Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. General Characterizations
2.3. Synthesis of [Pt(tpy)NCS]·SCN
2.4. Colorimetric and Luminescent Detection of Zinc(II)
3. Results and Discussion
3.1. Three-Component Based Self-Assembly for Dual-Mode Detection of Zinc(II)
3.2. Effect of pH on the Detection Performance
3.3. Sensitivity of [Pt(tpy)NCS]+/C₂O₄2−/Zn2+ Supramolecular System
3.4. Selectivity of [Pt(tpy)NCS]+/C₂O₄2−/Zn++ Supramolecular System
3.5. Anti-Interference Ability of [Pt(tpy)NCS]+/C₂O₄2−/Zn2+ Supramolecular System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in Neurobiology: Probing their Chemistry and Biology with Molecular Imaging. Chem. Rev. 2008, 108, 1517–1549. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, C.J.; Koh, J.Y.; Bush, A.I. The Neurobiology of Zinc in Health and Disease. Nat. Rev. Neurosci. 2005, 6, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Zyba, S.J.; Shenvi, S.V.; Killilea, D.W.; Holland, T.C.; Kim, E.; Moy, A.; Sutherland, B.; Gildengorin, V.; Shigenaga, M.K.; King, J.C. A Moderate Increase in Dietary Zinc Reduces DNA Strand Breaks in Leukocytes and Alters Plasma Proteins without Changing Plasma Zinc Concentrations. Am. J. Clin. Nutr. 2017, 105, 343–351. [Google Scholar] [CrossRef]
- Hojyo, S.; Fukada, T. Roles of Zinc Signaling in the Immune System. J. Immunol. Res. 2016, 2016, 6762343. [Google Scholar] [CrossRef] [PubMed]
- Sankova, M.; Nikolenko, V.; Oganesyan, M.; Vinnik, Y.; Gavryushova, L.; Redina, S.; Rizaeva, N.; Sankov, A.; Bulygin, K.; Vovkogon, A.; et al. Zinc Pathogenic Importance in Correcting Immunity and Restoring Public Health in the POST-COVID Period: An Overview. Cytokine 2024, 184, 156761. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Senthil Murugan, A.; Vidhyalakshmi, N.; Ramesh, U.; Annaraj, J. A Schiff’s Base Receptor for Red Fluorescence Live Cell Imaging of Zn2+ Ions in Zebrafish Embryos and Naked Eye Detection of Ni2+ Ions for Bio-analytical Applications. J. Mater. Chem. B 2017, 5, 3195–3200. [Google Scholar] [CrossRef]
- Tayade, K.; Bondhopadhyay, B.; Keshav, K.; Sahoo, S.K.; Basu, A.; Singh, J.; Singh, N.; Nehete, D.T.; Kuwar, A. A Novel Zinc(II) and Hydrogen Sulphate Selective Fluorescent “Turn-on” Chemosensor Based on Isonicotiamide: Inhibit Type’s Logic Gate and Application in Cancer Cell Imaging. Analyst 2016, 141, 1814–1821. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent Aspects of the Effects of Zinc on Human Health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Katimba, H.A.; Wang, R.C.; Cheng, C.L.; Zhang, Y.C.; Lu, W.H.; Ma, Y. Zinc Absorption & Homeostasis in the Human Body: A General Overview. Food Rev. Int. 2024, 40, 715–739. [Google Scholar] [CrossRef]
- Chen, Y. The Relationship Between Zinc and Human Health and How to Supplement Zinc Scientifically. Theor. Nat. Sci. 2023, 4, 1–6. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, S. A Review on Iron, Zinc and Calcium Biological Significance and Factors Affecting their Absorption and Bioavailability. J. Food Compos. Anal. 2023, 123, 105529. [Google Scholar] [CrossRef]
- Pratt, E.P.S.; Damon, L.J.; Anson, K.J.; Palmer, A.E. Tools and Techniques for Illuminating the Cell Biology of Zinc. Biochim. Biophysica Acta (BBA)-Mol. Cell Res. 2021, 1868, 118865. [Google Scholar] [CrossRef]
- Sauer, A.K.; Vela, H.; Vela, G.; Stark, P.; Barrera-Juarez, E.; Grabrucker, A.M. Zinc Deficiency in Men Over 50 and its Implications in Prostate Disorders. Front. Oncol. 2020, 10, 1293. [Google Scholar] [CrossRef]
