Matrices That Improve the Oral Bioavailability of Pharmaceuticals and Nutraceuticals. Food Funct. 2014, 5, 1320–1333. [Google Scholar] [CrossRef] [PubMed]
- Urvieta, R.; Jones, G.; Buscema, F.; Bottini, R.; Fontana, A. Terroir and Vintage Discrimination of Malbec Wines Based on Phenolic Composition across Multiple Sites in Mendoza, Argentina. Sci. Rep. 2021, 11, 2863. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fu, X.; Deng, G.; David, A.; Huang, L. Extraction of Oil from Grape Seeds (Vitis vinifera, L.) Using Recyclable CO2-Expanded Ethanol. Chem. Eng. Process.-Process Intensif. 2020, 157, 108147. [Google Scholar] [CrossRef]
- Khan, Z.S.; Mandal, A.; Maske, S.; Ahammed Shabeer, T.P.; Gaikwad, N.; Shaikh, S.; Banerjee, K. Evaluation of Fatty Acid Profile in Seed and Oil of Manjari Medika, a Novel Indian Grape Cultivar and Its Comparison with Cabernet Sauvignon and Sauvignon Blanc. Sustain. Chem. Pharm. 2020, 16, 100253. [Google Scholar] [CrossRef]
- Kolar, M.J.; Konduri, S.; Chang, T.; Wang, H.; McNerlin, C.; Ohlsson, L.; Härröd, M.; Siegel, D.; Saghatelian, A. Linoleic Acid Esters of Hydroxy Linoleic Acids Are Anti-Inflammatory Lipids Found in Plants and Mammals. J. Biol. Chem. 2019, 294, 10698–10707. [Google Scholar] [CrossRef]
- Zarev, Y.; Marinov, L.; Momekova, D.; Ionkova, I. Exploring Phytochemical Composition and In Vivo Anti-Inflammatory Potential of Grape Seed Oil from an Alternative Source after Traditional Fermentation Processes: Implications for Phytotherapy. Plants 2023, 12, 2795. [Google Scholar] [CrossRef]
- Petersen, K.S.; Maki, K.C.; Calder, P.C.; Belury, M.A.; Messina, M.; Kirkpatrick, C.F.; Harris, W.S. Perspective on the Health Effects of Unsaturated Fatty Acids and Commonly Consumed Plant Oils High in Unsaturated Fat. Br. J. Nutr. 2024, 132, 1039–1050. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, B.; Zhang, X.; Chen, X.; Zhu, J.; Zou, Y.; Li, J. Alpha-Linolenic Acid Protects against Lipopolysaccharide-Induced Acute Lung Injury through Anti-Inflammatory and Anti-Oxidative Pathways. Microb. Pathog. 2020, 142, 104077. [Google Scholar] [CrossRef]
- Wendland, E. Effect of Linolenic Acid on Cardiovascular Risk Markers: A Systematic Review. Heart 2006, 92, 166–169. [Google Scholar] [CrossRef]
- Hashempour, A.; Ghazvini, R.F.; Bakhshi, D.; Aliakbar, A.; Papachatzis, A.; Kalorizou, H. Characterization of Virgin Olive Oils (Olea europaea, L.) from Three Main Iranian Cultivars, ‘Zard’, ‘Roghani’ and ‘Mari’ in Kazeroon Region. Biotechnol. Biotechnol. Equip. 2010, 24, 2080–2084. [Google Scholar] [CrossRef]
