Catalysis Accelerating Energy and Environmental Sustainability

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Environmental Catalysis".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 15810

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Interests: nanozymes; electrocatalytic CO2RR; single-atom catalysts
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite your contributions to this Special Issue, entitled “Catalysis Accelerating Energy and Environmental Sustainability”.

The increasing global demand for clean energy and environmental protection underscores the urgent need for advanced chemical technologies that are capable of addressing the intertwined challenges of climate change and ecological degradation. Catalysis plays a central role in this transition, offering molecular-level control over reaction pathways and enabling efficient, selective, and sustainable chemical transformations under mild conditions. These attributes position catalysis as a cornerstone technology for the development of low-emission, resource-efficient, and environmentally compliant chemical processes.

This Special Issue aims to highlight recent advances in catalysis that contribute to long-term energy and environmental objectives. We welcome contributions ranging from fundamental mechanistic studies and catalyst design to applied innovations that promote green synthesis, sustainable energy conversion, and pollution-free chemical manufacturing. Particular consideration will be given to studies that quantitatively address sustainability metrics, including catalytic efficiency, greenhouse gas mitigation, circular resource utilization, and minimized ecological impact.

In doing so, this Special Issue offers a platform for the catalysis community to rethink its role in an era of rapid global transition. We particularly encourage submissions that transcend conventional disciplinary boundaries, integrate diverse catalytic strategies, or present visionary perspectives on how catalytic innovation can help shape a more resilient and sustainable future.

Topics of interest include, but are not limited to, the following:

Catalytic Systems for Clean Energy Conversion: Exploring electrocatalytic and photocatalytic approaches for water splitting, CO2 reduction to fuels and chemicals, and ambient-condition N₂ fixation. Emphasis is placed on system-level efficiency, product selectivity, and the long-term operational stability of catalysts under realistic working conditions.

Advanced Catalyst Design and Reaction Mechanisms: Development of high-performance catalysts including single-atom catalysts, nanoclusters, and heterostructures, with tailored active sites and tunable electronic structures. We encourage submissions combining in situ/operando spectroscopy, theoretical modeling (e.g., DFT and AIMD), and machine learning to unravel dynamic active-site behavior and mechanistic pathways.

Catalysis for Environmental Remediation: Innovative catalytic solutions for air purification, wastewater treatment, the degradation of persistent organic pollutants, and VOC or CO elimination. Special interest lies in processes operating under mild or solar-assisted conditions, aiming for low-energy, high-efficiency pollution control.

Sustainable Catalyst Fabrication and Green Chemistry Integration: Emphasizing eco-friendly synthesis strategies, including biomass-derived precursors, solvent-free fabrication, and the use of non-precious, earth-abundant elements. We welcome studies on catalysts with enhanced durability, regeneration ability, and scalability for real-world deployment in sustainable chemistry frameworks.

Dr. Jinxing Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy conversion
  • environmental sustainability
  • electrocatalysis
  • photocatalysis
  • green chemistry
  • earth-abundant catalysts
  • catalyst durability and regeneration
  • low-emission processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 1890 KB  
Article
Sustainable Biofuel Production from Sludge by Oleaginous Fungi: Effect of Process Variables on Lipid Accumulation
by Habib Ullah, Muzammil Anjum, Bushra Noor, Samia Qadeer, Rab Nawaz, Azeem Khalid, Aansa Rukaya Saleem, Bilal Kabeer, Abubakr M. Idris, Muhammad Tayyab Sohail and Zepeng Rao
Catalysts 2025, 15(11), 1009; https://doi.org/10.3390/catal15111009 - 27 Oct 2025
Viewed by 396
Abstract
The current paper investigated the potential of oleaginous fungus Rhizopus oryzae B97 for lipid accumulation under varying process variables. The fungal strain was isolated from bread mold and analyzed for its potential to grow on sludge with simultaneous production of microbial lipids. The [...] Read more.
The current paper investigated the potential of oleaginous fungus Rhizopus oryzae B97 for lipid accumulation under varying process variables. The fungal strain was isolated from bread mold and analyzed for its potential to grow on sludge with simultaneous production of microbial lipids. The sludge sample was sourced from the wastewater treatment plant located in Sector I-9, Islamabad. The effects of various process variables, such as pH, temperature, carbon and nitrogen sources, and shaking, on lipid accumulation, cell dry weight (CDW), chemical oxygen demand (COD), and volatile solids (VS) removal were investigated. It was found that glucose and yeast promoted the maximum lipid accumulation. At the same time, the fungal biomass reached its maximum value of up to 64% at 30 °C and at pH 4 (CDW: 28 g/L). These process conditions also improved the sludge treatment efficiency, achieving 68% COD and 55% VS removal in 168 h. FTIR analysis of the accumulated lipids indicated strong characteristic peaks of functional groups associated with fatty acids. The GC-MS analysis confirmed the production of essential FAMEs required in biodiesel production from the corresponding fatty acids, such as oleic acid, palmitic acid, stearic acid, and erucic acid. Operation in a continuous-shaking aerobic batch reactor (CSABR) system under optimum conditions further improved the process efficiency. Overall, the results indicated the competent potential of oleaginous fungus Rhizopus oryzae B97 for lipid-based biofuel production through fatty acid transesterification. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

