Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (605)

Search Parameters:
Keywords = metal ligand interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2722 KiB  
Article
Fluorene-Containing β-Diketonato Ligands and Their Rhodium(I) Complexes—A Characterization and Crystallographic Study
by Frederick Jacobus Francois Jacobs, Siyanda Khoza and Eleanor Fourie
Inorganics 2025, 13(8), 255; https://doi.org/10.3390/inorganics13080255 - 30 Jul 2025
Viewed by 155
Abstract
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized [...] Read more.
The highly fluorescent fluorene group is of interest for its unique optical and electronic properties. By incorporating it into a metal complex, these properties are extended to the complex and are useful in a number of different applications. Four β-diketone ligands were synthesized containing the fluorene-functional group, where the varying substituent on the β-diketone was CF3 (1), PhCF3 (2), Ph (3) and PhCH3 (4). The corresponding cyclooctadiene rhodium(I) complexes of the type [Rh(cod)((fluorene)COCHCOR)], with R = CF3 (5), PhCF3 (6), Ph (7) and PhCH3 (8) were also synthesized. A crystal structure determination of 2 and 6 was performed, highlighting important changes in the ligand structure as a result of metal complexation. The structure of 2 also showed a hydrogen interaction between the hydroxy and carboxyl groups, forming a pseudo six-membered ring that stabilizes the enol form of the compound. Cyclic voltammetry (CV) of the β-diketones 14 showed a reduction wave for the reduction of the β-diketonato backbone between −1500 mV and −2100 mV as measured against ferrocene (FcH). CVs of rhodium(I) complexes 58 showed a reduction of the β-diketonato backbone between −1800 and −2000 mV, as well as an oxidation wave for the oxidation of the rhodium(I) metal centre at approximately 300 mV. Full article
Show Figures

Graphical abstract

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 222
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

18 pages, 2417 KiB  
Article
Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials
by Sumeyya Deniz Aybek, Mucahit Secme, Hasan Ilhan, Leyla Acik, Suheyla Pinar Celik and Gonca Gulbay
Molecules 2025, 30(14), 2936; https://doi.org/10.3390/molecules30142936 - 11 Jul 2025
Viewed by 291
Abstract
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive [...] Read more.
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The in vitro anticancer activity of ZER@MOF-5 was studied in a human breast cancer cell line (MCF-7) using the CCK-8 assay. The interaction of ZER@MOF-5 with pBR322 plasmid DNA was assessed by gel electrophoresis. The antimicrobial effect of ZER@MOF-5 was examined in gram-positive and gram-negative bacterial strains and yeast strains using the microdilution method. The free radical scavenging activity was assessed using the DPPH assay. Cytotoxicity assay revealed a notable enhancement in the anticancer activity of zerumbone upon its encapsulation into MOF-5. The IC50 value for ZER@MOF-5 was found to be 57.33 µg/mL, which was lower than that of free zerumbone (IC50: 89.58 µg/mL). The results of the DNA-binding experiment indicate that ZER@MOF-5 can bind to target DNA and cause a conformational change in DNA. The results of the antibacterial activity experiment showed that the antibacterial ability of ZER@MOF-5 was limited compared to free zerumbone. The results of the DPPH assay demonstrated that the antioxidant activity of free zerumbone was higher than that of ZER@MOF-5. MOFs encapsulate compounds within their porous crystalline structure, which leads to prolonged circulation time compared to single ligands. Although the unique structure of MOFs may limit their antibacterial and antioxidant activity in the short term, it may increase therapeutic efficacy in the long term. However, to fully understand the long-term antibacterial and antioxidant effects of the ZER@MOF-5, further comprehensive in vitro and in vivo experiments are necessary. This finding indicates that the MOF-5 could potentially be an impressive carrier for the oral administration of zerumbone. Full article
Show Figures

