molecules-logo

Journal Browser

Journal Browser

Molecular Design and Synthesis of Novel Energetic Compounds

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 3963

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Interests: energetic compounds; energetic complexes; energy storage device

Special Issue Information

Dear Colleagues,

Energetic compounds have the characteristics of high density, high enthalpy of formation, and good thermal stability, and they have been extensively studied and reported by researchers in recent years. Energetic materials are special and dangerous energy materials that store a large amount of energy in their structures, which can be released in a very short time under external stimuli such as heat, shock, and friction. As such, they play a very unique but important role in both defense and civilian industries. Energetic compounds have been widely used in the field of energetic materials such as primary explosives, high-energy explosives, rocket propellants, and fireworks. In recent years, they have received increasing attention from energetic materials scientists around the world, and many different kinds of energetic compounds have been designed, synthesized, and reported. This Special Issue welcomes original research papers on the theoretical design, experimental synthesis, performance evaluation, and practical significance of energetic compounds such as imidazole, pyrazole, triazole, tetrazole, pentazole, tetrazine, and furazan. We invite submissions from researchers and experts in the field to contribute to this Special Issue, which will provide valuable insights into this critical area of research.

Prof. Dr. Jianguo Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energetic compounds
  • molecular design
  • synthesis
  • structure
  • performance
  • sensitivity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1899 KiB  
Article
Development of Melt-Castable Explosive: Targeted Synthesis of 3,5-Dinitro-4-Methylnitramino-1-Methylpyrazole and Functional Derivatization of Key Intermediates
by Elena Reinhardt, Lukas Bauer, Antonia H. Stadler, Henrik R. Wilke, Arthur Delage, Jörg Stierstorfer and Thomas M. Klapötke
Molecules 2025, 30(13), 2796; https://doi.org/10.3390/molecules30132796 - 28 Jun 2025
Viewed by 206
Abstract
The problems associated with TNT necessitate the development of novel melt-castable compounds with melting points between 70 and 120 °C, a crucial endeavor in the field of energetic materials. This study introduces a promising melt-castable explosive based on nitropyrazole, whose melt-castable properties were [...] Read more.
The problems associated with TNT necessitate the development of novel melt-castable compounds with melting points between 70 and 120 °C, a crucial endeavor in the field of energetic materials. This study introduces a promising melt-castable explosive based on nitropyrazole, whose melt-castable properties were achieved by the introduction of methyl groups. The synthesis of 3,5-dinitro-4-methylnitramino-1-methylpyrazole involves a three-step process starting from 3,5-dinitro-4-chloropyrazole, including substitution, nitration, and methylation reactions. Additionally, two alternative synthesis routes and six energetic salts were examined. Structural elucidation was conducted using conventional methods such as NMR, IR, and X-ray, while the energetic properties of the compound, including thermal behavior, sensitivities, and theoretical performance, were investigated. Also, compatibility with common explosives was investigated, the experimental enthalpy of formation by bomb calorimetry was determined, and an SSRT test was performed. Furthermore, the melt-cast explosive underwent an Ames test in order to assess its toxicity. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

12 pages, 2540 KiB  
Article
Synthesis and Characterization of 1-Hydroxy-5-Methyltetrazole and Its Energetic Salts
by Lukas J. Eberhardt, Maximilian Benz, Jörg Stierstorfer and Thomas M. Klapötke
Molecules 2025, 30(13), 2766; https://doi.org/10.3390/molecules30132766 - 27 Jun 2025
Viewed by 302
Abstract
The objective of this work was the synthesis and characterization of novel, insensitive high explosives. 1-hydroxy-5-methyltetrazole served as both a scaffold and anion for preparing various nitrogen-rich energetic salts. The compounds were characterized using 1H and 13C NMR spectroscopy, high-resolution mass [...] Read more.
The objective of this work was the synthesis and characterization of novel, insensitive high explosives. 1-hydroxy-5-methyltetrazole served as both a scaffold and anion for preparing various nitrogen-rich energetic salts. The compounds were characterized using 1H and 13C NMR spectroscopy, high-resolution mass spectrometry, elemental analysis, low-temperature single-crystal X-ray diffraction, and IR spectroscopy. Thermal stability was investigated via differential thermal analysis (DTA). Sensitivities towards mechanical stimuli were measured using a BAM drop hammer for impact sensitivity and a BAM friction apparatus for friction sensitivity, employing one of six testing procedures. Energetic performance parameters were calculated using the EXPLO5 code, incorporating room-temperature X-ray densities and solid-state heats of formation obtained via CBS-4M calculations using the Gaussian 16 program. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Figure 1