- Farag, R.S.; Abdel-Latif, M.S.; Basuny, A.M.M.; Hakeem, B.S.A. Effect of Non-Fried and Fried Oils of Varied Fatty Acid Composition on Rat Organs. Agric. Biol. J. N. Am. 2010, 1, 501–509. [Google Scholar]
- Herchi, W.; Ammar, K.B.; Bouali, I.; Abdallah, I.B.; Guetet, A.; Boukhchina, S. Heating Effects on Physicochemical Characteristics and Antioxidant Activity of Flaxseed Hull Oil (Linum usitatissimum L.). Food Sci. Technol. 2016, 36, 97–102. [Google Scholar] [CrossRef]
- Giosuè, A.; Siano, F.; Di Stasio, L.; Picariello, G.; Medoro, C.; Cianciabella, M.; Giacco, R.; Predieri, S.; Vasca, E.; Vaccaro, O.; et al. Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods 2024, 13, 2195. [Google Scholar] [CrossRef] [PubMed]
- Bušová, M.; Kouřimská, L.; Tuček, M. Fatty Acids Profile, Atherogenic and Thrombogenic Indices in Freshwater Fish Common Carp (Cyprinus carpio) and Rainbow Trout (Oncorhynchus mykiss) from Market Chain. Cent. Eur. J. Public Health 2020, 28, 313–319. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Luís, C.; Câmara, J.S.; Teixeira, J.; Perestrelo, R. Unveiling Potential Functional Applications of Grape Pomace Extracts Based on Their Phenolic Profiling, Bioactivities, and Circular Bioeconomy. Biomass Conv. Bioref. 2025. [Google Scholar] [CrossRef]
- Izcara, S.; Perestrelo, R.; Morante-Zarcero, S.; Câmara, J.S.; Sierra, I. High Throughput Analytical Approach Based on µQuEChERS Combined with UHPLC-PDA for Analysis of Bioactive Secondary Metabolites in Edible Flowers. Food Chem. 2022, 393, 133371. [Google Scholar] [CrossRef]
- Och, A.; Olech, M.; Bąk, K.; Kanak, S.; Cwener, A.; Cieśla, M.; Nowak, R. Evaluation of the Antioxidant and Anti-Lipoxygenase Activity of Berberis vulgaris, L.; Leaves, Fruits, and Stem and Their LC MS/MS Polyphenolic Profile. Antioxidants 2023, 12, 1467. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
Grape Pomace | Vintage | TPC (mgGAE/100 g) | TFC (mgQE/100 g) | DPPH (mgTE/100 g) | ABTS (mgTE/100 g) | ORAC (µmolTE/100 g) |
---|---|---|---|---|---|---|
Boal | 2022 | 2263 ± 15 a | 851 ± 28 a | 984 ± 25 a | 2275 ± 124 a | 9742 ± 540 a |
2023 | 1722 ± 21 b | 1064 ± 23 b | 1284 ± 2 a,b | 2453 ± 63 a,b | 8935 ± 23 a,g | |
2024 | 1416 ± 17 c | 734 ± 28 a | 1009 ± 52 a | 2160 ± 146 a,c | 9054 ± 711 a,g | |
Malvasia | 2022 | 1902 ± 5 b | 865 ± 12 a | 1167 ± 22 a,b | 2894 ± 38 b | 9685 ± 77 a,g |
2023 | 1489 ± 14 c | 824 ± 16 a | 876 ± 16 b,c | 1752 ± 31 a,c | 6955 ± 10 b | |
2024 | 1504 ± 6 c | 928 ± 21 a,b | 1027 ± 40 a,b,c | 2354 ± 35 a,b,c | 6340 ± 45 b | |
Sercial | 2022 | 1984 ± 5 d | 995 ± 9 a,b | 1098 ± 33 a,b | 2668 ± 99 a,b,c | 8751 ± 302 a,g |
2023 | 1729 ± 4 b | 773 ± 16 a | 578 ± 1 c | 1887 ± 27 c | 8662 ± 226 a,g | |
