The Potentiality of Vanadium Complexes as Antibacterial Agents †
Abstract
1. Introduction
2. Schiff Bases
3. Vanadium as an Enzyme Switch
4. Antibacterial Activity of Vanadium Complexes
- Tweedy’s chelation theory suggests that when metal ions bind to ligands, the polarity of the metal atom is reduced as its positive charge is partially shared with donor groups, and the electrons become delocalized across the entire chelate structure. This enhances the chelates’ lipophilicity, improving their ability to penetrate the lipid membranes of bacterial cells [52].
- Metal complexes disrupt cell wall formation, which alters the cell’s permeability, causing the lipid–protein structure to become disorganized and ultimately leading to the death of the cell.
- The regular cellular functions are disrupted by metal complexes, causing the denaturation of one or more enzymes [53].
Mechanisms of the Antibacterial Activity of Vanadium
- ROS formation [58].
- The uptake of substrates through the bacterial cell membrane, along with the activation of K+ efflux from the cell [59].
- Interaction with DNA through intercalation [62].
- The disruption of cytoskeleton interactions, leading to changes in bacterial cell morphology and inhibiting proper cell division [56].
- Other non-specific mechanisms, emphasizing the improved bioavailability of vanadium complexes, facilitated by a specific ligand that enables the complex to pass through the hydrophobic, lipid-rich bacterial wall [63].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manawar, R.B.; Gondaliya, M.B.; Mamtora, M.J.; Shah, M. Synthesis and bioactivity study of 2-((E)-(((E)-2,6-dichlorobenzylidene) hydrazono) methyl) phenol have N, O-Bidentate ligand site and it’s metal complex. World Sci. News 2019, 126, 222–247. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Sigel, A. Metal Ions in Biological Systems: Volume 41: Metal Ions and Their Complexes in Medication; CRC Press: Boca Raton, FL, USA, 2004; Volume 30, p. 315. [Google Scholar]
- Satya; Hashmi, K.; Gupta, S.; Singh, N.; Khan, T.; Joshi, S. Nanofabrication of metals and their compounds for effective medicinal and environmental applications (a review). Russ. J. Gen. Chem. 2023, 93, 635–665. [Google Scholar] [CrossRef]
- Nagajothi, A.; Kiruthika, A.; Chitra, S.; Parameswari, K. Fe (III) complexes with Schiff base ligands: Synthesis, characterization, antimicrobial studies. Res. J. Chem. Sci. ISSN 2013, 3, 35–43. [Google Scholar]
- Zoubi, A.W. Biological activities of Schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. 2013, 2013, 73–95. [Google Scholar] [CrossRef]
- Khan, T.; Zehra, S.; Alvi, A.; Fatima, U.; Lawrence, A.J. Medicinal utility of some Schiff bases and their complexes with first transition series metals: A review. Orient. J. Chem. 2021, 37, 1051–1061. [Google Scholar] [CrossRef]
- Salvat, A.; Antonnacci, L.; Fortunato, R.H.; Suarez, E.Y.; Godoy, H.M. Screening of some plants from Northern Argentina for their antimicrobial activity. Lett. Appl. Microbiol. 2001, 32, 293–297. [Google Scholar] [CrossRef]
- Costes, J.P.; Dahan, F.; Fernandez Fernandez, M.B.; Fernandez Garcia, M.I.; Garcia Deibe, A.M.; Sanmartin, J. General Synthesis of “Salicylaldehyde Half-Unit Complexes”: Structural Determination and Use as Synthon for the Synthesis of Dimetallic or Trimetallic Complexes and of “Self-Assembling Ligand Complexes. Inorg. Chim. Acta 1998, 274, 73–81. [Google Scholar] [CrossRef]
- Raju, S.K.; Settu, A.; Thiyagarajan, A.; Rama, D.; Sekar, P.; Kumar, S. Biological applications of Schiff bases: An overview. GSC Biol. Pharm. Sci. 2022, 21, 203–215. [Google Scholar] [CrossRef]