14 pages, 1086 KB  
Article
Magnetite-Catalyzed Enhancement of Heavy Oil Oxidation: Thermal and Kinetic Analysis of Fe(acac)3 Effects on High-Temperature Oxidation Reactions
by Younes Djouadi, Mohamed-Said Chemam, Alexey A. Eskin, Alexey V. Vakhin and Mohammed Amine Khelkhal
Catalysts 2025, 15(10), 953; https://doi.org/10.3390/catal15100953 - 4 Oct 2025
Viewed by 583
Abstract
This study investigates iron acetylacetonate (Fe(acac)3) as a catalyst for enhancing high-temperature oxidation (HTO) during in situ combustion (ISC) of heavy oil. Thermal analysis revealed that Fe(acac)3 decomposes at 360 °C to form crystalline magnetite (Fe3O4). [...] Read more.
This study investigates iron acetylacetonate (Fe(acac)3) as a catalyst for enhancing high-temperature oxidation (HTO) during in situ combustion (ISC) of heavy oil. Thermal analysis revealed that Fe(acac)3 decomposes at 360 °C to form crystalline magnetite (Fe3O4). This transformation precedes the HTO regime. Differential scanning calorimetry demonstrated significantly intensified HTO reactions in catalytic systems, as peak temperatures were lower than those in non-catalytic reactions. Kinetic analysis showed that the catalyst reduces HTO activation energy by 15.6%, substantially increasing reaction rates across the HTO temperature range. X-ray powder diffraction confirmed that the mixed-valence Fe2+/Fe3+ configuration in the magnetite structure facilitates electron transfer during oxidation, enabling more complete combustion at lower temperatures. These findings represent a novel approach to catalyst design, from general activity to temperature-specific activation for a more stable and efficient in situ combustion process. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