- Farooq, D.M.; Alamri, A.F.; Alwhahabi, B.K.; Metwally, A.M.; Kareem, K.A. The Status of Zinc in Type 2 Diabetic Patients and its Association with Glycemic Control. J. Fam. Community Med. 2020, 27, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Viles, J.H. Metal Ions and Amyloid Fiber Formation in Neurodegenerative Diseases. Copper, Zinc and Iron in Alzheimer’s, Parkinson’s and Prion Diseases. Coord. Chem. Rev. 2012, 256, 2271–2284. [Google Scholar] [CrossRef]
- Abkhoshk, E.; Jorjani, E.; Al-Harahsheh, M.S.; Rashchi, F.; Naazeri, M. Review of the Hydrometallurgical Processing of Non-sulfide Zinc Ores. Hydrometallurgy 2014, 149, 153–167. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability 2016, 8, 135. [Google Scholar] [CrossRef]
- Liu, J.; Peng, A.G.; Deng, S.; Liu, M.; Liu, G.S.; Li, C. Distribution of Heavy Metals and Radionuclides in the Sediments and their Environmental Impacts in Nansha Sea Area, South China Sea. Mar. Pollut. Bull. 2021, 166, 112192. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy Metal Pollution in the Aquatic Environment: Efficient and Low-cost Removal Approaches to Eliminate their Toxicity: A Review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Adu, J.T.; Aneke, F.I. Evaluation of Heavy Metal Contamination in Landfills from E-waste Disposal and its Potential as a Pollution Source for Surface Water Bodies. Results Eng. 2025, 25, 104431. [Google Scholar] [CrossRef]
- Li, Q.M.; Zhao, X.H.; Lv, Q.Z.; Liu, G.G. The Determination of Zinc in Water by Flame Atomic Absorption Spectrometry After its Separation and Preconcentration by Malachite Green Loaded Microcrystalline Triphenylmethane. Sep. Purif. Technol. 2007, 55, 76–81. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Frankowski, M.; Simeonov, V.; Polkowska, Ż.; Namieśnik, J. Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules 2018, 23, 2886. [Google Scholar] [CrossRef]
- Hardaway, C.J.; Sneddon, J.; Sneddon, E.J.; Kiran, B.; Lambert, B.J.; McCray, T.C.; Bowser, D.Q.; Douvris, C. Study of Selected Metal Concentrations in Sediments by Inductively Coupled Plasma-Optical Emission Spectrometry from a Metropolitan and More Pristine Bayou in Southwest Louisiana, United States. Microchem. J. 2016, 127, 213–219. [Google Scholar] [CrossRef]
- Fakhari, A.R.; Shamsipur, M.; Ghanbari, K. Zn(II)-selective Membrane lectrode Based on Tetra(2-aminophenyl) Porphyrin. Anal. Chim. Acta 2002, 460, 177–183. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, T.; Ruan, Q.; Zhao, J.L.; Mu, L.; Zeng, X.; Jin, Z.W.; Su, S.B.; Luo, Q.Y.; Yan, Y.Y.; et al. A Multifunctional Tripodal Fluorescent Probe for the Recognition of Cr3+, Al3+, Zn2+ and F− with Controllable ESIPT Processes. Dyes Pigm. 2019, 162, 257–265. [Google Scholar] [CrossRef]
- Xu, Z.C.; Yoon, J.; Spring, D.R. Fluorescent Chemosensors for Zn2+. Chem. Soc. Rev. 2010, 39, 1996–2006. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, J.H.; Xu, S.H.; Li, C.X.; Dong, B. Recent Progress in Fluorescent Probes for Metal Ion Detection. Front. Chem. 2022, 10, 875241. [Google Scholar] [CrossRef]
- Su, Z.; Li, Y.S.; Li, J.G.; Dou, X.C. Ultrasensitive Luminescent Turn-on Detection of Perchlorate Particulates by Triggering Supramolecular Self-Assembly of Platinum(II) Complex in Hydrogel Matrix. Sens. Actuators B 2021, 336, 129728. [Google Scholar] [CrossRef]
- Feng, Q.; Li, Y.Y.; Li, K.; Lu, J.Y.; Wang, J.M.; Fan, P.Y.; Li, D.; Wu, D.M.; Hou, H.W. Fluorescent Chemosensor for Zinc Ion Detection with Significant Emission Color Change in Aqueous Solution Based on AIEgen. ChemistrySelect 2017, 2, 3158–3162. [Google Scholar] [CrossRef]