- Ommenya, F.K.; Nyawade, E.A.; Andala, D.M.; Kinyua, J. Synthesis, Characterization and Antibacterial Activity of Schiff Base, 4-Chloro-2-{(E)-[(4-Fluorophenyl) imino] methyl} phenol Metal (II) Complexes. J. Chem. 2020, 2020, 1745236. [Google Scholar] [CrossRef]
- Anacona, J.R.; Santaella, J.; Al-Shemary, R.K.R.; Amenta, J.; Otero, A.; Ramos, C.; Celis, F. Ceftriaxone-based Schiff base transition metal (II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn (II) complex against S. aureus and E. coli. J. Inorg. Biochem. 2021, 223, 111519. [Google Scholar] [CrossRef] [PubMed]
- Saritha, T.J.; Metilda, P. Synthesis, spectroscopic characterization and biological applications of some novel Schiff base transition metal (II) complexes derived from curcumin moiety. J. Saudi Chem. Soc. 2021, 25, 101245. [Google Scholar] [CrossRef]
- Anita; Ghanghas, P.; Poonia, K. Synthesis, characterization and biological activities of novel Schiff base ligand and its Co (II) and Mn (II) complexes. Results Chem. 2024, 7, 101221. [Google Scholar] [CrossRef]
- Gavali, L.V.; Mohammed, A.A.; Al-Ogaili, M.J.; Gaikwad, S.H.; Kulkarni, M.; Das, R.; Ubale, P.A. Novel terephthalaldehyde bis (thiosemicarbazone) Schiff base ligand and its transition metal complexes as antibacterial Agents: Synthesis, characterization and biological investigations. Results Chem. 2024, 7, 101316. [Google Scholar] [CrossRef]
- Deswal, Y.; Asija, S.; Dubey, A.; Deswal, L.; Kumar, D.; Jindal, D.K.; Devi, J. Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: Synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J. Mol. Struct. 2022, 1253, 132266. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Diao, Q.C.; Liang, Y.H.; Zeng, K. Two novel Co (II) complexes with two different Schiff bases: Inhibiting growth of human skin cancer cells. Braz. J. Med. Biol. Res. 2017, 50, e6390. [Google Scholar] [CrossRef]
- Manimalathi, S.; Priya, J.; Madheswari, D. Exploration on Synthesis, Characterization and Biological Activities of Transition Metal Complexes Comprising Hydroxybenzylideneaminocyclohexylimino-methyl-4, 6-dibromophenol Schiff Base Ligand. Arab. J. Sci. Eng. 2024, 49, 9691–9711. [Google Scholar] [CrossRef]
- Yadav, M.; Yadav, D.; Kansal, S.; Angrup, A.; Taneja, N.; Singh, D.P.; Kapoor, J.K. Pharmacologically important tetraaza macrocyclic Schiff base complexes of Zn (II), Cu (II) and Co (II): Synthesis, characterization, DFT studies, molecular docking and in vitro anti-bacterial and anti-cancer studies. J. Mol. Struct. 2024, 1317, 139078. [Google Scholar] [CrossRef]
- Raju, S.K.; Sekar, P.; Kumar, S.; Jeyakumar, T.C.; Sankarganesh, M.; Murphy, M.; Govindasamy, C. Synthesis, DFT calculation, molecular docking and in vitro anticancer activities of sulphanilamide incorporated Schiff base metal complexes. J. Mol. Struct. 2025, 1321, 140211. [Google Scholar] [CrossRef]
- Thompson, K.H.; McNeill, J.H.; Orvig, C. Vanadium compounds as insulin mimics. Chem. Rev. 1999, 99, 2561–2572. [Google Scholar] [CrossRef]
- Sakurai, H.; Kojima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasui, H. Antidiabetic vanadium (IV) and zinc (II) complexes. Coord. Chem. Rev. 2002, 226, 187–198. [Google Scholar] [CrossRef]
