Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (617)

Search Parameters:
Keywords = metal dichalcogenides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KB  
Article
Graphene/Chalcogenide Heterojunctions for Enhanced Electric-Field-Sensitive Dielectric Performance: Combining DFT and Experimental Study
by Bo Li, Nanhui Zhang, Yuxing Lei, Mengmeng Zhu and Haitao Yang
Nanomaterials 2026, 16(2), 128; https://doi.org/10.3390/nano16020128 - 18 Jan 2026
Viewed by 59
Abstract
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) [...] Read more.
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) heterojunctions as functional fillers to enhance the dielectric response and electric-field-induced voltage output of flexible polydimethylsiloxane (PDMS) composites. Density functional theory (DFT) calculations were used to evaluate the stability of the heterojunctions and interfacial electronic modulation, including binding behavior, charge redistribution, and Fermi level-referenced band structure/total density of states (TDOS) characteristics. The calculations show that the graphene/TMD interface is primarily controlled by van der Waals forces, exhibiting negative binding energy and significant interfacial charge rearrangement. Based on these theoretical results, graphene/TMD heterojunction powders were synthesized and incorporated into polydimethylsiloxane (PDMS). Structural characterization confirmed the presence of face-to-face interfacial contacts and consistent elemental co-localization within the heterojunction filler. Dielectric spectroscopy analysis revealed an overall improvement in the dielectric constant of the composite materials while maintaining a stable loss trend within the studied frequency range. More importantly, calibrated electric field induction tests (based on pure PDMS) showed a significant enhancement in the voltage response of all heterojunction composite materials, with the WS2-G/PDMS system exhibiting the best performance, exhibiting an electric-field-induced voltage amplitude 7.607% higher than that of pure PDMS. This work establishes a microscopic-to-macroscopic correlation between interfacial electronic modulation and electric-field-sensitive dielectric properties, providing a feasible interface engineering strategy for high-performance flexible dielectric sensing materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 251
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

24 pages, 2672 KB  
Review
Graphene-, Transition Metal Dichalcogenide-, and MXenes Material-Based Flexible Optoelectronic Devices
by Yingying Wang, Geyi Zhou, Zhisheng Zhang and Zhihong Zhu
Nanomaterials 2026, 16(1), 25; https://doi.org/10.3390/nano16010025 - 24 Dec 2025
Viewed by 619
Abstract
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements [...] Read more.
Characterized by their atomic thickness and exceptional mechanical properties, two-dimensional (2D) materials offer a compelling platform for developing flexible optoelectronic devices that maintain performance stability under mechanical deformation such as bending and stretching. This review systematically summarizes and critically discusses the recent advancements in applying three prominent 2D material categories—graphene, transition metal dichalcogenides (TMDs, e.g., MoS2 and WS2), and MXenes—in flexible optoelectronics. We focus on their specific applications in flexible photodetectors, light-emitting devices, optical modulators, solar cells, and gas sensors. A particular emphasis is placed on analyzing the unique physicochemical properties of these materials and elucidating the underlying mechanisms that enable bandgap stability and efficient optoelectronic conversion under mechanical strain. The potential of these devices demonstrated here underscores their broad application prospects in wearable systems and self-powered electronic platforms. Finally, we conclude by discussing the challenges and future prospects in the field of flexible optoelectronic devices based on two-dimensional materials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