22 pages, 2704 KiB  
Article
Thermal Interaction Mechanisms of Ammonium Perchlorate and Ammonia Borane
by Yunlong Zhang, Rui Pu, Shaoli Chen and Qilong Yan
Molecules 2025, 30(13), 2680; https://doi.org/10.3390/molecules30132680 - 20 Jun 2025
Viewed by 338
Abstract
Ammonia borane (AB), with a theoretical hydrogen content of 19.6 wt%, is constrained by its low crystalline density (0.758 g/cm3) and poor thermal stability (decomposing at 100 °C). In this study, AB/ammonium perchlorate (AP) composites were synthesized via freeze-drying at a [...] Read more.
Ammonia borane (AB), with a theoretical hydrogen content of 19.6 wt%, is constrained by its low crystalline density (0.758 g/cm3) and poor thermal stability (decomposing at 100 °C). In this study, AB/ammonium perchlorate (AP) composites were synthesized via freeze-drying at a 1:1 molar ratio. The integration of AP introduced intermolecular interactions that suppressed AB decomposition, increasing the onset temperature by 80 °C. Subsequent vacuum calcination at 100 °C for 2 h formed oxygen/fuel-integrated ammonium perchlorate borane (APB), which achieved decomposition temperatures exceeding 350 °C. The proposed mechanism involved AB decomposing into borazine and BN polymers at 100 °C, which then NH3BH2+/ClO4 combined to form APB. At 350 °C, APB underwent the following redox reactions: 4NH3BH2ClO4 → N2↑ + 4HCl↑ + 2B2O3 + N2O↑ + O2↑ + 7H2O↑ + H2↑, while residual AP decomposed. The composite exhibited improved density (1.66 g/cm3) and generated H2, N2, O2, and HCl, demonstrating potential for hydrogen storage. Additionally, safety was enhanced by the suppression of AB’s exothermic decomposition (100–200 °C). APB, with its high energy density and thermal stability, was identified as a promising high-energy additive for high-burning-rate propellants. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

12 pages, 1875 KiB  
Article
Dense Hydrogen-Bonded Assembly of Hydrogen-Rich Cations and Pentazolate Anions: A Series of Highly Insensitive Ionic Salts
by Lianghe Sun, Hongwei Zhu, Shuaijie Jiang, Xiaofeng Yuan, Guoping Lu, Ming Lu and Yuangang Xu
Molecules 2025, 30(12), 2613; https://doi.org/10.3390/molecules30122613 - 16 Jun 2025
Viewed by 404
Abstract
Compounds containing the pentazolate anion (cyclo-N5) represent a distinctive group of energetic materials that have received extensive attention in recent years. Cyclo-N5 was used as a polynitrogen anion for the syntheses of energetic salts through [...] Read more.
Compounds containing the pentazolate anion (cyclo-N5) represent a distinctive group of energetic materials that have received extensive attention in recent years. Cyclo-N5 was used as a polynitrogen anion for the syntheses of energetic salts through metathesis reactions. Propamidinium (1), 5-amino-4-carbamoyl-1H-imidazol-3-ium (2), (1H-1,2,3-triazol-4-yl)methanaminium (3), 5-amino-4H-1,2,4-triazol-1-ium (4), 5-amino-3-methyl-4H-1,2,4-triazol-1-ium (5), and amino(pyrimidin-2-yl)methaniminium (6) pentazolates were obtained with high yields (>80%), and their crystal structures were confirmed through single-crystal X-ray diffraction analyses. Hirshfeld surface analyses and 2D fingerprint plots generated by CrystalExplorer17 demonstrated that these compounds exhibited extensive hydrogen-bonding networks in their crystal packing. Mechanical sensitivity tests showed that all the prepared salts were highly insensitive (IS > 35 J, FS > 360 N), providing valuable insights for the further exploration of broader energetic materials containing cyclo-N5. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Figure 1

10 pages, 1716 KiB  
Article
1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability
by Moxin Sun, Wenjie Xie, Qi Lai, Gang Zhao, Ping Yin and Siping Pang
Molecules 2025, 30(12), 2589; https://doi.org/10.3390/molecules30122589 - 13 Jun 2025
Viewed by 435
Abstract
The safety concerns associated with sensitivity issues regarding long nitrogen chain-based energetic compounds, especially for eight or more catenated nitrogen atoms in backbones, need to be resolved. Incorporating specific functional groups represents a key approach for enhancing stability in organic energetic materials. This [...] Read more.
The safety concerns associated with sensitivity issues regarding long nitrogen chain-based energetic compounds, especially for eight or more catenated nitrogen atoms in backbones, need to be resolved. Incorporating specific functional groups represents a key approach for enhancing stability in organic energetic materials. This study reports the synthesis of 1,1′-(diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide) (S8), an N8-chain compound featuring strategically placed amide groups. Employing THA(O-tosylhydroxylamine) and KMnO4, 1,1′-(diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide) (S8) was synthesized and underwent N-amination and oxidative azo coupling. Comprehensive characterization, including X-ray diffraction, mechanical sensitivity testing, and theoretical analysis, alongside comparative studies with known N8 compounds, revealed that S8 exhibits unprecedented stability within its class. Among reported N8-catenated nitrogen chain compounds, attributed to the incorporation of the amide functionality, S8 demonstrates the highest impact sensitivity (IS = 10 J) and friction sensitivity (FS = 40 N) while maintaining excellent detonation performance (D = 8317 ms−1, P = 28.27 GPa). This work highlights the amide group as a critical structural part for achieving high stability in sensitive long-nitrogen-chain energetic materials without compromising performance. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