- McNeill, J.H.; Yuen, V.G.; Hoveyda, H.R.; Orvig, C. Bis (maltolato) oxovanadium (IV) is a potent insulin mimic. J. Med. Chem. 1992, 35, 1489–1491. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, K.; Nishida, K.; Miyata, N.; Okamoto, K.I.; Miyoshi, Y.; Tamura, A.; Sakurai, H. Syntheses, structures, stability, and insulin-like activities of peroxovanadium (V) complexes with a heteroligand. J. Inorg. Biochem. 2001, 86, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, K.; Gupta, S.; Siddique, A.; Khan, T.; Joshi, S. Medicinal applications of vanadium complexes with Schiff bases. J. Trace Elem. Med. Biol. 2023, 79, 127245. [Google Scholar] [CrossRef]
- Satya; Hashmi, K.; Gupta, S.; Siddique, A.; Joshi, S. Vanadium Complexes as Potential Anticancer Agents. Eng. Proc. 2023, 56, 91. [Google Scholar]
- Hashmi, K.; Rai, S.; Sharma, S.; Satya; Gupta, S.; Mishra, P.; Veg, E.; Khan, T.; Gupta, A.; Joshi, S. Spectroscopic and Quantum chemical studies of some novel mixed-ligand complexes of vanadium and Comparative evaluation of their antimicrobial and antioxidant activities. Inorg. Chem. Commun. 2025, 174, 113967. [Google Scholar] [CrossRef]
- Prasad, K.S.; Ramachandrappa, S.U. Potential medicinal applications of vanadium and its coordination compounds in current research prospects: A review. Curr. Bioact. Compd. 2020, 16, 201–209. [Google Scholar] [CrossRef]
- Sharfalddin, A.A.; Al-Younis, I.M.; Mohammed, H.A.; Dhahri, M.; Mouffouk, F.; Abu Ali, H.; Anwar, M.J.; Qureshi, K.A.; Hussien, M.A.; Alghrably, M.; et al. Therapeutic properties of vanadium complexes. Inorganics 2022, 10, 244. [Google Scholar] [CrossRef]
- Fantus, I.G.; Kadota, S.; Deragon, G.; Foster, B.; Posner, B.I. Pervanadate [peroxide (s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989, 28, 8864–8871. [Google Scholar] [CrossRef]
- Schieven, G.L.; Kirihara, J.M.; Myers, D.E.; Ledbetter, J.A.; Uckun, F.M. Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 1993, 5, 1212–1220. [Google Scholar] [CrossRef]
- Boruah, J.J.; Kalita, D.; Das, S.P.; Paul, S.; Islam, N.S. Polymer-anchored peroxo compounds of vanadium (V) and molybdenum (VI): Synthesis, stability, and their activities with alkaline phosphatase and catalase. Inorg. Chem. 2011, 50, 8046–8062. [Google Scholar] [CrossRef] [PubMed]
- Parente, J.E.; Naso, L.G.; Jori, K.; Franca, C.A.; da Costa Ferreira, A.M.; Williams, P.A.; Ferrer, E.G. In vitro experiments and infrared spectroscopy analysis of acid and alkaline phosphatase inhibition by vanadium complexes. New J. Chem. 2019, 43, 17603–17619. [Google Scholar] [CrossRef]
- Shehzad, S. The potential effect of vanadium compounds on glucose-6-phosphatase. Biosci. Horiz. Int. J. Stud. Res. 2013, 6, hzt002. [Google Scholar] [CrossRef]
- Zhang, S.; Kim, S.M. Synthesis, characterization, antioxidant and anti-diabetic activities of a novel protein–vanadium complex. Appl. Organomet. Chem. 2019, 33, e5102. [Google Scholar] [CrossRef]
- Rehder, D. Vanadium in biological systems and medicinal applications. Inorg. Chim. Acta 2023, 549, 121387. [Google Scholar] [CrossRef]
- Pawar, V.; Joshi, S.; Uma, V. Antibacterial and antioxidant properties of macrocyclic Schiff bases with vanadium (V) complexes. Biokemistri 2011, 23, 1497–1500. [Google Scholar]
- Rosu, T.; Pahontu, E.; Maxim, C.; Georgescu, R.; Stanica, N.; Almajan, G.L.; Gulea, A. Synthesis, characterization and antibacterial activity of some new complexes of Cu (II), Ni (II), VO (II), Mn (II) with Schiff base derived from 4-amino-2, 3-dimethyl-1-phenyl-3-pyrazolin-5-one. Polyhedron 2010, 29, 757–766. [Google Scholar] [CrossRef]
