Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin
Abstract
:1. Introduction
2. Theoretical Methodology
3. Results and Discussion
3.1. The HSA Binding Site and Its Interactions with UO22+ and Zn2+ Ions
3.2. Hydrogen Bonding Dynamics
3.3. Potential of Mean Force
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manohar, S.; Sugilal, G.; Bajpai, R.K.; Kaushik, C.P.; Raj, K. Nuclear Fuel Cycle; Tomar, B.S., Rao, P.R.V., Roy, S.B., Panakkal, J.P., Raj, K., Nandakumar, A.N., Eds.; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Dose Coefficients for Intakes of Radionuclides by Workers; ICRP Publication: London, UK, 1995; Volume 68.
- Individual Monitoring for Internal Exposure of Workers; Ann. ICRP 27; ICRP Publication: London, UK, 1997; Volume 78.
- Occupational Intakes of Radionuclides: Part 1; ICRP Publication: London, UK, 2015; Volume 130.
- Rabbani, G.; Ahn, S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int. J. Biol. Macromol. 2019, 123, 979. [Google Scholar] [CrossRef] [PubMed]
- Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta 2013, 1830, 5444. [Google Scholar] [CrossRef]
- Sadler, P.J.; Viles, J.H. 1H and 113Cd NMR Investigations of Cd2+ and Zn2+ Binding Sites on Serum Albumin: Competition with Ca2+, Ni2+, Cu2+, and Zn2+. Inorg. Chem. 1996, 35, 4490. [Google Scholar] [CrossRef]
- Sendzik, M.; Pushie, M.J.; Stefaniak, E.; Haas, K.L. Structure and Affinity of Cu(I) Bound to Human Serum Albumin. Inorg. Chem. 2017, 56, 15057. [Google Scholar] [CrossRef] [PubMed]
- Handing, K.B.; Shabalin, I.G.; Kassaar, O.; Khazaipoul, S.; Blindauer, C.A.; Stewart, A.J.; Chruszcz, M.; Minor, W. Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chem. Sci. 2016, 7, 6635. [Google Scholar] [CrossRef] [PubMed]
- Sokołowska, M.; Wszelaka-Rylik, M.; Poznański, J.; Bal, W. Spectroscopic and thermodynamic determination of three distinct binding sites for Co(II) ions in human serum albumin. J. Inorg. Biochem. 2009, 103, 1005. [Google Scholar] [CrossRef]
- Majorek, K.A.; Porebski, P.J.; Dayal, A.; Zimmerman, M.D.; Jablonska, K.; Stewart, A.J.; Chruszcz, M.; Minor, W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2012, 52, 174. [Google Scholar] [CrossRef]
- van der Vusse, G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009, 24, 300. [Google Scholar] [CrossRef]
- Duff, M.R., Jr.; Kumar, C.V. Site-selective photocleavage of proteins by uranyl ions. Angew. Chem. Int. Ed. 2005, 45, 137. [Google Scholar] [CrossRef]
- Michon, J.; Frelon, S.; Garnier, C.; Coppin, F. Determinations of uranium(VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J. Fluoresc. 2010, 20, 581. [Google Scholar] [CrossRef]
- Montavon, G.; Apostolidis, C.; Bruchertseifer, F.; Repinc, U.; Morgenstern, A. Spectroscopic study of the interaction of U(VI) with transferrin and albumin for speciation of U(VI) under blood serum conditions. J. Inorg. Biochem. 2009, 103, 1609. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Kumar, A.; Kumar, M.; Pandey, B.N. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes. Biochimie 2016, 123, 117. [Google Scholar] [CrossRef]
- Coverdale, J.P.C.; Katundu, K.G.H.; Sobczak, A.I.S.; Arya, S.; Blindauer, C.A.; Stewart, A.J. Ischemia-modified albumin: Crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot. Essent. Fat. Acids 2018, 135, 147. [Google Scholar] [CrossRef] [PubMed]
- Kassaar, O.; Schwarz-Linek, U.; Blindauer, C.A.; Stewart, A.J. Plasma free fatty acid levels influence Zn2+-dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin. J. Thromb. Haemost. 2015, 13, 101. [Google Scholar] [CrossRef]
- Lu, J.; Stewart, A.J.; Sleep, D.; Sadler, P.J.; Pinheiro, T.J.; Blindauer, C.A. A molecular mechanism for modulating plasma Zn speciation by fatty acids. J. Am. Chem. Soc. 2012, 134, 1454. [Google Scholar] [CrossRef]
- Barnett, J.P.; Blindauer, C.A.; Kassaar, O.; Khazaipoul, S.; Martin, E.M.; Sadler, P.J.; Stewart, A.J. Allosteric modulation of zinc speciation by fatty acids. Biochim. Biophys. Acta 2013, 1830, 5456. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Pathak, A.K.; Bandyopadhyay, T. Binding of human serum albumin with uranyl ion at various pH: An all atom molecular dynamics study. J. Biomol. Struct. Dyn. 2023, 41, 7318. [Google Scholar] [CrossRef]
- Mishra, V.; Pathak, A.K.; Sawant, P.D.; Bandyopadhyay, T. Fatty acid influence on zinc and uranyl ion binding to human serum albumin: An all atoms molecular dynamics investigation. J. Biomol. Struct. Dyn. 2024, 1, 1–12. [Google Scholar] [CrossRef]