2024 | 2051 ± 6 d | 671 ± 20 a | 794 ± 84 a,c | 1538 ± 27 d | 8697 ± 423 a,g | |
Terrantez | 2022 | 1834 ± 2 b,d | 690 ± 1 a | 772 ± 19 a | 1711 ± 90 c | 5965 ± 174 b |
2023 | 1650 ± 7 b,e | 876 ± 41 a,b | 1074 ± 28 a,b | 2374 ± 30 a | 6977 ± 251 b,g | |
2024 | 1696 ± 3 b,e | 937 ± 3 a,b | 1291 ± 22 a,b | 2827 ± 16 g | 5553 ± 37 b | |
Verdelho | 2022 | 1354 ± 21 c | 933 ± 33 a,b | 854 ± 14 a | 2106 ± 118 a | 8375 ± 180 a,g |
2023 | 1853 ± 10 b,d | 825 ± 19 a | 1241 ± 39 a,b | 2673 ± 147 a,b | 7620 ± 534 c,g | |
2024 | 1856 ± 8 b,d | 904 ± 2 a,b | 1295 ± 20 a,b | 2674 ± 214 a,b | 8160 ± 240 c,g | |
Complexa | 2022 | 5972 ± 189 h | 3628 ± 235 f | 3565 ± 168 f | 6102 ± 53 h | 15,866 ± 665 d |
2023 | 6489 ± 97 i | 3985 ± 104 g | 5399 ± 172 g | 7219 ± 104 i | 16,576 ± 1177 d | |
2024 | 5873 ± 7 h | 3233 ± 35 h | 3881 ± 346 f | 5460 ± 732 j | 15,870 ± 378 d | |
Tinta Negra | 2022 | 6606 ± 62 i | 4156 ± 25 g | 3502 ± 142 f | 5849 ± 94 h,j | 18,471 ± 653 e |
2023 | 6084 ± 178 h | 3812 ± 7 g | 3294 ± 80 i | 4848 ± 210 k,j | 14,215 ± 229 f | |
2024 | 6687 ± 32 i | 4624 ± 55 i | 3891 ± 89 f | 6054 ± 268 h,j | 16,692 ± 68 d |
RT (min) | FAME | Concentration Range (mg/L) | r2 | Equation | LOD (mg/L) | LOQ (mg/L) | Precision (%RSD) | |
---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | |||||||
14.09 | Decanoic acid, C10:0 | 3.58–100 | 0.998 | y = 0.106x + 0.752 | 0.85 | 2.83 | 2.46 | 14.2 |
17.44 | Lauric acid, C12:0 | 3.56–100 | 0.999 | y = 0.124x + 0.526 | 0.39 | 1.30 | 1.52 | 4.74 |
21.96 | Palmitic acid, C16:0 | 5.43–100 | 0.999 | y = 0.179x – 0.338 | 0.32 | 1.07 | 0.65 | 1.57 |
26.23 | Stearic acid, C18:0 | 3.56–100 | 0.999 | y = 0.164x – 0.293 | 0.34 | 1.14 | 1.03 | 6.43 |
26.63 | Oleic acid, C18:1 | 3.56–400 | 0.999 | y = 0.268x – 0.282 | 0.22 | 0.74 | 1.62 | 9.68 |
27.81 | Linoleic acid, C18:2 | 0.58–300 | 0.998 | y = 1.043x – 5.658 | 0.03 | 0.10 | 2.82 | 9.86 |
29.84 | Linolenic acid, C18:3 | 1.73–200 | 0.996 | y = 0.213x – 0.332 | 0.16 | 0.52 | 1.16 | 6.47 |
33.42 | Arachidic acid, C20:0 | 3.56–39.6 | 0.994 | y = 0.194x + 0.197 | 0.12 | 0.40 | 1.23 | 11.7 |
47.53 | Behenic acid, C22:0 | 3.55–39.4 | 0.993 | y = 0.164x + 1.386 | 0.57 | 1.91 | 2.12 | 5.99 |
Grape Pomace | Vintage | Concentration (mg/100 g DW) ± Standard Deviation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C10:0 | C12:0 | C16:0 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C22:0 | ||
Boal | 2022 | - | - | 96 ± 9 a | 36 ± 2 a | 888 ± 56 a | 1081 ± 101 a | 24 ± 2 a | - | - |
2023 | - | - | 126 ±17 b | 49 ± 6 a,b | 1084 ± 160 a | 1339 ±80 b | 17 ± 2 a,b | - | - | |
2024 | - | - | 119 ± 2 b,c | 37 ± 3 a,b | 875 ± 56 a | 944 ± 34 a | 26 ± 2 a | - | - | |