Figure 1

10 pages, 668 KiB  
Proceeding Paper
The Potentiality of Vanadium Complexes as Antibacterial Agents
by Kulsum Hashmi, Satya, Priya Mishra, Ekhlakh Veg, Tahmeena Khan and Seema Joshi
Eng. Proc. 2025, 87(1), 91; https://doi.org/10.3390/engproc2025087091 - 10 Jul 2025
Viewed by 215
Abstract
Metal ions and ligand binding are crucial in various biological processes, and their rational design can be used to develop novel therapeutic drugs and diagnostic tools. Metal atoms are soluble in biological fluids due to their ability to easily lose electrons and form [...] Read more.
Metal ions and ligand binding are crucial in various biological processes, and their rational design can be used to develop novel therapeutic drugs and diagnostic tools. Metal atoms are soluble in biological fluids due to their ability to easily lose electrons and form positively charged ions. Because of their electron deficiency, they can interact with electron-rich biomolecules like proteins and DNA, and potentially participate in catalytic mechanisms or stabilize their tertiary or quaternary structures. Antibacterial resistance has become a major global concern and requires novel strategies to combat resistance mechanisms in infectious microbes. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 4816 KiB  
Article
Exploring the Structural Design, Antibacterial Activity, and Molecular Docking of Newly Synthesized Zn(II) Complexes with NNO-Donor Carbazate Ligands
by Claudia C. Gatto, Daniel J. de Siqueira, Eduardo de A. Duarte, Érica C. M. Nascimento, João B. L. Martins, Mariana B. Santiago, Nagela B. S. Silva and Carlos H. G. Martins
Molecules 2025, 30(13), 2822; https://doi.org/10.3390/molecules30132822 - 30 Jun 2025
Viewed by 379
Abstract
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate [...] Read more.
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate (HL2), and 2-acetylpyridine-benzylcarbazate (HL3). All compounds were characterized by spectroscopic methods, and the crystal structures of the complexes were elucidated by single-crystal X-ray. Based on the analysis, distorted square pyramid geometry is suggested for complex (1) and an octahedral geometry is suggested for complexes (2) and (3) with the ligands exhibiting an NNO-donor system. The 3D Hirshfeld surface and the 2D fingerprint plot were used to study the non-covalent interactions in the crystal structures. The in vitro antibacterial investigation of the free ligands and their complexes was performed against different strains of periodontopathogen bacteria. The Zn(II) complexes showed more potent antibacterial activity than the free ligand. Molecular docking studies showed the metal complexes as promising candidates for further therapeutic exploration, particularly in targeting the ATP-binding cassette transporter with peptidase domain of the cariogenic bacteria S. mutans (PDB code 5XE9) and the prolyl tripeptidyl aminopeptidase from P. gingivalis anaerobic bacteria (PDB code 2EEP) inhibition. Full article
Show Figures

Graphical abstract

14 pages, 2008 KiB  
Article
A Unique Trinuclear, Triangular Ni(II) Complex Composed of Two tri-Anionic bis-Oxamates and Capping Nitroxyl Radicals
by Vitaly A. Morozov, Denis G. Samsonenko and Kira E. Vostrikova
Inorganics 2025, 13(7), 214; https://doi.org/10.3390/inorganics13070214 - 25 Jun 2025
Viewed by 354
Abstract
Phenylene-based bis-oxamate polydentate ligands offer a unique opportunity for creating a large variety of coordination compounds, in which paramagnetic metal ions are strongly magnetically coupled. The employment of imino nitroxyl (IN) radicals as supplementary ligands confers numerous benefits, including the strong ferromagnetic interaction [...] Read more.
Phenylene-based bis-oxamate polydentate ligands offer a unique opportunity for creating a large variety of coordination compounds, in which paramagnetic metal ions are strongly magnetically coupled. The employment of imino nitroxyl (IN) radicals as supplementary ligands confers numerous benefits, including the strong ferromagnetic interaction between Ni and IN. Furthermore, the chelating IN can act as a capping ligand, thereby impeding the formation of coordination polymers. In this study, we present the molecular and crystal structure and experimental and theoretical magnetic behavior of an exceptional neutral trinuclear complex [Ni(L3−)2(IN)3]∙5CH3OH (1) (L is N,N′-1,3-phenylenebis-oxamic acid; IN is [4,4,5,5-tetramethyl-2-(6-methylpyridin-2-yl)-4,5-dihydro-1H-imidazol-1-yl]oxidanyl radical) with a cyclic triangular arrangement. Moreover, in this compound three Ni2+ ions are linked by the two bis-oxamate ligands playing a rare tritopic function due to an unprecedented triple deprotonation of the related meta-phenylene-bis(oxamic acid). The main evidence of such a deprotonation of the ligand is the neutrality of the cluster, since there are no anions or cations compensating for its charge in the crystals of the compound. Despite the presence of six possible magnetic couplings in the trinuclear cluster 1, its behavior was reproduced with a high degree of accuracy using a three-J model and ZFS, under the assumption that the three different Ni-IN interactions are equal to each other, whereas only two equivalent-in-value Ni-Ni interactions were taken into account, with the third one being equated to zero. Our study indicates the presence of two opposite-in-nature types of magnetic interactions within the triangular core. DFT and CASSCF/NEVPT2 calculations were completed to support the experimental magnetic data simulation. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