17 pages, 2550 KB  
Article
Degradation of Tetracycline by Laccase–Mediator System Using Tea Polyphenols as Mediator
by Ling Xu, Shuang Zhang, Hui Xu, Anzhou Ma, Guoqiang Zhuang, Shuhao Huo, Bin Zou, Jingya Qian, Guoqiang Guan and Feng Wang
Catalysts 2025, 15(10), 952; https://doi.org/10.3390/catal15100952 - 4 Oct 2025
Viewed by 466
Abstract
Tetracycline antibiotics are widely used, but their resistance to degradation and persistence in the environment pose a potential risk of inducing antibiotic resistance, creating significant threats to both the environment and human health. This study established a laccase–mediator system (LMS) using natural green [...] Read more.
Tetracycline antibiotics are widely used, but their resistance to degradation and persistence in the environment pose a potential risk of inducing antibiotic resistance, creating significant threats to both the environment and human health. This study established a laccase–mediator system (LMS) using natural green tea polyphenols (GTPs) as mediators for efficient tetracycline degradation. Through analyzing the main GTP components and optimizing the reaction conditions, the degradation efficiency of the system was evaluated. The experimental results indicated that, among the various tea polyphenol components, epicatechin gallate (ECG) contributed the most significantly to the degradation efficiency. Under optimized conditions, the Lac-ECG system degraded over 98% of tetracycline within 3–4 min. Further optimization of the Lac-GTP system allowed us to identify the following optimal conditions: a GTP concentration of 1.0 mmol/L, laccase concentration of 1.0 mg/mL, pH of 6.0, and temperature of 25 °C. Under these conditions, a degradation rate of 95.07% was attained within 5 min, outperforming a system using the synthetic mediator ABTS. Additionally, metal ions such as Ca2+, Mg2+, Cu2+, Fe3+, Fe2+, and Ni2+ were found to enhance the degradation process, while Mn2+ and Hg2+ exhibited inhibitory effects. Antibacterial activity tests revealed that the degradation products completely lost their antimicrobial activity, demonstrating effective detoxification of tetracycline. In conclusion, the tea polyphenol-based laccase–mediator system developed in this study exhibits high efficiency, cost-effectiveness, and environmental friendliness, offering a promising strategy for the remediation of tetracycline-contaminated environments. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 2176 KB  
Article
A Study on Maximizing the Performance of a Concrete-Based TiO2 Photocatalyst Using Hydrophilic Polymer Dispersion
by Jung Soo Kim, Kanghyeon Song, Jiwon Kim, Hyun-Ju Kang, Dayoung Yu, Hong Gun Kim and Young Soon Kim
Catalysts 2025, 15(10), 935; https://doi.org/10.3390/catal15100935 - 1 Oct 2025
Viewed by 534
Abstract
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and [...] Read more.
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyethylene glycol methyl ether (PEGME), dynamic light scattering (DLS) and zeta potential measurements were performed, and as a result, a 0.1 wt% PVA solution was optimal for inhibiting aggregation, with an average hydrodynamic diameter of 1.4 µm and a zeta potential of −11 mV. In methylene blue photolysis, the reaction rate constant (k_app) was 1.71 × 10−2 min−1 (R2 = 0.98), which was improved by 11.4 times compared to the control group, and was about twice as high in the concrete specimen experiment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analyses confirmed an anatase-to-rutile ratio of 81:19 particle sizes of 10–30 nm, and a specific surface area of 58.985 m2·g−1. As a result, it is suggested that PVA pretreatment is a practical method to effectively improve the photocatalytic performance of TiO2-based self-cleaning concrete. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

12 pages, 4562 KB  
Article
Defect Engineering via La Doping and Hydrogenation on Bi4Ti3O12 for Synergistically Enhancing Photocatalytic CO2 to CH3OH
by Lijun Xue, Yuxuan Wang, Chenhui Qiu and Hui Wan
Catalysts 2025, 15(9), 889; https://doi.org/10.3390/catal15090889 - 16 Sep 2025
Viewed by 451
Abstract
Developing highly efficient photocatalysts for CO2 reduction remains a great challenge. The large band gap and poor charge carrier dynamics are the major factors limiting the performance of Bi4Ti3O12 (BTO). Herein, a series of La-doped Bi4 [...] Read more.
Developing highly efficient photocatalysts for CO2 reduction remains a great challenge. The large band gap and poor charge carrier dynamics are the major factors limiting the performance of Bi4Ti3O12 (BTO). Herein, a series of La-doped Bi4Ti3O12 (BLaxTO) nanosheets were synthesized and further modified by NaBH4 hydrogenation to create surface defect-rich H-BLaXTO nanosheets. Characterizations and theoretical calculations confirmed that the synergistic effect of La doping and hydrogenation significantly enhanced visible-light absorption, promoted charge separation, and improved the electron reduction capacity. When applied to photocatalytic CO2 reduction, the H-BLa0.2TO catalyst achieved a superior CH3OH production rate of 7.90 μmol·g−1·h−1, which is 5.6 times higher than that of pristine Bi4Ti3O12. Moreover, the H-BLa0.2TO catalyst maintained excellent stability over four consecutive cycles. This study offers an integrated strategy for constructing high-performance bismuth-based photocatalysts through elemental doping and defect engineering. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 3897 KB  
Article
From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation
by Julia Łacic and Anna Magdalena Kusior
Catalysts 2025, 15(9), 883; https://doi.org/10.3390/catal15090883 - 15 Sep 2025
Viewed by 607
Abstract
This study explores the dual functionality of cadmium-based pigments (CdS, CdSe, and CdS1−xSex solid solutions) as historical colorants and visible-light photocatalysts. Synthesized pigments here replicated hues of traditional cadmium reds. At the same time, their photocatalytic efficiency was evaluated [...] Read more.
This study explores the dual functionality of cadmium-based pigments (CdS, CdSe, and CdS1−xSex solid solutions) as historical colorants and visible-light photocatalysts. Synthesized pigments here replicated hues of traditional cadmium reds. At the same time, their photocatalytic efficiency was evaluated using model dyes, such as indigo carmine (anionic) and fuchsine (cationic), as a representative of heritage materials. Structural and optical characterization confirmed tunable bandgaps (1.63–2.28 eV) and phase-dependent microstructures, with CdS1−xSex composites exhibiting compositional heterogeneity. Photocatalytic tests revealed specific degradation mechanisms. Indigo carmine degradation was dominated by superoxide radicals (O2•−), while fuchsine degradation relied on photogenerated electrons (e′). Scavenger experiments highlighted the synergistic role of reactive oxygen species (ROS) and charge carriers, with CdS and CdSe showing the highest activity. Intermediate composites displayed selective reactivity, suggesting trade-offs between phase homogeneity and surface interactions. Reduced photocatalytic efficiency in composites aligns with cultural heritage needs, where pigment stability under light exposure is critical. This work bridges material science and conservation, demonstrating how the compositional tuning of CdS1−xSex can balance color fidelity, photocatalytic activity, and longevity in art preservation. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