- Panchal, P.K.; Parekh, H.M.; Pansuriya, P.B.; Patel, M.N. Bactericidal activity of different oxovanadium (IV) complexes with Schiff bases and application of chelation theory. J. Enzym. Inhib. Med. Chem. 2006, 21, 203–209. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Sumrra, S.H.; Youssoufi, M.H.; Hadda, T.B. Design and synthesis of triazole Schiff bases and their oxovanadium (IV) complexes as antimicrobial agents. J. Coord. Chem. 2010, 63, 3981–3998. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Sumrra, S.H. Synthesis, characterization and biological properties of thienyl derived triazole Schiff bases and their oxovanadium (IV) complexes. J. Enzym. Inhib. Med. Chem. 2012, 27, 187–193. [Google Scholar] [CrossRef]
- Sheikhshoaie, I.; Ebrahimipour, S.Y.; Lotfi, N.; Mague, J.T.; Khaleghi, M. Synthesis, spectral characterization, X-ray crystal structure and antimicrobial activities of two cis dioxido-vanadium (V) complexes incorporating unsymmetrical dimalonitrile-based (NNO) Schiff base ligands. Inorg. Chim. Acta 2016, 442, 151–157. [Google Scholar] [CrossRef]
- de Almeida Machado, P.; Mota, V.Z.; de Lima Cavalli, A.C.; de Carvalho, G.S.G.; Da Silva, A.D.; Gameiro, J.; Cuin, A.; Coimbra, E.S. High selective antileishmanial activity of vanadium complex with stilbene derivative. Acta Trop. 2015, 148, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.C.; Li, W.; Cheng, X.S. Synthesis, Spectroscopic Characterization, Crystal Structures and Antibacterial Activity of Vanadium (V) Complexes of Fluoro-and Chloro-Substituted Benzohydrazone Ligands. Acta Chim. Slov. 2019, 66, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.; Salehi, M.; Khaleghian, A.; Kubicki, M. Evaluation of anticancer activities, apoptosis, molecular docking, and antioxidant studies of new Ni (II), VO (IV), Cu (II) and Co (III) Schiff base complexes. Inorg. Chim. Acta 2023, 546, 121296. [Google Scholar] [CrossRef]
- Askarian, S.; Beyramabadi, S.A.; Badmasti, F.; Heravi, F.S.; Tabrizi, A.M.A.; Azizi, H.; Mohaghegh, M.A.; Morsali, A.; Bazian, A.; Bozorgmehr, M.R.; et al. Synthesis, characterization and in vitro evaluation of cytotoxicity and antibacterial properties of vanadyl complexes of the pyridoxal Schiff bases. J. Mol. Struct. 2021, 1246, 131189. [Google Scholar] [CrossRef]
- Lewis, N.A.; Liu, F.; Seymour, L.; Magnusen, A.; Erves, T.R.; Arca, J.F.; Beckford, F.A.; Venkatraman, R.; González-Sarrías, A.; Fronczek, F.R.; et al. Synthesis, characterization, and preliminary in vitro studies of vanadium(IV) complexes with a Schiff base and thiosemicarbazones as mixed-ligands. Eur. J. Inorg. Chem. 2012, 2012, 664–677. [Google Scholar] [CrossRef]
- Kawabe, K.; Yoshikawa, Y.; Adachi, Y.; Sakurai, H. Possible mode of action for insulinomimetic activity of vanadyl (IV) compounds in adipocytes. Life Sci. 2006, 78, 2860–2866. [Google Scholar] [CrossRef]
- Adachi, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Bis(Allixinato) Oxovanadium(IV) complex is a potent antidiabetic agent: Studies on structureactivity relationship for a series of hydroxypyrone- vanadium complexes. J. Med. Chem. 2006, 49, 3251–3256. [Google Scholar] [CrossRef]
- Patel, N.; Prajapati, A.K.; Jadeja, R.N.; Patel, R.N.; Patel, S.K.; Gupta, V.K.; Tripathi, I.P.; Dwivedi, N. Model investigations for vanadium-protein interactions: Synthesis, characterization and antidiabetic properties. Inorg. Chim. Acta 2019, 493, 20–28. [Google Scholar] [CrossRef]
- Claudel, M.; Schwarte, J.V.; Fromm, K.M. New antimicrobial strategies based on metal complexes. Chemistry 2020, 2, 849–899. [Google Scholar] [CrossRef]
- Paterson, J.R.; Beecroft, M.S.; Mulla, R.S.; Osman, D.; Reeder, N.L.; Caserta, J.A.; Young, T.R.; Pettigrew, C.A.; Davies, G.E.; Williams, J.G.; et al. Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese, and zinc. Appl. Environ. Microbiol. 2022, 88, e01641-21. [Google Scholar] [CrossRef]