15 pages, 3242 KB  
Article
Graphitic Carbon Nitride-Decorated Cobalt Diselenide Composites for Highly Efficient Hydrogen Evolution Reaction
by Abu Talha Aqueel Ahmed, Saravanan Sekar, Sutha Sadhasivam, Balaji Murugan, Sangeun Cho, Youngmin Lee, Sejoon Lee and Sankar Sekar
Int. J. Mol. Sci. 2025, 26(24), 12188; https://doi.org/10.3390/ijms262412188 - 18 Dec 2025
Viewed by 421
Abstract
Transition-metal dichalcogenides have emerged as promising non-noble-metal electrocatalysts for efficient hydrogen production through the hydrogen evolution reaction (HER). In this work, we fabricated the graphitic carbon nitride-decorated cobalt diselenide (gC3N4-CoSe2) nanocomposites via the facile hydrothermal method. The [...] Read more.
Transition-metal dichalcogenides have emerged as promising non-noble-metal electrocatalysts for efficient hydrogen production through the hydrogen evolution reaction (HER). In this work, we fabricated the graphitic carbon nitride-decorated cobalt diselenide (gC3N4-CoSe2) nanocomposites via the facile hydrothermal method. The prepared gC3N4-CoSe2 nanocomposites displayed an interconnected and aggregated morphology of gC3N4-decorated CoSe2 nanoparticles with offering large surface area of 82 m2/g. The gC3N4-CoSe2 nanocomposites exhibited excellent HER activity with a low overpotential (141 mV) and tiny Tafel slope (62 mV/dec) with excellent durability for 100 h at 10 mA/cm2 in an alkaline electrolyte. These outstanding HER performances of gC3N4-CoSe2 can be ascribed to the synergistic interaction between the electrochemically active porous CoSe2 nanoparticles and the highly conductive gC3N4 nanosheets. These results indicate that the gC3N4-CoSe2 nanocomposites hold promising and efficient HER electrocatalysts for sustainable green hydrogen production. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

11 pages, 4634 KB  
Article
UV-Enhanced Artificial Synapses Based on WSe2-SrAl2O4 Composites
by Qi Sun, Xin Long, Chuanwen Chen, Ni Zhang and Ping Chen
Nanomaterials 2025, 15(24), 1890; https://doi.org/10.3390/nano15241890 - 17 Dec 2025
Viewed by 341
Abstract
Optoelectronic synapses based on transition metal dichalcogenides have received much attention as artificial synapses due to their good stability in the air and excellent photoelectric properties; however, they suffer from ultraviolet light-triggered synapses due to the ultraviolet insensitivity of transition metal dichalcogenides. In [...] Read more.
Optoelectronic synapses based on transition metal dichalcogenides have received much attention as artificial synapses due to their good stability in the air and excellent photoelectric properties; however, they suffer from ultraviolet light-triggered synapses due to the ultraviolet insensitivity of transition metal dichalcogenides. In this paper, an ultraviolet-enhanced artificial synapse was achieved on WSe2 combined with SrAl2O4: 6% Eu2+, 4% Dy3+ phosphor. The strong ultraviolet absorption of SrAl2O4: 6% Eu2+, 4% Dy3+ phosphor and radiation reabsorption are responsible for the ultraviolet-enhanced response of the WSe2-SrAl2O4 synapse. The excitatory post-synaptic current of the WSe2-SrAl2O4 synapse triggered by a single pulse at 365 nm was enhanced 4 times more than that from 2D WSe2, while the decay time of the post-synaptic current was 9.7 times longer than those from the WSe2 device. The excellent ultraviolet sensitivity and decay time promoted the good regulation of the synaptic plasticity of the WSe2-SrAl2O4 device in terms of power densities, pulse widths, pulse intervals, and pulse numbers. Furthermore, outstanding learning behavior was simulated successfully with a forgetting time of 25 s. Handwritten digit recognition was realized with 96.39% accuracy, based on the synaptic weight of the WSe2-SrAl2O4 synapse. This work provides a new pathway for ultraviolet photoelectric synapse and brain-inspired computing. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 3482 KB  
Article
Unveiling Boundary-Localized Interfacial Interactions in Temperature-Controlled Au-Assisted Exfoliation of MoS2 Monolayers
by Chaoqi Dai, Sikai Chen, Boyuan Wen, Bingrui Li, Lei Shao, Fangfei Ming and Shaozhi Deng
Nanomaterials 2025, 15(23), 1835; https://doi.org/10.3390/nano15231835 - 4 Dec 2025
Viewed by 518
Abstract
Gold-assisted exfoliation is an effective approach to obtain clean and large-area monolayers of transition metal dichalcogenides, yet the microscopic evolution of interfacial adhesion remains poorly understood. Here, we investigate temperature-controlled exfoliation of MoS2 between 30 and 170 °C. Based on optical microscopy [...] Read more.
Gold-assisted exfoliation is an effective approach to obtain clean and large-area monolayers of transition metal dichalcogenides, yet the microscopic evolution of interfacial adhesion remains poorly understood. Here, we investigate temperature-controlled exfoliation of MoS2 between 30 and 170 °C. Based on optical microscopy image analysis, mild heating slightly improves the exfoliation yield, which is associated with the release of interfacial contaminants and trapped gases—these substances enhance the adhesion between gold and molybdenum disulfide (Au-MoS2). Unexpectedly, as revealed by AFM, SEM-EDS, and Raman analyses, parts of the Au film start to peel off from the underlying Ti adhesion layer at approximately 100 °C. This Au film detachment, resulting from the surprisingly weak Au-Ti adhesion, serves as a unique probe for interfacial strength: it preferentially occurs at the boundaries of MoS2 flakes, indicating that the reinforcement of the Au-MoS2 interaction originates at the edges rather than being uniformly distributed. At higher temperatures (>130 °C), Au detachment expands to larger areas, indicating that boundary-localized adhesion progressively extends across the entire interface. Additional STM/STS measurements further confirm that thermal annealing improves local Au-MoS2 contact by removing interfacial species and enabling surface reconstruction. These findings establish a microscopic picture of temperature-assisted exfoliation, highlighting the dual roles of interfacial contaminant release and boundary effects, and offering guidance for more reproducible fabrication of high-quality 2D monolayers. Full article
(This article belongs to the Special Issue 2D Materials Nanofabrication)
Show Figures