13 pages, 2535 KiB  
Article
Synthesis and Properties of Energetic MOFs Based on Bis(3-Nitro-1H-1,2,4-triazole-5-yl) Amine: Advancing High Thermal Stability and Low Sensitivity
by Shiluo Chen, Jinxin Wang, Yuteng Cao, Kangcai Wang, Haijun Yang and Tianlin Liu
Molecules 2025, 30(12), 2478; https://doi.org/10.3390/molecules30122478 - 6 Jun 2025
Viewed by 471
Abstract
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination [...] Read more.
Energetic metal–organic frameworks (E-MOFs) have recently emerged as a promising strategy to address the long-standing challenge of reconciling energy and sensitivity in energetic materials. Nitrogen-rich compounds, with their abundant nitrogen atoms and superior enthalpy of formation, are particularly beneficial for forming multiple coordination bonds while simultaneously elevating the energy content. This makes them ideal ligand molecules for constructing E-MOFs. In this work, we report the synthesis and structural design of a novel series of E-MOFs, constructed from the nitrogen-rich energetic ligand BNTA and a range of alkali metals (Na–Rb, compounds 25). The research indicates that the synthesized E-MOFs exhibit high thermal stability and low sensitivity. Specifically, Compound 3 displays a high decomposition temperature of 285 °C, with impact sensitivity and friction sensitivity values exceeding 40 J and 360 N, respectively. Moreover, Compound 3 also exhibits excellent computational detonation performance. Significantly, this study demonstrates how the aromatic character, coordination chemistry, and intermolecular interactions work synergistically to enhance the stability and safety of E-MOFs, thereby establishing fundamental criteria for engineering the next generation of energetic frameworks. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Figure 1

12 pages, 2846 KiB  
Article
DFT Study on Fused N-Heteroaromatic Frameworks: Stability, Aromaticity, and Energetic Insights from Five-Membered Fused Six-Membered N-Heteroaromatic Skeletons
by Zujia Lu, Cong Li, Shaoqun Li, Qiyao Yu and Jianguo Zhang
Molecules 2025, 30(5), 1101; https://doi.org/10.3390/molecules30051101 - 27 Feb 2025
Viewed by 592
Abstract
The five-membered fused six-membered nitrogen heteroaromatic ring system is a crucial skeleton in the design and synthesis of energetic compounds. Based on this skeleton, many high-performance energetic compounds have been synthesized. However, to date, no one has conducted a systematic study on the [...] Read more.
The five-membered fused six-membered nitrogen heteroaromatic ring system is a crucial skeleton in the design and synthesis of energetic compounds. Based on this skeleton, many high-performance energetic compounds have been synthesized. However, to date, no one has conducted a systematic study on the characteristics of this skeleton itself. To assess how the number and position of nitrogen atoms affect the energy and stability of this type of skeleton, one to four nitrogen-substituted skeleton molecules were analyzed using Density Functional Theory (DFT) calculations. Natural population analysis (NPA), Laplacian bond order (LBO) analysis, aromaticity studies, and enthalpy of formation calculations were performed. Patterns observed in the computational results were summarized, and their potential correlations were analyzed. Based on these findings, design recommendations for derivatives of these skeletons in energetic compounds were proposed to serve as a reference for energetic material chemists. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 3239 KiB  
Review
Advances in Synthesis and Ignition Performance of Ionic Liquid–Hydrogen Peroxide Green Propellants
by Yongting Zhang, Xing Zhang, Dangyue Yin and Qinghua Zhang
Molecules 2025, 30(8), 1789; https://doi.org/10.3390/molecules30081789 - 16 Apr 2025
Viewed by 551
Abstract
The ionic liquid–hydrogen peroxide propellant system has emerged as a promising green propellant candidate, synergistically combining the unique advantages of ionic liquids (such as negligible vapor pressure, low melting points, high thermal stability and structural tunability) with the merits of hydrogen peroxide (including [...] Read more.
The ionic liquid–hydrogen peroxide propellant system has emerged as a promising green propellant candidate, synergistically combining the unique advantages of ionic liquids (such as negligible vapor pressure, low melting points, high thermal stability and structural tunability) with the merits of hydrogen peroxide (including high density, low volatility, minimal viscosity, reduced corrosivity, and environmentally benign decomposition products). In this work, we provide a comprehensive review of the synthesis strategies and ignition performance of the ionic liquid–hydrogen peroxide propellant system, systematically categorizing them into two classes: “self-igniting propellants” and “promoter-dependent propellants”. This review emphasizes the critical role of anion-specific design and catalytic engineering in advancing the performance of ionic liquid–hydrogen peroxide propellant systems, while also addressing the current challenges and future directions in this rapidly evolving field. Full article
(This article belongs to the Special Issue Molecular Design and Synthesis of Novel Energetic Compounds)
Show Figures

Graphical abstract

Back to TopTop