- Yun, D.; Chae, J.B.; So, H.; Lee, H.; Kim, K.-T.; Kim, C. Sensing of Zinc Ions and Sulfide Using a Highly Practical and Water-soluble Fluorescent Sensor: Applications in Test Kits and Zebrafish. New J. Chem. 2020, 44, 442–449. [Google Scholar] [CrossRef]
- Yan, L.Q.; Zhou, C.P.; Li, J.; Yang, H.; Wu, X.Z.; Li, L. A near-infrared Fluorescent Probe Based on Dicyanisophorone for the Detection of Zinc Ions (Zn2+) in Water and Living Cells. J. Fluoresc. 2023, 33, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Shen, J.J.; Wang, J.B.; Wang, H.L.; Fang, M.X.; Zhou, H.W.; Tanasova, M. Ratiometric Fluorescent and Colorimetric BODIPY-based Sensor for Zinc Ions in Solution and Living Cells. Sens. Actuators B 2018, 258, 1279–1286. [Google Scholar] [CrossRef]
- Enbanathan, S.; Munusamy, S.; Jothi, D.; Manojkumar, S.; Manickam, S.; Iyer, S.K. Zinc Ion Detection Using a Benzothiazole-based Highly Selective Fluorescence “Turn-on” Chemosensor and its Real-time Application. RSC Adv. 2022, 12, 27839–27845. [Google Scholar] [CrossRef]
- Hameed, Y.A.S.; Alkhathami, N.; Snari, R.M.; Munshi, A.M.; Alaysuy, O.; Hadi, M.; Alsharif, M.A.; Khalil, M.A.; El-Metwaly, N.M. Novel Amino-functionalized MOF-based Sensor for Zinc Ion Detection in Water and Blood Serum Samples. Spectrochim. Acta Part A 2025, 327, 125432. [Google Scholar] [CrossRef]
- Liu, X.L.; Guo, J.W.; Wang, Y.W.; Wang, A.Z.; Yu, X.; Ding, L.H. A Flexible Electrochemical Sensor for Paracetamol Based on Porous Honeycomb-like NiCo-MOF Nanosheets. Rare Met. 2023, 42, 3311–3317. [Google Scholar] [CrossRef]
- Guo, J.J.; Zhao, H.B.; Yang, Z.W.; Wang, L.W.; Wang, A.Z.; Zhang, J.; Ding, L.H.; Wang, L.F.; Liu, H.; Yu, X. Bimetallic Sulfides with Vacancy Modulation Exhibit Enhanced Electrochemical Performance. Adv. Funct. Mater. 2024, 34, 2315714. [Google Scholar] [CrossRef]
- Thomas, A.; Nair, A.; Chakraborty, S.; Jayarajan, R.O.; Joseph, J.; Ajayaghosh, A. A Pyridinium Fluorophore for the Detection of Zinc Ions Under Autophagy Conditions. J. Photochem. Photobiol. B 2024, 259, 113006. [Google Scholar] [CrossRef]
- Lin, L.Y.; Hu, Y.F.; Zhang, L.L.; Huang, Y.; Zhao, S.L. Photoluminescence Light-up Detection of Zinc Ion and Imaging in Living Cells Based on the Aggregation Induced Emission Enhancement of Glutathione-capped Copper Nanoclusters. Biosens. Bioelectron. 2017, 94, 523–529. [Google Scholar] [CrossRef]
- Yang, S.Y.; Chen, Y.Y.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Platinum Complexes with Aggregation-Induced Emission. Chem. Soc. Rev. 2024, 53, 5366–5393. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zhang, L.X.; Zhang, H.Q.; Li, Y.S.; Guan, Q.Q. Biplane Ion-Pairing Induced Supramolecular Assembly for High-Performance Uranium Detection. Adv. Mater. 2025, 37, 2418952. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.J.; Xiao, F.F.; Liu, C.G.; Sun, J.; Yao, J.; Li, Y.S. Effective Dual-mode Turn-on Sensing of Phosphates Enabled by the Twisted “Head-To-Head” Self-Assembly of a Platinum(II)-terpyridyl Complex with Close Pt–Pt Packing. J. Mater. Chem. C 2024, 12, 11103–11114. [Google Scholar] [CrossRef]
- Wong, K.M.-C.; Yam, V.W.-W. Self-Assembly of Luminescent Alkynylplatinum(II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior. Acc. Chem. Res. 2011, 44, 424–434. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Pan, D.; Chen, B.; Wang, G.X.; Tung, C.H.; Wu, L.Z. Synthesis, Characterization, and Selective Sr2+ Sensing Study of Copper(I)-Bridged Calix[4]Arene-Based Binuclear Alkynylplatinum(II) Complexes. Eur. J. Inorg. Chem. 2017, 2017, 5108–5113. [Google Scholar] [CrossRef]