14 pages, 3413 KB  
Article
Study on the Catalytic Effect of Nano Copper Oxide with Different Particle Sizes on the Thermal Decomposition of Ammonium Perchlorate
by Hongfeng Ji, Xiaolin Tang, Lin Fu, Junyu Li, Zeyu Zheng, Chongtao Ding, Yifu Zhang and Chi Huang
Catalysts 2025, 15(9), 882; https://doi.org/10.3390/catal15090882 - 15 Sep 2025
Viewed by 603
Abstract
Ammonium perchlorate (AP), as the most commonly used oxidizer in composite solid propellants, achieving its rapid decomposition at lower temperatures, is one of the key items used to improve propellant performance. Copper-based catalysts, due to their good performance in promoting AP decomposition and [...] Read more.
Ammonium perchlorate (AP), as the most commonly used oxidizer in composite solid propellants, achieving its rapid decomposition at lower temperatures, is one of the key items used to improve propellant performance. Copper-based catalysts, due to their good performance in promoting AP decomposition and improving propellant combustion characteristics, are currently one of the most widely used catalyst types. However, the catalytic performance of copper-based catalysts for the decomposition of ammonium perchlorate, including the decomposition products, changes in the kinetic process during the decomposition, and the combustion process needs further research and clarification in terms of the influencing factors and mechanisms. Based on this question, to further analyze the essence of copper-based catalysts and the decomposition mechanism of CuO-catalyzed ammonium perchlorate, as well as its relationship with particle size, this paper compared and studied the effects of two different particle size CuO catalysts (small-diameter CuO-S and large-diameter CuO-L) on the thermal decomposition and combustion performance of AP. The results indicate that the decomposition of AP catalyzed by CuO mainly includes two stages: the initial low-temperature decomposition stage accelerated by the electron transfer mechanism and the subsequent second stage accelerated by the adsorption and conversion of intermediates by the catalyst. The two stages are controlled by different properties and are related to the particle size of the catalyst. This work provides in-depth research on CuO catalysts for the thermal decomposition of AP. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