- Bhattacharya, A.A.; Grüne, T.; Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 2000, 303, 721. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.; Tiwari, S.P.; Maginn, E.J. Force field development for actinyl ions via quantum mechanical calculations: An approach to account for many body solvation effects. J. Phys. Chem. B 2012, 116, 10885. [Google Scholar] [CrossRef]
- Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985, 31, 1695. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1998, 18, 1463–1472. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577. [Google Scholar] [CrossRef]
- Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603. [Google Scholar] [CrossRef]
- Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R.A.; et al. PLUMED: A Portable Plugin for Free-Energy Calculations with Molecular Dynamics. Comput. Phys. Commun. 2009, 180, 1961–1972. [Google Scholar] [CrossRef]
- Pathak, A.K.; Bandyopadhyay, T. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study. J. Chem. Phys. 2017, 146, 165104. [Google Scholar] [CrossRef]
- Pathak, A.K.; Bandyopadhyay, T. Unbinding of fluorinated oxime drug from the AChE gorge in polarizable water: A well-tempered metadynamics study. Phys. Chem. Chem. Phys. 2017, 19, 5560. [Google Scholar] [CrossRef]
- Pathak, A.K.; Bandyopadhyay, T. Protein-Drug Interactions with Effective Polarization in Polarizable Water: Oxime Unbinding from AChE Gorge. J. Phys. Chem. B 2015, 119, 14460. [Google Scholar] [CrossRef] [PubMed]
- Luzar, A.; Chandler, D. Effect of Environment on Hydrogen Bond Dynamics in Liquid Water. Phys. Rev. Lett. 1996, 76, 928. [Google Scholar] [CrossRef] [PubMed]
- Luzar, A.; Chandler, D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 1993, 98, 8160. [Google Scholar] [CrossRef]
- Patel, D.; Haag, S.L.; Patel, J.S.; Ytreberg, F.M.; Bernards, M.T. Paired Simulations and Experimental Investigations into the Calcium-Dependent Conformation of Albumin. J. Chem. Inf. Model. 2022, 62, 1282. [Google Scholar] [CrossRef]
- Aguanno, J.J.; Ladenson, J.H. Influence of fatty acids on the binding of calcium to human albumin. Correlation of binding and conformation studies and evidence for distinct differences between unsaturated fatty acids and saturated fatty acids. J. Biol. Chem. 1982, 257, 8745. [Google Scholar] [CrossRef]
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316. [Google Scholar] [CrossRef]
System | Amino Acid Residues | Short-range Coulomb (kJ/mol) | Short-range Lennard-Jones (kJ/mol) |
---|---|---|---|
FA-HSA + Zn2+ | D249 | −514 ± 3 | 37 ± 2 |
H247 | 4.5 ± 0.9 | −0.1 ± 0.2 | |
H67 | 9.4 ± 0.5 | −0.2 + 0.1 | |
FA-HSA + UO22+ | D249 | −513 ± 3 | 43.6 ± 0.7 |
H247 | 2.1 ± 0.6 | −0.3 ± 0.02 | |
H67 | 1.3 ± 0.2 | −3.2 ± 0.4 |
System | H67-D249 | H247-D249 | ||||
---|---|---|---|---|---|---|
Time Constant (ps) | Amplitude (%) | Lifetime (ps) | Time Constant (ps) | Amplitude (%) | Lifetime (ps) | |
FA-HSA | 70.1 ± 0.6 | 100 | 13 | 4826 ± 34 | 100 | 2182 |
FA-HSA + Zn2+ | -- | 100 | -- | 86.8 ± 0.8 | 100 | 17 |
FA-HSA + UO22+ | 0.520 ± 0.001 | 100 | 0.5 | 1845 ± 16 | 100 | 162 |
System | Amino Acid Residues | Short-range Coulomb (kJ/mol) | Short-range Lennard-Jones (kJ/mol) |
---|---|---|---|
FA-HSA + Zn2+ | D249 | −511 ± 3 | 36.6 ± 0.7 |
H247 | −1.2 ± 0.4 | −0.02 ± 0.001 | |
H67 | 10.1 ± 0.9 | −0.2 ± 0.01 | |
E252 | −58 ± 6 | 38.7 ± 0.6 | |
FA-HSA + UO22+ | D249 | −523 ± 8 | 44.7 ± 0.7 |
H247 | 20 ± 2 | −0.7 ± 0.1 | |
H67 | −17 ± 2 | −1.0 ± 0.2 | |
E100 | −568 ± 6 | 51 ± 1 | |
E252 | −469 ± 3 | 38 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, V.; Sawant, P.D.; Pathak, A.K. Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin. Liquids 2025, 5, 14. https://doi.org/10.3390/liquids5020014
Mishra V, Sawant PD, Pathak AK. Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin. Liquids. 2025; 5(2):14. https://doi.org/10.3390/liquids5020014
Chicago/Turabian StyleMishra, Vijayakriti, Pramilla D. Sawant, and Arup Kumar Pathak. 2025. "Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin" Liquids 5, no. 2: 14. https://doi.org/10.3390/liquids5020014
APA StyleMishra, V., Sawant, P. D., & Pathak, A. K. (2025). Molecular Dynamics Study on Complexation of Uranyl and Zinc Ions with Fatty Acid Bound Human Serum Albumin. Liquids, 5(2), 14. https://doi.org/10.3390/liquids5020014