Figure 1

13 pages, 2722 KB  
Article
2D Organic–Inorganic Halide Perovskites for Hybrid Heterostructures: Single Crystals, Thin Films and Exfoliated Flakes
by Fabrizio Ciccarelli, Mario Barra, Antonio Carella, Gabriella Maria De Luca, Felice Gesuele and Fabio Chiarella
Crystals 2025, 15(12), 1024; https://doi.org/10.3390/cryst15121024 - 29 Nov 2025
Viewed by 493
Abstract
Rapid progress on the fabrication of lead halide perovskite has led to the development of high performance optoelectronic devices, particularly in the field of solar cell technologies. This initial success has subsequently inspired investigations into layered 2D-halide perovskite structures, motivated in part by [...] Read more.
Rapid progress on the fabrication of lead halide perovskite has led to the development of high performance optoelectronic devices, particularly in the field of solar cell technologies. This initial success has subsequently inspired investigations into layered 2D-halide perovskite structures, motivated in part by their good environmental stability, but more significantly by their intriguing fundamental photo-physics. They have recently been used to improve the photoresponsivity of monolayer transition metal dichalcogenides in hybrid heterostructures. In this paper, we report on the synthesis of the (PEA)2(MA)n−1PbnI3n+1 series (with n = 1, 2, 3) of 2D-halide perovskites, in order to develop a platform that provides ultra-thin layers for the fabrication of hybrid heterostructures. The crystal synthesis method and its basic structural and optical characterization are shown, highlighting the differences in the crystal synthesis processes. Furthermore, we explore the preparation of 2D halide perovskite ultra-thin flakes using the mechanical exfoliation method, and few-layer-areas of n = 1 member of the series are identified using atomic force microscopy. Finally, we study the deposition of thin and ultra-thin films using the spin coating technique to provide an alternative process to the exfoliation. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