16 pages, 5209 KB  
Article
Elucidating the Synergism by Applying Ni-Cu/Cr2O3 Catalysts for Green Methanol Fuel Synthesis by CO2 Hydrogenation
by Israf Ud Din, Abdulrahman I. Alharthi, Mshari A. Alotaibi, Md Afroz Bakht, Rida Ihsan, Tooba Saeed, Ho Soon Min and Abdul Naeem
Catalysts 2025, 15(9), 877; https://doi.org/10.3390/catal15090877 - 12 Sep 2025
Viewed by 630
Abstract
The CO2 hydrogenation process is thought to be one of the feasible methods for producing methanol fuel, which might be used to fulfill future energy demands. Improving the catalytic efficiency and understanding of the process are essential elements for the viability of [...] Read more.
The CO2 hydrogenation process is thought to be one of the feasible methods for producing methanol fuel, which might be used to fulfill future energy demands. Improving the catalytic efficiency and understanding of the process are essential elements for the viability of CO2 conversion routes. Here, a co-precipitation method was used to synthesize Ni-Cu bimetallic catalysts supported by chromium oxide (Cr2O3). To examine nickel (Ni)’s promoting role, the synthesized catalysts were incorporated with different concentrations of Ni. The N2 adsorption–desorption isotherm exposed the mesoporous nature of Cr2O3-based Ni-Cu catalysts. A Fourier Transform Infrared (FTIR) spectroscopy investigation revealed the effective doping of Ni-Cu metal oxides on the surface of Cr2O3 by instigating an FTIR absorption band in the region associated with the FTIR absorption of metal oxides. The uniform morphology and homogenous, as well as highly dispersed, form of both Ni and Cu metal were recorded using a Field Emission Scanning Electron Microscope (FESEM) and X-ray Diffraction (XRD) techniques. The surface chemistry, metal–metal, and metal–support interactions of the Ni-Cu/Cr2O3 catalysts were disclosed via temperature program reduction (TPR) as well as X-ray photoelectron spectroscopy (XPS). The synergism between the Ni and Cu metals was revealed using both XPS and TPR techniques, which resulted in improving the catalytic profile of Ni-Cu/Cr2O3 catalysts. The activity data obtained by applying a slurry reactor demonstrated the active profile of Ni for CO2 reduction to methanol in terms of the methanol synthesis rate. The promoting role of Ni was established by observing the progressing and linear increase in methanol selectivity by Ni enrichment to the Ni-Cu/Cr2O3 catalysts. Structure and activity studies recognized the promoting role of Ni by experiencing metal–metal and metal–support interactions with highly dispersed metal oxides over the Cr2O3 support in the current case. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 3449 KB  
Article
Structure of Cu, Ni, and CuNi Bimetallic Small Clusters Incorporated in g-C3N4: A DFT Study
by Agnieszka Drzewiecka-Matuszek, Priti Sharma and Dorota Rutkowska-Zbik
Catalysts 2025, 15(9), 861; https://doi.org/10.3390/catal15090861 - 6 Sep 2025
Viewed by 765
Abstract
Graphitic carbon nitride is recognized as a very promising support structure to anchor single atoms and small, sub-nanometric metal clusters, with vast applications in catalysis. In the current manuscript, we aim to study the geometry and electronic structures of the small, sub-nanometric monometallic [...] Read more.
Graphitic carbon nitride is recognized as a very promising support structure to anchor single atoms and small, sub-nanometric metal clusters, with vast applications in catalysis. In the current manuscript, we aim to study the geometry and electronic structures of the small, sub-nanometric monometallic (copper or nickel) and bimetallic (copper–nickel) clusters anchored to the graphitic carbon nitride. Our Density Functional Theory (DFT) study reveals that Cu and Ni, when in the form of isolated single atoms, lie in the plane of the support. Once the atoms agglomerate and form small clusters, they tend to bind above the carbon nitride (C3N4) plane. The nickel atoms form shorter bonds with the support than the copper atoms do, which is reflected by the binding energies. Atoms directly bound to the support become oxidized, forming electrophilic sites at the surface. The computed negative metal–support binding energies mean that the investigated Cu/Ni-C3N4 composites are stable, and the metal species will not easily leach from the support. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

