Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological Properties of nMoS2
3.2. Optical Properties of nMoS2
3.3. Redox Properties and Redox Cycling-Assisted Signal Amplification of nMoS2
3.4. Nanoconfinement Effect-Assisted Signal Amplification by nMoS2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padilha, J.E.; Peelaers, H.; Janotti, A.; Van de Walle, C.G. Nature and evolution of the band-edge states in MoS2: From monolayer to bulk. Phys. Rev. B 2014, 90, 205420. [Google Scholar] [CrossRef]
- Heising, J.; Kanatzidis, M. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 1999, 121, 11720–11732. [Google Scholar] [CrossRef]
- Park, K.; Yang, J.; Jung, S.; Ko, B.; Song, G.; Hong, S.; Kim, N.; Lee, D.; Song, S. Metallic Phase Transition Metal Dichalcogenide Quantum Dots as Promising Bio-Imaging Materials. Nanomaterials 2022, 12, 1645. [Google Scholar] [CrossRef]
- Chiu, C.; Chen, Y.; Shen, J. Quantum dots derived from two-dimensional transition metal dichalcogenides: Synthesis, optical properties and optoelectronic applications. Nanotechnology 2023, 34, 482001. [Google Scholar] [CrossRef]
- Wang, T.Y.; Du, K.Z.; Liu, W.L.; Zhang, J.X.; Li, M.X. Electrochemical Sensors Based on Molybdenum Disulfide Nanomaterials. Electroanalysis 2015, 27, 2091–2097. [Google Scholar] [CrossRef]
- Zeng, H.B.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.K.; He, J.P.; Cai, W.P. Nanomaterials via Laser Ablation/Irradiation in Liquid: A Review. Adv. Funct. Mater. 2012, 22, 1333–1353. [Google Scholar] [CrossRef]
- Zhang, D.S.; Li, Z.G.; Sugioka, K. Laser ablation in liquids for nanomaterial synthesis: Diversities of targets and liquids. J. Phys. Photonics 2021, 3, 042002. [Google Scholar] [CrossRef]
- Pradhan, G.; Dey, P.P.; Khare, A.; Sharma, A.K. Synthesis and size modulation of MoS2 quantum dots by pulsed laser ablation in liquid for viable hydrogen generation. J. Appl. Phys. 2021, 129, 025112. [Google Scholar] [CrossRef]
- Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.D.; Qu, L.T.; Zhao, Y.; Cheng, Z.H.; Lu, Y.F. Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Sci. Rep. 2017, 7, 11182. [Google Scholar] [CrossRef]
- Chernikov, A.S.; Tselikov, G.I.; Gubin, M.Y.; Shesterikov, A.V.; Khorkov, K.S.; Syuy, A.V.; Ermolaev, G.A.; Kazantsev, I.S.; Romanov, R.I.; Markeev, A.M.; et al. Tunable optical properties of transition metal dichalcogenide nanoparticles synthesized by femtosecond laser ablation and fragmentation. J. Mater. Chem. C 2023, 11, 3493–3503. [Google Scholar] [CrossRef]
- Kang, M.; Chai, K.; Lee, S.; Oh, J.H.; Bae, J.S.; Payne, G.F. Revealing Redox Behavior of Molybdenum Disulfide and Its Application as Rechargeable Antioxidant Reservoir. ACS Appl. Mater. Interfaces 2023, 15, 41362–41372. [Google Scholar] [CrossRef]
- Kang, M.; Mun, C.; Jung, H.; Ansah, I.; Kim, E.; Yang, H.; Payne, G.; Kim, D.; Park, S. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. Nanoscale 2020, 12, 3668–3676. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef]
- Hoogvliet, J.C.; Dijksma, M.; Kamp, B.; van Bennekom, W.P. Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self assembly: A study in phosphate buffer pH 7.4. Anal. Chem. 2000, 72, 2016–2021. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Tolentino, L.; Yang, Z.; Song, X.; Zhang, W.; Chen, Y.; Wong, C. High-Concentration Aqueous Dispersions of MoS2. Adv. Funct. Mater. 2013, 23, 3577–3583. [Google Scholar] [CrossRef]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [Google Scholar] [CrossRef]
- Shang, H.; Wang, T.; Zhang, W. Sulfur vacancy formation at different MoS2 edges during hydrodesulfurization process: A DFT study. Chem. Eng. Sci. 2019, 195, 208–217. [Google Scholar] [CrossRef]
- Xu, S.; Li, D.; Wu, P. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127–1136. [Google Scholar] [CrossRef]
- Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Appl. Surf. Sci. 2015, 359, 130–136. [Google Scholar] [CrossRef]
- Wu, X.; Gong, K.; Zhao, G.; Lou, W.; Wang, X.; Liu, W. MoS2/WS2 Quantum Dots as High-Performance Lubricant Additive in Polyalkylene Glycol for Steel/Steel Contact at Elevated Temperature. Adv. Mater. Interfaces 2018, 5, 1700859. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Y.; Cai, Y.; Li, W.; Gurarslan, A.; Peelaers, H.; Aspnes, D.; Van de Walle, C.; Nguyen, N.; Zhang, Y.; et al. Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films. Sci. Rep. 2015, 5, 16996. [Google Scholar] [CrossRef]
- Ren, X.P.; Pang, L.Q.; Zhang, Y.X.; Ren, X.D.; Fan, H.B.; Liu, S.Z. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 10693–10697. [Google Scholar] [CrossRef]
- Paria, S.; Maity, P. Photoluminescent MoS2 and MoSe2 Quantum Dots for the Detection of Nitro-Organic Explosives. ACS Appl. Nano Mater. 2024, 7, 16516–16524. [Google Scholar] [CrossRef]
- Lauritsen, J.; Kibsgaard, J.; Helveg, S.; Topsoe, H.; Clausen, B.; Lægsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Leverage, W.; Liu, Y.; White, I.; Bentley, W.; Payne, G. Redox-capacitor to connect electrochemistry to redox-biology. Analyst 2014, 139, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Chung, T. Nanoconfinement effects in electrochemical reactions. Curr. Opin. Electrochem. 2019, 13, 47–54. [Google Scholar] [CrossRef]
- Batchelor-McAuley, C.; Kätelhön, E.; Barnes, E.O.; Compton, R.G.; Laborda, E.; Molina, A. Recent Advances in Voltammetry. ChemistryOpen 2015, 4, 224–260. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, M.; Choi, Y.; Bae, J.-S.; Lee, S.; Taylor, R.A.; Chong, A.; Kyhm, K.; Kang, M. Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing. Sensors 2025, 25, 7137. https://doi.org/10.3390/s25237137
Kim J, Kim M, Choi Y, Bae J-S, Lee S, Taylor RA, Chong A, Kyhm K, Kang M. Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing. Sensors. 2025; 25(23):7137. https://doi.org/10.3390/s25237137
Chicago/Turabian StyleKim, Jihee, Minju Kim, Yunju Choi, Jong-Seong Bae, Seunghun Lee, Robert A. Taylor, Andy Chong, Kwangseuk Kyhm, and Mijeong Kang. 2025. "Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing" Sensors 25, no. 23: 7137. https://doi.org/10.3390/s25237137
APA StyleKim, J., Kim, M., Choi, Y., Bae, J.-S., Lee, S., Taylor, R. A., Chong, A., Kyhm, K., & Kang, M. (2025). Nanoscale MoS2-in-Nanoporous Au Hybrid Structure for Enhancing Electrochemical Sensing. Sensors, 25(23), 7137. https://doi.org/10.3390/s25237137