13 pages, 7494 KB  
Communication
Halide-Assisted Synthesis of V-WSe2
by Yanhui Jiao, Xiaoqian Wang, Zisheng Tang, Manrui Liu, Chengqi Liu, Qi Zhang and Yong Liu
Materials 2025, 18(23), 5360; https://doi.org/10.3390/ma18235360 - 28 Nov 2025
Viewed by 337
Abstract
Over the past few years, two-dimensional transition metal dichalcogenides (TMDCs) have garnered substantial attention in the field of two-dimensional materials research, owing to their exceptional physicochemical properties. Notably, V-WSe2 distinguishes itself by reducing the Schottky barrier at the interface between the material [...] Read more.
Over the past few years, two-dimensional transition metal dichalcogenides (TMDCs) have garnered substantial attention in the field of two-dimensional materials research, owing to their exceptional physicochemical properties. Notably, V-WSe2 distinguishes itself by reducing the Schottky barrier at the interface between the material and metal electrodes, thus exhibiting remarkable potential for applications in optoelectronic devices. Our work explores the synthesis of monolayer V-WSe2 through halide-assisted atmospheric-pressure chemical vapor deposition (APCVD), with an emphasis on the effects of various halide types on the growth mechanism. In addition, we investigate the impact of vanadium (V) content on the performance of WSe2. Comprehensive optical and structural characterizations of the synthesized material were systematically performed. The findings indicate that incorporating halide salts effectively reduces the volatilization temperature of tungsten trioxide (WO3), thereby markedly enhancing reaction controllability and material crystallinity. Among the tested halide salts, KCl, NaCl, and KI, KI demonstrated the capability to achieve the lowest growth temperature. Varying the V content in the V-WSe2 structure significantly influences the optical properties, with higher vanadium concentrations reducing the material’s optical bandgap and Raman frequency. This study highlights the critical role of halides and vanadium content in the material growth process, providing valuable insights for the controlled synthesis of two-dimensional TMDC materials and how varying vanadium concentrations also affect the material’s performance. Full article
Show Figures

Figure 1

11 pages, 2063 KB  
Article
Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing
by Jihee Kim, Minju Kim, Yunju Choi, Jong-Seong Bae, Seunghun Lee, Robert A. Taylor, Andy Chong, Kwangseuk Kyhm and Mijeong Kang
Sensors 2025, 25(23), 7137; https://doi.org/10.3390/s25237137 - 22 Nov 2025
Viewed by 413
Abstract
We report the fabrication of nanoscale MoS2 (nMoS2) via laser ablation in liquid and its application in electrochemical sensing. The laser ablation process fragments microscale MoS2 sheets into ~5 nm dots with stable aqueous dispersibility. Electrochemical analysis reveals that [...] Read more.
We report the fabrication of nanoscale MoS2 (nMoS2) via laser ablation in liquid and its application in electrochemical sensing. The laser ablation process fragments microscale MoS2 sheets into ~5 nm dots with stable aqueous dispersibility. Electrochemical analysis reveals that nMoS2 possesses multiple reversible redox states, enabling it to participate in redox cycling reactions that can amplify electrochemical signals. When the nMoS2 is embedded in an electrochemically inert matrix, a chitosan layer, and subsequently incorporated within a nanostructured Au electrode, the nMoS2-participating redox cycling reactions are further enhanced by the nanoconfinement effect, leading to synergistic signal amplification. As a model system, this hybrid nMoS2-in-nanoporous Au electrode demonstrates a 9-fold increase in sensitivity for detecting pyocyanin, a biomarker of Pseudomonas aeruginosa infection, compared with a flat electrode without nMoS2 loading. This study not only elucidates the redox characteristics of laser-fabricated zero-dimensional transition metal dichalcogenides but also presents a strategy to integrate semiconducting nanomaterials with metallic nanostructures for high-performance electrochemical sensing. Full article
(This article belongs to the Special Issue Nanomaterial-Driven Innovations in Biosensing and Healthcare)
Show Figures