Malvasia | 2022 | - | - | 73 ± 7 d | 24 ± 2 c | 448 ± 2 b | 605 ± 46 c | 23 ± 4 a,b | 10 ± 1 a | - |
2023 | - | - | 103 ± 4 a | 37 ± 3 b,d | 959 ± 14 a | 1127 ± 29 b | 33.1 ± 0.1 c | 9.6 ± 0.1 a | ||
2024 | - | - | 100 ± 4 a | 29 ± 2 a,c | 546 ± 28 b | 774 ± 35 d | 37 ± 4 d | 7 ± 1 b | - | |
Sercial | 2022 | - | - | 95 ± 3 a | 47 ± 1 a,b | 904 ± 18 a | 1312 ± 16 a,b | 29 ± 2 a | - | - |
2023 | - | - | 97 ± 4 a | 48 ± 1 a,b | 973 ± 34 a | 1325 ± 25 a,b | 26 ± 1 a | - | - | |
2024 | - | - | 114 ± 6 a,b | 60 ± 1 b | 1213 ± 57 c | 1663 ± 28 e | 28 ± 3 a | - | - | |
Terrantez | 2022 | - | - | 88 ± 3 a | 29 ± 2 a,c,d | 642 ± 54 b | 1009 ± 62 a | 24 ± 1 a,b,c | - | - |
2023 | - | - | 101 ± 5 a | 24 ± 2 a,c | 491 ± 21 b | 805 ± 44 d | 28 ± 2 a,c | - | - | |
2024 | - | - | 106 ± 2 a,b | 50 ± 1 b | 838 ± 74 a | 1265 ± 80 a | 20 ± 3 a,b,c | - | - | |
Verdelho | 2022 | - | - | 99 ± 4 a | 26 ± 3 a,c,d, | 908 ± 41 a | 1264 ± 61 a,b | 30 ± 1 a,c | 14 ± 2 c | - |
2023 | - | - | 132 ± 7 b | 62 ± 2 b | 1135 ± 47 c | 1652 ± 51 e | 26 ± 1 a,c | 12 ± 1 a | - | |
2024 | - | - | 132 ± 3 b | 84 ± 10 b | 1294 ± 116 c | 1997 ± 144 f | 29 ± 3 a,c | 12 ± 1 a | - | |
Complexa | 2022 | 17 ± 1 a | 23 ± 2 a | 44 ± 2 f | 15 ± 2 c | 371 ± 28 b | 524 ± 90 c | 17 ± 2 a,b | - | - |
2023 | 19 ± 3 a | 37 ± 2 b | 64 ± 1 g | 17 ± 1 c | 413 ± 7 b | 500 ± 35 c | 25 ± 2 a,c | - | - | |
2024 | 28 ± 4 c | 46 ± 4 b | 38 ± 1 f | 7.1 ± 0.5 f | 201 ± 14 h | 513 ± 11 c | 10 ± 1 b,f | - | - | |
Tinta Negra | 2022 | - | - | 78 ± 2 g,i | 26 ± 5 a,c,d | 552 ± 9 b | 517 ± 33 c | 26 ± 1 a,c | 8.0 ± 0.3 a | 9 ± 1 a |
2023 | - | - | 85 ± 1 a,i | 22 ± 1 b,c | 617 ± 29 b | 546 ± 56 c | 29 ± 2 a,c | 10 ± 1 a | 5 ± 1 b | |
2024 | - | - | 78 ± 2 g,i | 21 ± 3 c | 483 ± 15 b | 397 ± 23 c | 29 ± 2 a,c | 10 ± 1 a | 9 ± 1 a |
GP | Vintage | COX | PUFA/SFA | ω-6/ω-3 | AI | TI | H/H | UI |
---|---|---|---|---|---|---|---|---|
Boal | 2022 | 5.9 ± 0.3 a | 8 ± 1 a | 45 ± 8 a | 0.05 ± 0.01 a | 0.13 ± 0.01 a | 21 ± 2 a | 147 ± 4 a |
2023 | 5.9 ± 0.4 a | 8 ± 1 a | 81 ± 15 b | 0.05 ± 0.01 a | 0.14 ± 0.01 a | 20 ± 2 a | 146 ± 4 a,b | |
2024 | 5.6 ± 0.1 b | 6.2 ± 0.2 b | 37 ± 4 a,c | 0.065 ± 0.004 a,b | 0.16 ± 0.01 b | 16 ± 1 b | 142.0 ± 0.4 a,b | |
Malvasia | 2022 | 6.1 ± 0.2 a | 5.9 ± 0.2 c | 27 ± 3 c | 0.067 ± 0.004 a,b | 0.161 ± 0.002 b | 15 ± 1 b | 146 ± 2 a,b |
2023 | 5.85 ± 0.05 a | 7.8 ± 0.5 a | 34.1 ± 0.9 a,c | 0.049 ± 0.003 a,b | 0.12 ± 0.01 a | 21 ± 1 a | 146 ± 1 a,b | |
2024 | 6.2 ± 0.1 a | 5.9 ± 0.1 c | 21 ± 2 e | 0.074 ± 0.002 a,b | 0.168 ± 0.003 b | 13.5 ± 0.3 b | 148 ± 1 a,b | |
Sercial | 2022 | 6.31 ± 0.05 a,b | 9.5 ± 0.4 a | 45 ± 2 a | 0.042 ± 0.002 a,c | 0.118 ± 0.005 a | 24 ± 1 a | 152 ± 1 a,b |