20 pages, 9373 KiB  
Article
In Vitro Antibacterial Activities and Calf Thymus DNA–Bovine Serum Albumin Interactions of Tridentate NNO Hydrazone Schiff Base–Metal Complexes
by Maida Katherine Triviño-Rojas, Santiago José Jiménez-Lopez, Richard D’Vries, Alberto Aragón-Muriel and Dorian Polo-Cerón
Inorganics 2025, 13(7), 213; https://doi.org/10.3390/inorganics13070213 - 25 Jun 2025
Viewed by 882
Abstract
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone [...] Read more.
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone ligand (HL). The crystal structure of the HL ligand was determined through single-crystal X-ray diffraction studies. The in vitro antibacterial activities of the HL ligand and its metal(II) complexes against Gram-positive and Gram-negative bacteria demonstrated that the metal(II) complexes displayed greater antimicrobial activities compared to the free Schiff base ligand. Furthermore, the interaction of the ligand and the complexes with calf thymus DNA (CT-DNA) was explored through electronic absorption and viscosity measurements, suggesting intercalation as the most likely mode of binding. The compounds promoted oxidative DNA cleavage, as demonstrated by the strand breaks of the pmChery plasmid under oxidative stress conditions. Finally, fluorescence spectroscopy also revealed the strong binding affinity of these compounds for bovine serum albumin (BSA). Full article
Show Figures