Figure 1

32 pages, 10076 KB  
Review
Phase Engineering of Nanomaterials: Tailoring Crystal Phases for High-Performance Batteries and Supercapacitors
by Ramanadha Mangiri, Nandarapu Purushotham Reddy and Joonho Bae
Micromachines 2025, 16(11), 1289; https://doi.org/10.3390/mi16111289 - 16 Nov 2025
Cited by 1 | Viewed by 1161
Abstract
Phase engineering has emerged as a powerful method for manipulating the structural and electrical characteristics of nanomaterials, resulting in significant enhancements in their electrochemical performance. This paper examines the correlation among morphology, crystal phase, and electrochemical performance of nanomaterials engineered for high-performance batteries [...] Read more.
Phase engineering has emerged as a powerful method for manipulating the structural and electrical characteristics of nanomaterials, resulting in significant enhancements in their electrochemical performance. This paper examines the correlation among morphology, crystal phase, and electrochemical performance of nanomaterials engineered for high-performance batteries and supercapacitors. The discourse starts with phase engineering methodologies in metal-based nanomaterials, including the direct synthesis of atypical phases and phase transformation mechanisms that provide metastable or mixed-phase structures. Special emphasis is placed on the impact of these synthetic processes on morphology and surface properties, which subsequently regulate charge transport and ion diffusion during electrochemical reactions. Additionally, the investigation of phase engineering in transition metal dichalcogenide (TMD) nanomaterials highlights how regulated phase transitions and heterophase structures improve active sites and conductivity. The optimized phase-engineered ZnCo2O4@Ti3C2 composite exhibited a high specific capacitance of 1013.5 F g−1, a reversible capacity of 732.5 mAh g−1, and excellent cycling stability, with over 85% retention after 10,000 cycles. These results confirm that phase and morphological control can substantially enhance charge transport and electrochemical durability, offering promising strategies for next-generation batteries and supercapacitors. The paper concludes by summarizing current advancements in phase-engineered nanomaterials for lithium-ion, sodium-ion, and lithium-sulfur batteries, along with supercapacitors, emphasizing the significant relationship between phase state, morphology, and energy storage efficacy. This study offers a comprehensive understanding of the optimal integration of phase and morphological control in designing enhanced electrode materials for next-generation electrochemical energy storage systems. Full article
Show Figures

Figure 1

23 pages, 5282 KB  
Article
Bilayer TMDs for Future FETs: Carrier Dynamics and Device Implications
by Shoaib Mansoori, Edward Chen and Massimo Fischetti
Nanomaterials 2025, 15(19), 1526; https://doi.org/10.3390/nano15191526 - 5 Oct 2025
Viewed by 839
Abstract
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer [...] Read more.
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer WS2, WSe2, and MoS2, and the electron-phonon scattering rates using the EPW (electron-phonon Wannier) method. Carrier transport is then investigated within a semiclassical full-band Monte Carlo framework, explicitly including intrinsic electron-phonon scattering, dielectric screening, scattering with hybrid plasmon–phonon interface excitations (IPPs), and scattering with ionized impurities. Freestanding bilayers exhibit the highest mobilities, with hole mobilities reaching 2300 cm2/V·s in WS2 and 1300 cm2/V·s in WSe2. Using hBN as the top gate dielectric preserves or slightly enhances mobility, whereas HfO2 significantly reduces transport due to stronger IPP and remote phonon scattering. Device-level simulations of double-gate FETs indicate that series resistance strongly limits performance, with optimized WSe2 pFETs achieving ON currents of 820 A/m, and a 10% enhancement when hBN replaces HfO2. These results show the direct impact of first-principles electronic structure and scattering physics on device-level transport, underscoring the importance of material properties and the dielectric environment in bilayer TMDs. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Cited by 2 | Viewed by 1467
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

10 pages, 1872 KB  
Article
Preparation and Performance Exploration of MoS2/WSe2 Van Der Waals Heterojunction Tunneling Field-Effect Transistor
by Chen Chong, Hongxia Liu, Shulong Wang, Shupeng Chen and Cong Yan
Micromachines 2025, 16(10), 1108; https://doi.org/10.3390/mi16101108 - 29 Sep 2025
Viewed by 1209
Abstract
Due to their high carrier mobility, thermal conductivity, and exceptional foldability, transition metal dichalcogenides (TMDs) present promising prospects in the realm of flexible semiconductor devices. Concurrently, tunneling field-effect transistors (TFETs) have garnered significant attention owing to their low energy consumption. This study investigates [...] Read more.
Due to their high carrier mobility, thermal conductivity, and exceptional foldability, transition metal dichalcogenides (TMDs) present promising prospects in the realm of flexible semiconductor devices. Concurrently, tunneling field-effect transistors (TFETs) have garnered significant attention owing to their low energy consumption. This study investigates a TMD van der Waals heterojunction (VdWH) TFET, specifically by fabricating MoS2 field-effect transistors (FETs), WSe2 FETs, and MoS2/WSe2 VdWH TFETs. The N-type characteristics of the MoS2 and P-type characteristics of WSe2 are established through an analysis of the electrical characteristics of the respective FETs. Finally, we analyze the energy band and electrical characteristics of the MoS2/WSe2 VdWH TFET, which exhibits a drain current switching ratio of 105. This study provides valuable insights for the development of novel low-power devices. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