- Cheng, Y.K.; Li, L.; Wei, F.F.; Wong, K.M.-C. Alkynylplatinum(II) Terpyridine System Coupled with Rhodamine Derivative: Interplay of Aggregation, Deaggregation, and Ring-Opening Processes for Ratiometric Luminescence Sensing. Inorg. Chem. 2018, 57, 6439–6446. [Google Scholar] [CrossRef]
- Su, Z.; Li, Y.S.; Li, J.G.; Li, K.; Dou, X.C. Ultrasensitive Dual-mode Visualization of Perchlorate in Water, Soil and Air Boosted by Close and Stable Pt–Pt Packing Endowed Low-energy Absorption and Emission. J. Mater. Chem. A 2022, 10, 8195–8207. [Google Scholar] [CrossRef]
- Yoshida, M.; Kato, M. Cation-controlled Luminescence Behavior of Anionic Cyclometalated Platinum(II) Complexes. Coord. Chem. Rev. 2020, 408, 213194. [Google Scholar] [CrossRef]
- Capelin, B.C.; Ingram, G. Use of Tetracyanoplatinate (II) for the Luminescent Detection of Metalions. Talanta 1970, 17, 187–195. [Google Scholar] [CrossRef]
- Huang, X.H.; Li, J.R.; Tang, H.; Guo, M.; Wang, X.; Wang, X.R.; Wang, X.; Tang, M.L.; Zhang, F.S.; Zhang, Y.H.; et al. Unique Three-component Co-assembly Among AIEgen, L-GSH, and Ag+ for the Formation of Helical Nanowires. Aggregate 2023, 4, e272. [Google Scholar] [CrossRef]
- Xu, M.; Kelley, S.P.; Glass, T.E. A Multi-Component Sensor System for Detection of Amphiphilic Compounds. Angew. Chem. Int. Ed. 2018, 57, 12741–12744. [Google Scholar] [CrossRef]
- Basolo, F.; Gray, H.B.; Pearson, R.G. Mechanism of Substitution Reactions of Complex Ions. XVII.1 Rates of Reaction of Some Platinum(II) and Palladium(II) Complexes with Pyridine2. J. Am. Chem. Soc. 1960, 82, 4200–4203. [Google Scholar] [CrossRef]
- Su, Z.; Li, D.P.; Zhang, L.X.; Tian, S.; Su, Y.H.; Hu, X.Y.; Xiong, D.; Guan, Q.Q. Multiresponsive, Easy-Reversible, and Dual-visual Pt(II) Salt Nanostructures for Advanced Anti-counterfeiting Application. Nano Res. 2024, 17, 372–381. [Google Scholar] [CrossRef]
- Yan, L.Q.; Lu, D.Q.; Yang, H.; Wu, X.Z. A Dicyanisophorone-based Probe for Dual Sensing Zn2+ And Cd2+ by Near-infrared Fluorescence. Spectrochim. Acta Part A 2023, 290, 122243. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. Development of an Iminocoumarin-based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc. 2007, 129, 13447–13454. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, W.; Guo, H.D.; Liang, J.J.; Huang, D.Y.; Xiao, H.B. Two Spirobifluorene-based Fluorescent Probes with Aggregation-Induced Emission Properties: Synthesis and Application in the Detection of Zn2+ and Cell Imaging. J. Mater. Chem. C 2019, 7, 2240–2249. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Fang, B.; Jin, M.; Tian, Y. Two-photon Fluorescent Zn2+ Probe for Ratiometric Imaging and Biosensing of Zn2+ in Living Cells and Larval Zebrafish. Biosens. Bioelectron. 2020, 148, 111666. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, B.L.; Rong, X.Q.; Liu, J.; Qiu, X.Y.; Sun, L.; Cheng, Y.T. Development of a Novel Near-infrared Fluorescent Probe for Selective Detection of Zinc Ions in Environmental and Food Samples. Tetrahedron Lett. 2023, 129, 154713. [Google Scholar] [CrossRef]
- Yang, W.S.; Yang, W.; Ma, Y.J.; Yan, L. A New Coumarin-based Fluorescent Chemosensor for Selection Detection of Zinc Ions in Aqueous Ethanol. Luminescence 2025, 40, e70122. [Google Scholar] [CrossRef]
- Song, H.H.; Zhang, Z. A Quinoline-based Ratiometric Fluorescent Probe for Discriminative Detection of Zn2+ and Cd2+ with Different Binding Modes, and its Zn2+ Complex for Relay Sensing of Pyrophosphate and Adenosine Triphosphate. Dyes Pigm. 2019, 165, 172–181. [Google Scholar] [CrossRef]