15 pages, 1803 KB  
Article
Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst
by Jingchen Wu, Jingwen Zhao, Yixiao Zhang, Xiujing Zou, Xingfu Shang and Xueguang Wang
Catalysts 2025, 15(9), 843; https://doi.org/10.3390/catal15090843 - 2 Sep 2025
Viewed by 811
Abstract
Solketal is an important chemical product with widespread applications, and the raw materials glycerol and acetone are inexpensive, making it highly economically viable. The glycerol-acetone condensation reaction is a typical acid-catalyzed reaction. Traditional homogeneous acidic catalysts cause significant environmental pollution and are difficult [...] Read more.
Solketal is an important chemical product with widespread applications, and the raw materials glycerol and acetone are inexpensive, making it highly economically viable. The glycerol-acetone condensation reaction is a typical acid-catalyzed reaction. Traditional homogeneous acidic catalysts cause significant environmental pollution and are difficult to recover. Herein, PEG-800 was used as an additive, and a one-pot process was employed to prepare a series of aluminum phosphate catalysts (xP-Al-O) with different P/Al molar ratios. The physical and chemical properties of the prepared xP-Al-O catalysts were thoroughly investigated using XRD, FTIR, SEM, Py-FTIR, BET, and NH3 (CO2)-TPD methods. The results indicated that different P/Al molar ratios indeed affect the catalyst structure, and all prepared xP-Al-O samples exist in the form of amorphous aluminum phosphate, with weak acidic sites dominating the surface. The prepared catalysts were investigated for their catalytic behavior in the acetalization reaction of glycerol and acetone. The 1.1P-Al-O catalyst exhibited the highest acetone glycerol acetal yield and demonstrated good catalytic stability. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

14 pages, 3639 KB  
Article
Computational Evaluation of Defects in Fe–N4-Doped Graphene for Electrochemical CO2 Reduction
by Kewei Yu, Xinyu Liu, Meiyan Wang and Jingyao Liu
Catalysts 2025, 15(9), 837; https://doi.org/10.3390/catal15090837 - 1 Sep 2025
Viewed by 781
Abstract
Single-atom catalysts supported by two-dimensional materials have been widely used in the electrochemical CO2 reduction reaction (CO2RR). Defects are inevitably generated during the preparation of two-dimensional materials. In this study, six Fe–N4-doped graphene catalysts (CAT1–CAT6) containing single carbon [...] Read more.
Single-atom catalysts supported by two-dimensional materials have been widely used in the electrochemical CO2 reduction reaction (CO2RR). Defects are inevitably generated during the preparation of two-dimensional materials. In this study, six Fe–N4-doped graphene catalysts (CAT1–CAT6) containing single carbon vacancy defects were designed and calculated using density functional theory (DFT) calculations. The stability, catalytic activity and product selectivity of these catalysts for CO2RR to C1 products CO, HCOOH, CH3OH and CH4 were discussed and compared with the defect-free Fe−N4-doped graphene catalyst (CAT0). The results show that CAT1–CAT6 all exhibit excellent thermodynamic and electrochemical stabilities. The possible reaction pathways for CO2 reduction to different C1 products were systematically investigated. The CAT2, CAT3 and CAT6 exhibit high selectivity for HCOOH, whereas the products of CAT1, CAT4 and CAT5 are HCOOH, CH3OH and CH4, the same as those of CAT0. Moreover, these six catalysts more effectively suppress the competing hydrogen evolution reaction (HER) compared to CAT0, indicating that the defect improves the catalytic selectivity of CO2RR. Among all of the catalysts, CAT2 demonstrates the most prominent catalytic activity and selectivity toward the CO2 reduction reaction (CO2RR). The large distortion of Fe−N4 in *HCOO with CAT2 contributes to the lower limiting potential UL. We hope that the finding that the large distortion of Fe−N4 could lower the limiting potential will provide theoretical insights for the design of more efficient CO2RR electrocatalysts. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