- Nworie, F.S. Bis (salicylidene) ethylenediamine (salen) and bis (salicylidene) ethylenediamine-metal complexes: From structure to biological activity. J. Anal. Pharm. Res. 2016, 3, 1–10. [Google Scholar]
- Pessoa, J.C.; Garribba, E.; Santos, M.F.; Santos-Silva, T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord. Chem. Rev. 2015, 301, 49–86. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Etcheverry, S.; Gambino, D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015, 301, 24–48. [Google Scholar] [CrossRef] [PubMed]
- Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. Chem. Commun. 2018, 54, 1153–1169. [Google Scholar] [CrossRef]
- Aureliano, M.; Fraqueza, G.; Ohlin, C.A. Ion pumps as biological targets for decavanadate. Dalton Trans. 2013, 42, 11770–11777. [Google Scholar] [CrossRef]
- Aureliano, M.; De Sousa-Coelho, A.L.; Dolan, C.C.; Roess, D.A.; Crans, D.C. Biological consequences of vanadium effects on formation of reactive oxygen species and lipid peroxidation. Int. J. Mol. Sci. 2023, 24, 5382. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef]
- Pietrusiński, M.; Stączek, P. Badania struktury i funkcji prokariotycznych topoizomeraz klasy II szansą dla poszukiwania i syntezy nowych leków przeciwbakteryjnych. Postępy Biochem. 2006, 52, 271–282. [Google Scholar]
- Szafran, M.; Zakrzewska-Czerwińska, J.; Jakimowicz, D. Bacterial type I topoisomerases-biological function and potential use as targets for antibiotic treatments. Postępy Hig. Med. Dośw. 2013, 67, 130–142. [Google Scholar] [CrossRef]
- Jayaseelan, P.; Akila, E.; Rani, M.U.; Rajavel, R. Synthesis, spectral characterization, electrochemical, anti-microbial, DNA binding and cleavage studies of new binuclear Schiff base metal (II) complexes derived from o-hydroxyacetophenone. J. Saudi Chem. Soc. 2016, 20, 625–634. [Google Scholar] [CrossRef]
- Pessoa, J.C. Thirty years through vanadium chemistry. J. Inorg. Biochem. 2015, 147, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Azad, I.; Khan, T.; Maurya, A.K.; Irfan Azad, M.; Mishra, N.; Alanazi, A.M. Identification of Severe Acute Respiratory Syndrome Coronavirus-2 inhibitors through in silico structure-based virtual screening and molecular interaction studies. J. Mol. Recognit. 2021, 34, e2918. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Rahman, Q.I.; Raza, S.; Zehra, S.; Ahmad, N.; Husen, A. Nanodimensional Materials: An Approach Toward the Biogenic Synthesis. In Advances in Smart Nanomaterials and Their Applicatios; Elsevier: Amsterdam, The Netherlands, 2023; pp. 523–568. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, K.; Satya; Mishra, P.; Veg, E.; Khan, T.; Joshi, S. The Potentiality of Vanadium Complexes as Antibacterial Agents. Eng. Proc. 2025, 87, 91. https://doi.org/10.3390/engproc2025087091
Hashmi K, Satya, Mishra P, Veg E, Khan T, Joshi S. The Potentiality of Vanadium Complexes as Antibacterial Agents. Engineering Proceedings. 2025; 87(1):91. https://doi.org/10.3390/engproc2025087091
Chicago/Turabian StyleHashmi, Kulsum, Satya, Priya Mishra, Ekhlakh Veg, Tahmeena Khan, and Seema Joshi. 2025. "The Potentiality of Vanadium Complexes as Antibacterial Agents" Engineering Proceedings 87, no. 1: 91. https://doi.org/10.3390/engproc2025087091
APA StyleHashmi, K., Satya, Mishra, P., Veg, E., Khan, T., & Joshi, S. (2025). The Potentiality of Vanadium Complexes as Antibacterial Agents. Engineering Proceedings, 87(1), 91. https://doi.org/10.3390/engproc2025087091