- Chen, S.Y.; Li, S.P.; Liu, X.; Shi, B.F.; Huang, Y.J.; Zhao, S.L. Nitrogen and Sulfur Co-doped Carbon Dot-based Ratiometric Fluorescent Probe for Zn2+ Sensing and Imaging in Living Cells. Microchim. Acta 2022, 189, 107. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.W.; Xu, J.J.; Suo, F.T.; Yu, C.M.; Zhang, D.T.; Chen, J.; Wu, Q.; Jing, S.; Li, L.; Huang, W. A Novel Naphthofluorescein-based Probe for Ultrasensitive Point-of-care Testing of Zinc(II) Ions and its Bioimaging in Living Cells and Zebrafishes. Spectrochim. Acta Part A 2020, 229, 117949. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.M.; Lee, S.Y.; Nam, E.; Lim, M.H.; Kim, C. A Highly Selective Turn-on Chemosensor for Zn2+ in Aqueous Media and Living Cells. Sens. Actuators B 2017, 244, 1045–1053. [Google Scholar] [CrossRef]
- Mandal, S.; Sikdar, Y.; Maiti, D.K.; Sanyal, R.; Das, D.; Mukherjee, A.; Mandal, S.K.; Biswas, J.K.; Bauzá, A.; Frontera, A.; et al. New Pyridoxal Based Chemosensor for Selective Detection of Zn2+: Application in Live Cell Imaging and Phosphatase Activity Response. J. Photochem. Photobiol. A 2017, 334, 86–100. [Google Scholar] [CrossRef]
- Lin, J.R.; Chu, C.J.; Venkatesan, P.; Wu, S.P. Zinc(II) and Pyrophosphate Selective Fluorescence Probe and its Application to Living Cell Imaging. Sens. Actuators B 2015, 207, 563–570. [Google Scholar] [CrossRef]
Material | Specificity | Optical Signal | Response Time | LOD (μM) | Ref. |
---|---|---|---|---|---|
[Pt(tpy)NCS] +/C2O42− | High selectivity | Fluorescence colorimetric | 3 s | 0.199 | Our work |
Dicyanisophorone | Cd2+ | Fluorescence colorimetric | 15 s | 0.21 | [54] |
Iminocoumarin derivatives | Cd2+, Fe2+, Co2+, Cu2+ | Fluorescence turn-on | - | - | [55] |
Spirobifluorene-based | Cu2+, Hg2+ | Fluorescence enhancement | - | 0.3 | [56] |
Dicyanoisoflurone derivative | High selectivity | Fluorescence colorimetric | 30 s | 0.0048 | [33] |
Quinoline-based | High selectivity | Fluorescence turn-on | 2 s | 0.025 ± 0.05 | [57] |
Pyridinium probe | Cd2+, Cu2+, Hg2+ | Fluorescence enhancement | - | 0.6 | [39] |
MOF | High selectivity | Fluorescence quenching | 40 s | 0.0314 | [36] |
Fluorescent probe TZn | High selectivity | Fluorescence colorimetric | 40 s (50 μM) | 0.31 | [58] |
Benzothiazole derivatives | Highselectivity | Fluorescence turn-on | 10s | 0.0236 | [35] |
Coumarin-based | High selectivity | Fluorescence enhancement | - | 0.228 | [59] |
Quinoline-based | High selectivity | Fluorescence turn-on | - | 0.063 | [60] |
(N, S-CD)-based | High selectivity | Fluorescence turn-on | 40 min | 0.005 | [61] |
Naphthofluorescein-based | High selectivity | Fluorescence enhancement | 20 min | 0.74 | [62] |
Quinoline chelator | Cd2+ | Fluorescence enhancement | - | 0.6 | [63] |
Schiff bases- based | Cd2+ | Fluorescence enhancement | - | 5.9 | [64] |
BODIPY-based | Cd2+, Co2+, Hg2+, Cu2+ | Fluorescence enhancement | - | 0.59 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Zhang, L.; Xiong, D.; Su, Z.; Guan, Q. Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions. Sensors 2025, 25, 3470. https://doi.org/10.3390/s25113470
Geng X, Zhang L, Xiong D, Su Z, Guan Q. Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions. Sensors. 2025; 25(11):3470. https://doi.org/10.3390/s25113470
Chicago/Turabian StyleGeng, Xiaonan, Lixin Zhang, Duan Xiong, Zhen Su, and Qingqing Guan. 2025. "Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions" Sensors 25, no. 11: 3470. https://doi.org/10.3390/s25113470
APA StyleGeng, X., Zhang, L., Xiong, D., Su, Z., & Guan, Q. (2025). Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions. Sensors, 25(11), 3470. https://doi.org/10.3390/s25113470