13 pages, 3882 KB  
Article
Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots
by Chujun Luan, Huiyi Mao, Fawei Lin and Hongyun Yao
Catalysts 2025, 15(8), 764; https://doi.org/10.3390/catal15080764 - 9 Aug 2025
Viewed by 644
Abstract
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood [...] Read more.
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood sponge loaded with carbon dots (CM-CDs) can generate heat by absorbing solar energy and promote rapid phase separation and water transport via capillary action of oil–water emulsion in OS under sunlight. Almost all free water in OS with varied content can be removed after 3 h. Hydrocarbons entered the internal space of CM-CDs instead of contacting with soil minerals, contributed to the subsequent confined catalytic pyrolysis, led to a reduction in Ea (35.61 kJ/mol), inhibited coking and caking, and yielded higher oil recovery efficiency. In addition, CDs can form hotspots to enhance pyrolytic behaviors in local regions. When the ratio of OS to CM-CDs reached 10:0.6, the recovery rate of the oil fraction through combined pyrolysis was as high as 89%, which was 17% higher than that of OS pyrolysis alone. This discovery provides a new way to solve the bottleneck problems of OS pyrolysis in the industry. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 2213 KB  
Article
ANCUT1, a Fungal Cutinase MgCl2-Activated by a Non-Essential Activation Mechanism for Poly(ethylene terephthalate) Hydrolysis
by José Augusto Castro-Rodríguez, Karla Fernanda Ramírez-González, Francisco Franco-Guerrero, Andrea Sabido-Ramos, Ilce Fernanda Abundio-Sánchez, Rogelio Rodríguez-Sotres, Adela Rodríguez-Romero and Amelia Farrés
Catalysts 2025, 15(8), 757; https://doi.org/10.3390/catal15080757 - 7 Aug 2025
Cited by 1 | Viewed by 1056
Abstract
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the [...] Read more.
Plastic waste, particularly poly(ethylene terephthalate) (PET), negatively impacts the environment and human health. Biotechnology could become an alternative to managing PET waste if enzymes ensure the recovery of terephthalic acid with efficiencies comparable to those of chemical treatments. Recent research has highlighted the potential of fungal cutinases, such as wild-type ANCUT1 (ANCUT1wt) from Aspergillus nidulans, in achieving PET depolymerization. Fungal cutinases’ structures differ from those of bacterial cutinases, while their PET depolymerization mechanism has not been well studied. Here, a reliable model of the ANCUT1wt was obtained using AlphaFold 2.0. Computational chemistry revealed potential cation-binding sites, which had not been described regarding enzymatic activation in fungal cutinases. Moreover, it allowed the prediction of residues with the ability to interact with a PET trimer that were mutation candidates to engineer the substrate binding cleft, seeking enhancements of PET hydrolysis. Enzyme kinetics revealed that both ANCUT1wt and ANCUT1N73V/L171Q (DM) were activated by MgCl2, increasing the dissociation constant of the substrate and maximal reaction rate. We found that in the presence of MgCl2, DM hydrolyzed different PET samples and released 9.1-fold more products than ANCUT1wt. Scanning Electron Microscopy revealed a different hydrolysis mode of these enzymes, influenced by the polymer’s crystallinity and structure. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

14 pages, 2584 KB  
Article
Enhanced Catalytic Ozonation of Formaldehyde over MOFs- Derived MnOx Catalysts with Diverse Morphologies: The Role of Oxygen Vacancies
by Yulin Sun, Yiwei Zhang, Yong He, Wubin Weng, Yanqun Zhu and Zhihua Wang
Catalysts 2025, 15(8), 752; https://doi.org/10.3390/catal15080752 - 6 Aug 2025
Viewed by 868
Abstract
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with [...] Read more.
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with diverse morphologies (rod-like, flower-like, slab-like) via the pyrolysis of MOF precursors, and the as-prepared MnOx catalysts demonstrated superior performance compared to the one prepared using the co-precipitation method. MnOx-II, with a flower-like structure, exhibited excellent activity for formaldehyde (HCHO) catalytic ozonation at room temperature, reaching complete HCHO conversion at O3/HCHO of 1.5 and more than 90% CO2 selectivity at an O3/HCHO ratio of 2.5. On the basis of various characterization methods, it was clarified that the enhanced catalytic performance of MnOx-II benefited from its larger BET surface area, abundant oxygen vacancies, better redox ability at lower temperature, and more Lewis acid sites. The H2O resistance and stability tests were also conducted. Furthermore, DFT calculations substantiated the enhanced adsorption of HCHO and O3 on oxygen vacancies, while in–situ DRIFTS measurements elucidated the degradation pathway of HCHO during catalytic ozonation through detected intermediates. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