Figure 1

15 pages, 1765 KiB  
Article
Proton and Metal Dication Affinities of Tetracyclic Imidazo[4,5-b]Pyridine-Based Molecules: Insights from Mass Spectrometry and DFT Analysis
by Lucija Vrban, Ingrid Ana Martinac, Marijana Hranjec, Marijana Pocrnić, Nives Galić, Renata Kobetić and Robert Vianello
Molecules 2025, 30(13), 2684; https://doi.org/10.3390/molecules30132684 - 21 Jun 2025
Viewed by 1015
Abstract
The imidazo[4,5-b]pyridine scaffold, a versatile heterocyclic system, is renowned for its biological and chemical significance, yet its coordination chemistry with biologically relevant metal dications remains underexplored. This study investigates the proton and metal dication affinities of twelve tetracyclic organic molecules based [...] Read more.
The imidazo[4,5-b]pyridine scaffold, a versatile heterocyclic system, is renowned for its biological and chemical significance, yet its coordination chemistry with biologically relevant metal dications remains underexplored. This study investigates the proton and metal dication affinities of twelve tetracyclic organic molecules based on the imidazo[4,5-b]pyridine core, focusing on their interactions with Ca(II), Mg(II), Zn(II), and Cu(II). Employing a dual approach of electrospray ionization mass spectrometry (ESI-MS) and density functional theory (DFT) calculations, we characterized the formation, stability, and structural features of metal–ligand complexes. ESI-MS revealed distinct binding behaviors, with Cu(II) and Zn(II) forming stable mono- and dinuclear complexes, often accompanied by reduction processes (e.g., Cu(II) to Cu(I)), while Ca(II) and Mg(II) exhibited lower affinities. DFT analysis elucidated the electronic structures and thermodynamic stabilities, highlighting the imidazole nitrogen as the primary binding site and the influence of regioisomeric variations on affinity. Substituent effects were found to modulate binding strength, with electron-donating groups enhancing basicity and metal coordination. These findings provide a comprehensive understanding of the coordination chemistry of imidazo[4,5-b]pyridine derivatives, offering insights into their potential applications in metalloenzyme modulation, metal-ion sensing, and therapeutic chelation. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 2535 KiB  
Article
Synthesis and Properties of Energetic MOFs Based on Bis(3-Nitro-1H-1,2,4-triazole-5-yl) Amine: Advancing High Thermal Stability and Low Sensitivity
by Shiluo Chen, Jinxin Wang, Yuteng Cao, Kangcai Wang, Haijun Yang and Tianlin Liu
Molecules 2025, 30(12), 2478; https://doi.org/10.3390/molecules30122478 - 6 Jun 2025
Viewed by 564
Abstract
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination [...] Read more.
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination bonds while simultaneously elevating the energy content. This makes them ideal ligand molecules for constructing E-MOFs. In this work, we report the synthesis and structural design of a novel series of E-MOFs, constructed from the nitrogen-rich energetic ligand BNTA and a range of alkali metals (Na–Rb, compounds 25). The research indicates that the synthesized E-MOFs exhibit high thermal stability and low sensitivity. Specifically, Compound 3 displays a high decomposition temperature of 285 °C, with impact sensitivity and friction sensitivity values exceeding 40 J and 360 N, respectively. Moreover, Compound 3 also exhibits excellent computational detonation performance. Significantly, this study demonstrates how the aromatic character, coordination chemistry, and intermolecular interactions work synergistically to enhance the stability and safety of E-MOFs, thereby establishing fundamental criteria for engineering the next generation of energetic frameworks. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Figure 1

13 pages, 2721 KiB  
Article
Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions
by Xiaonan Geng, Lixin Zhang, Duan Xiong, Zhen Su and Qingqing Guan
Sensors 2025, 25(11), 3470; https://doi.org/10.3390/s25113470 - 30 May 2025
Viewed by 428
Abstract
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. [...] Read more.
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. Herein we report a dual-mode supramolecular sensing system constructed from a unique three-component assembly involving a terpyridine platinum (II) complex, oxalate, and Zn2+, enabling highly specific detection performance for Zn2+. The supramolecular sensing system exhibits excellent selectivity among various interfering substances, accompanied by ultra-low detection limit (0.199 μM) and fast response (<3 s). The high recognization capacity comes from tri-component-based supramolecular assembly, while the dual-mode response arises from the generation of intermelcular Pt-Pt and π-π interactions, which yields absorption and emission originating from low-energy metal–metal-to-ligand charge transfer (MMLCT) transitions. This work marks a pioneering demonstration for highly specific detection of Zn2+ and inspires an alternative strategy for designing cation probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

12 pages, 2936 KiB  
Article
Synthesis of Well-Crystallized Cu-Rich Layered Double Hydroxides and Improved Catalytic Performances for Water–Gas Shift Reaction
by Shicheng Liu, Yinjie Hu, Qian Zhang, Xia Tan, Haonan Cui, Fei Li, Huibin Lei and Ou Zhuo
Catalysts 2025, 15(6), 546; https://doi.org/10.3390/catal15060546 - 30 May 2025
Viewed by 559
Abstract
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive [...] Read more.
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive ligands during the coprecipitation process, such as glycine, a well-crystallized Cu-rich LDH with less CuO impurity was successfully synthesized. The Cu-Mg-Al mixed oxides derived from the well-crystallized Cu-rich LDH have relatively high SBET, large pore volume, and well dispersion of Cu nanoparticles. The derived catalyst exhibited unexpectedly high catalytic activity in the water–gas shift (WGS) reaction, and the mass-specific reaction rate was reached as high as 33.5 μmolCO·gcat1·s−1 at 200 °C. The high catalytic activity of this catalyst may originate from the high SBET and well dispersion of Cu particles and metal oxides. Moreover, the derived catalyst also displayed outstanding long-term stability in the WGS reaction, which should benefit from the enhanced metal–support interaction. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