2023 | 6.15 ± 0.02 a,b | 9.3 ± 0.3 a | 52 ± 2 a | 0.042 ± 0.003 a,c | 0.12 ± 0.01 a | 24 ± 1 a | 149.9 ± 0.2 a,b | |
2024 | 6.2 ± 0.1 a,b | 9.8 ± 0.4 a | 61 ± 7 d | 0.039 ± 0.003 a,c | 0.11 ± 0.01 a | 26 ± 2 c | 150.2 ± 0.5 a,b | |
Terrantez | 2022 | 6.5 ± 0.1 a,b | 8.8 ± 0.3 a | 42.0 ± 0.8 a,c | 0.053 ± 0.002 a,b | 0.131 ± 0.004 a | 19 ± 1 d | 152 ± 1 a,b |
2023 | 6.5 ± 0.2 a,b | 6.7 ± 0.6 b,c | 28 ± 3 a,c | 0.076 ± 0.004 a,b | 0.17 ± 0.01 b | 13 ± 1 b | 151 ± 3 a,b | |
2024 | 6.28 ± 0.02 a,b | 8.3 ± 0.7 a | 64 ± 5 d | 0.050 ± 0.005 a,b | 0.14 ± 0.01 a | 20 ± 2 a | 150.4 ± 0.3 a,b | |
Verdelho | 2022 | 6.2 ± 0.1 a,b | 9.3 ± 0.1 a | 42 ± 1 a | 0.045 ± 0.001 a,c | 0.106 ± 0.001 a | 22.2 ± 0.3 a | 150.6 ± 0.7 a,b |
2023 | 6.20 ± 0.03 a,b | 8.2 ± 0.4 a,b | 63 ± 2 d | 0.047 ± 0.003 a,c | 0.13 ± 0.01 a | 21 ± 1 a | 150 ± 1 a,b | |
2024 | 6.3 ± 0.2 a,b | 8.9 ± 0.7 a | 70 ± 3 b,d | 0.040 ± 0.002 a,c | 0.125 ± 0.005 a | 25 ± 1 e | 151 ± 3 a,b | |
Complexa | 2022 | 6.04 ± 0.3 a | 5.5 ± 0.8 b,c | 30 ± 2 a,c | 0.07 ± 0.01 a,b | 0.12 ± 0.01 a | 21 ± 2 a | 145 ± 4 a,b |
2023 | 5.68 ± 0.1 a,b | 3.8 ± 0.2 d | 20 ± 3 e | 0.108 ± 0.003 a,b | 0.152 ± 0.001 b | 15 ± 1 b | 138.4 ± 1.6 b,c | |
2024 | 6.8 ± 0.1 b | 4.4 ± 0.3 b,d | 50 ± 4 a,c | 0.12 ± 0.01 a,b | 0.12 ± 0.01 a | 19 ± 1 a | 149 ± 1 a,b | |
Tinta Negra | 2022 | 5.3 ± 0.1 f | 4.5 ± 0.1 b,d | 19.6 ± 0.3 e | 0.071 ± 0.002 a,b | 0.17 ± 0.01 b | 14.0 ± 0.4 b | 137 ± 1 c |
2023 | 5.2 ± 0.2 f | 4.7 ± 0.4 b,d | 19 ± 1 e | 0.072 ± 0.004 a,b | 0.16 ± 0.01 b | 14 ± 1 b | 137 ± 2 c | |
2024 | 5.1 ± 0.1 f | 3.6 ± 0.2 d | 13.7 ± 0.1 e | 0.086 ± 0.002 a,b | 0.19 ± 0.01 b | 11.6 ± 0.2 b | 133 ± 1 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, T.; Ferreira, R.; Castilho, P.C.; Câmara, J.S.; Teixeira, J.; Perestrelo, R. Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization. Molecules 2025, 30, 3150. https://doi.org/10.3390/molecules30153150
Abreu T, Ferreira R, Castilho PC, Câmara JS, Teixeira J, Perestrelo R. Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization. Molecules. 2025; 30(15):3150. https://doi.org/10.3390/molecules30153150
Chicago/Turabian StyleAbreu, Teresa, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira, and Rosa Perestrelo. 2025. "Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization" Molecules 30, no. 15: 3150. https://doi.org/10.3390/molecules30153150
APA StyleAbreu, T., Ferreira, R., Castilho, P. C., Câmara, J. S., Teixeira, J., & Perestrelo, R. (2025). Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization. Molecules, 30(15), 3150. https://doi.org/10.3390/molecules30153150