51 pages, 8270 KB  
Review
Advances of Functional Two-Dimensional Nanomaterials in the Treatment of Oral Diseases
by Ziyi Xu, Rong Meng, Yue Wang, Yuxuan Sun, Jiao Qiao, Yang Yao and Qiang Peng
Bioengineering 2025, 12(10), 1021; https://doi.org/10.3390/bioengineering12101021 - 25 Sep 2025
Cited by 2 | Viewed by 1715
Abstract
Two-dimensional (2D) nanomaterials have attracted growing attention in the field of oral medicine due to their unique physicochemical properties, including high surface area, adjustable surface chemistry, and exceptional biocompatibility. In recent years, a variety of 2D materials, including graphene-based nanomaterials, black phosphorus nanosheets, [...] Read more.
Two-dimensional (2D) nanomaterials have attracted growing attention in the field of oral medicine due to their unique physicochemical properties, including high surface area, adjustable surface chemistry, and exceptional biocompatibility. In recent years, a variety of 2D materials, including graphene-based nanomaterials, black phosphorus nanosheets, MXenes, layered double hydroxides (LDHs), transition metal dichalcogenides (TMDs), 2D metal–organic frameworks (MOFs), and polymer-based nanosheets, have been extensively explored for the treatment of oral diseases. These functional materials demonstrate multiple therapeutic capabilities, such as antibacterial activity, reactive oxygen species (ROS) scavenging, anti-inflammatory modulation, and promotion of tissue regeneration. In this review, we systematically summarize the recent advances of 2D nanomaterials in the treatment of common oral diseases such as dental caries, periodontitis, oral cancer and peri-implantitis. The underlying therapeutic mechanisms are also summarized. Challenges for clinical translation of these nanomaterials and the possible solutions are discussed as well. Full article
(This article belongs to the Special Issue Nano–Bio Interface—Second Edition)
Show Figures

Figure 1

14 pages, 3288 KB  
Article
Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures
by Tian-Jun Dai, Zhong-Yuan Fan, Chao-Feng Peng, Xiang Xiao, Yi Zhou, Jian Sun, Zhang-Yu Zhou, Xiang Guo, Xue-Fei Liu and Xiang-Hong Niu
Molecules 2025, 30(18), 3840; https://doi.org/10.3390/molecules30183840 - 22 Sep 2025
Cited by 1 | Viewed by 867
Abstract
Understanding the non-equilibrium dynamical processes in two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is essential for elucidating their photoelectric behaviors. In this work, we investigate the electronic structure, electric field modulation, and transient optical performance of the MoSe2/WSe2 heterostructure using [...] Read more.
Understanding the non-equilibrium dynamical processes in two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is essential for elucidating their photoelectric behaviors. In this work, we investigate the electronic structure, electric field modulation, and transient optical performance of the MoSe2/WSe2 heterostructure using first principles and nonadiabatic molecular dynamics (NAMD) methods. Applying an external electric field effectively modulates the bandgap and band arrangement of MoSe2/WSe2 heterostructure, along with a transition from indirect to direct bandgap during which the type-II band alignment can be maintained. Specifically, the ultrafast interlayer photogenerated electron transfer time is 72 fs, and the interlayer electron-hole recombination time can be as long as 357 ns, which is longer than that of the intralayer recombination in the constituent monolayers (110 ns for MoSe2 and 288 ns for WSe2), yielding an ultrahigh charge separation efficiency of up to 99.99%. The significant time difference in the processes of photoinduced charge transfer and recombination can be attributed to the corresponding different nonadiabatic coupling averaged values, mainly determined by the electron–phonon coupling and energy difference. The carrier dynamics mechanism revealed in the MoSe2/WSe2 heterostructure is conducive to the development of 2D ultrafast optoelectronic devices. Full article
Show Figures

Graphical abstract

Back to TopTop