28 pages, 3280 KiB  
Article
Structural, Computational, and Biomolecular Interaction Study of Europium(III) and Iron(III) Complexes with Pyridoxal-Semicarbazone Ligand
by Violeta Jevtovic, Stefan Perendija, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien, Jasmina Dimitrić Marković and Dušan Dimić
Int. J. Mol. Sci. 2025, 26(11), 5289; https://doi.org/10.3390/ijms26115289 - 30 May 2025
Viewed by 523
Abstract
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one [...] Read more.
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one deprotonated PLSC ligand and nitrato and aqua ligands. In contrast, the iron complex adopts a six-coordinate structure featuring a monoprotonated PLSC, two chlorido, and an aqua ligand. Hirshfeld surface analysis confirmed the significance of intermolecular contacts in stabilizing the crystal lattice. Theoretical geometry optimizations using DFT methods demonstrated excellent agreement with experimental bond lengths and angles, thereby validating the reliability of the chosen computational levels for subsequent quantum chemical analyses. Quantum Theory of Atoms in Molecules (QTAIM) analysis was employed to investigate the nature of metal–ligand interactions, with variations based on the identity of the donor atom and the ligand’s protonation state. The biological potential of the complexes was evaluated through spectrofluorimetric titration and molecular docking. Eu-PLSC displayed stronger binding to human serum albumin (HSA), while Fe-PLSC showed higher affinity for calf thymus DNA (CT-DNA), driven by intercalation. Thermodynamic data confirmed spontaneous and enthalpy-driven interactions. These findings support using PLSC-based metal complexes as promising candidates for future biomedical applications, particularly in drug delivery and DNA targeting. Full article
Show Figures

Figure 1

23 pages, 1158 KiB  
Article
Iron(III) Complexes with Substituted Salicylaldehydes: Synthesis, Interaction with DNA and Serum Albumins, and Antioxidant Activity
by Zisis Papadopoulos, Antonios G. Hatzidimitriou and George Psomas
Molecules 2025, 30(11), 2383; https://doi.org/10.3390/molecules30112383 - 29 May 2025
Viewed by 727
Abstract
Metal complexes of endogenous metals, such as iron, copper, and zinc, offer a biocompatible, cost-effective, and eco-friendly alternative to heavy metals for drug design. This study presents the synthesis, structural characterization, and evaluation of the biological activity of eight novel iron(III) complexes with [...] Read more.
Metal complexes of endogenous metals, such as iron, copper, and zinc, offer a biocompatible, cost-effective, and eco-friendly alternative to heavy metals for drug design. This study presents the synthesis, structural characterization, and evaluation of the biological activity of eight novel iron(III) complexes with substituted salicylaldehydes as ligands. The characterization of the complexes involved spectroscopic and physicochemical methods. The structures of two complexes were determined using single-crystal X-ray crystallography. The biological studies of the complexes focused on the interaction of calf-thymus DNA, the (photo)cleavage of pBR322 plasmid DNA (pDNA), the affinity for bovine and human serum albumins, and the antioxidant activity. The complexes interacted with calf-thymus DNA via intercalation with high DNA-binding constants. The complexes exhibited high pDNA-cleavage ability, which is significantly enhanced upon exposure to UVA or UVB irradiation. The complexes can bind tightly and reversibly to both serum albumins, and their binding locations were identified. Finally, the complexes showed moderate ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals with a high ability to reduce hydrogen peroxide. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

14 pages, 1458 KiB  
Article
Synthesis, Reductive Reactivity and Anticancer Activity of Cobalt(III)– and Manganese(III)–Salen Complexes
by Amy Kanina, Haiyu Mei, Cheska Palma, Michelle C. Neary, Shu-Yuan Cheng and Guoqi Zhang
Chemistry 2025, 7(3), 85; https://doi.org/10.3390/chemistry7030085 - 23 May 2025
Cited by 1 | Viewed by 767
Abstract
Mn(III)– and Co(III)–salen complexes (Mn-1 and Co-2) have been synthesized by a simple one-pot procedure through oxidation of Mn(II) and Co(II) precursors in air. X-ray structural analysis reveals that both complexes adopt similar coordination modes, including a typical square planar metal/salen [...] Read more.
Mn(III)– and Co(III)–salen complexes (Mn-1 and Co-2) have been synthesized by a simple one-pot procedure through oxidation of Mn(II) and Co(II) precursors in air. X-ray structural analysis reveals that both complexes adopt similar coordination modes, including a typical square planar metal/salen coordination sphere, which is further occupied by two axial ligands, i.e., an acetate anion and a water molecule. Despite their structural similarity, they are not isomorphous given their distinct cell parameters. In the solid-state structures, both complexes exist as hydrogen-bonded dimers through hydrogen bonding interactions between the axially coordinating water molecules and outer O4 cavity from another molecule of the complex. The reductive activity of both complexes has been explored. While the reaction of Mn-1 with potassium triethylborohydride was unsuccessful, leading to a complicated mixture, the use of Co-2 furnished the formation of a novel product (CoK-3) that was isolated as red crystals in reasonable yield. CoK-3 was characterized as a heterometallic dimer involving the coordination of a K+ ion within the O4 cavity of a semi-hydrogenated salen/cobalt complex while the cobalt center has been reduced from Co(III) to Co(II). In addition, an attempt at reducing Co-2 with pinacolborane resulted in the isolation of crystals of Co-4, whose structure was determined as a simple square planar CoII–salen complex. Finally, three complexes (Mn-1, Co-2 and CoK-3) have been investigated for their cytotoxic activities against two human breast cancer cell lines (MCF-7 and MDA-MB 468) and a normal breast epitheliel cell line (MCF-10A), with cisplatin used as a reference in order to discover potential drug candidates that may compete with cisplatin. The results reveal that Co-2 can be a promising drug candidate, specifically for the MCF-7 cancer cells, with minimal damage to healthy cells. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

11 pages, 1407 KiB  
Article
Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin
by Vijayakriti Mishra, Pramilla D. Sawant and Arup Kumar Pathak
Liquids 2025, 5(2), 14; https://doi.org/10.3390/liquids5020014 - 16 May 2025
Viewed by 694
Abstract
Nuclear technology, while offering significant benefits across various sectors, poses potential health risks due to uranium (U) contamination, particularly through its internalization and subsequent interactions with biological systems. This study investigates the binding of uranyl (UO22+) and zinc (Zn2+ [...] Read more.
Nuclear technology, while offering significant benefits across various sectors, poses potential health risks due to uranium (U) contamination, particularly through its internalization and subsequent interactions with biological systems. This study investigates the binding of uranyl (UO22+) and zinc (Zn2+) ions to Human Serum Albumin (HSA) that is already bound to fatty acids (FAs), using all-atom molecular dynamics (MD) simulations. The analysis focuses on the structural and dynamic alterations in the protein’s multi-metal binding site (MBS-A) caused by FA binding. Results reveal that FA binding induces a conformational change in HSA, disrupting the pre-formed MBS-A binding site, while still allowing uranyl and zinc ions to interact with residue D249 through strong Coulombic interactions. Secondary binding sites, associated with calcium and zinc binding, remain largely unaffected by FAs, providing alternative coordination for metal ions. This study also explores the binding and unbinding pathways of the metal ions using well-tempered meta-dynamics (WT-MtD), showing that while FA binding disrupts the primary metal binding site, it does not completely inhibit the binding of both uranyl and zinc ions. These findings offer new insights into the nature of uranium’s interactions with blood serum proteins and the role of fatty acids in modulating these interactions, which may help in designing future strategies for managing uranium contamination in biological systems. Full article
Show Figures

Graphical abstract

Back to TopTop