21 pages, 3418 KB  
Article
Tunable Optical Bandgap and Enhanced Visible Light Photocatalytic Activity of ZnFe2O3-Doped ZIF-8 Composites for Sustainable Environmental Remediation
by Fatma Alharbi, Taymour Hamdalla, Hanan Al-Ghamdi, Badriah Albarzan and Ahmed Darwish
Catalysts 2025, 15(8), 720; https://doi.org/10.3390/catal15080720 - 29 Jul 2025
Viewed by 772
Abstract
Metal–organic frameworks (MOFs), particularly ZIF-8, have emerged as promising materials due to their high porosity, tunability, and chemical stability. In this study, we report the synthesis of ZnFe2O3-doped ZIF-8 composites with 10 wt% loading via a solvothermal method to [...] Read more.
Metal–organic frameworks (MOFs), particularly ZIF-8, have emerged as promising materials due to their high porosity, tunability, and chemical stability. In this study, we report the synthesis of ZnFe2O3-doped ZIF-8 composites with 10 wt% loading via a solvothermal method to enhance their optical and photocatalytic performance. Structural analyses confirmed the successful incorporation of ZnFe2O3 without disrupting the ZIF-8 framework. Optical studies revealed enhanced absorption in the visible range, a narrowed bandgap (4.26 eV vs. 4.37 eV for pristine ZIF-8), and an increased extinction coefficient, indicating superior light-harvesting potential. The photocatalytic activity was evaluated by methylene blue (MB) degradation under visible light, where the 10 wt% ZnFe2O3-ZIF-8 composite achieved 90% degradation efficiency, outperforming pristine ZIF-8 (67.8%). The catalyst also demonstrated excellent recyclability over five cycles and a proposed degradation mechanism involving ·OH and ·O2 radical formation. These findings demonstrate the potential of highly doped ZnFe2O3@ZIF-8 composites for environmental remediation and photonic applications. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

17 pages, 3396 KB  
Article
Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light
by Xi Yang, Jiahuali Lu, Lei Zhou, Qin Wang, Fan Wu, Yuwei Pan, Ming Zhang and Guangyu Wu
Catalysts 2025, 15(8), 714; https://doi.org/10.3390/catal15080714 - 26 Jul 2025
Cited by 2 | Viewed by 742
Abstract
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this [...] Read more.
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this paper, three different morphologies of Bi5O7I (nanoball, nanosheet, and nanotube) were successfully prepared by solvothermal method, which was used for the degradation of Rhodamine B (RhB). Comparing the photocatalytic effect of three different morphologies and concluding that the optimal morphology was the Bi5O7I nanoball (97.8% RhB degradation within 100 min), which was analysed by the characterisation tests. Free radical trapping experiments were tested, which revealed that the main roles in the degradation process were singlet oxygen (1O2) and holes (h+). The degradation pathways of RhB were analyzed in detail. The photo/electrochemical parts of the three materials were analysed and explained the degradation mechanism of RhB degradation. This investigate provides a very valuable guide for the development of multiple morphologies of bismuth-based photocatalysts for removing organic dyes in aquatic environment. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

15 pages, 4061 KB  
Article
Influence of Metal Compounds on Structural and Electrochemical Characteristics of Chars from PVC Pyrolysis
by Jiayou Sun, Tianyang Ding, Xue Zhao, Guorong Xu, Chang Wen and Jie Yu
Catalysts 2025, 15(7), 660; https://doi.org/10.3390/catal15070660 - 6 Jul 2025
Viewed by 861
Abstract
This study aims to investigate the influence of various metal compounds (ZnO, ZnCl2, Zn(OH)2, MgO, MgCl2, and Mg(OH)2) on the structural and electrochemical properties of chars derived from the pyrolysis of polyvinyl chloride (PVC). Raw [...] Read more.
This study aims to investigate the influence of various metal compounds (ZnO, ZnCl2, Zn(OH)2, MgO, MgCl2, and Mg(OH)2) on the structural and electrochemical properties of chars derived from the pyrolysis of polyvinyl chloride (PVC). Raw PVC samples mixed with different metal compounds were firstly pyrolyzed at 500 °C in a fixed-bed reactor. The produced chars were further pyrolyzed at 800 °C. The objective was to evaluate the impact of these metal compounds on the char structure through comparative analysis. The pyrolytic chars were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. Zinc-based additives notably increased carbon yield to 32–34 wt.%, attributed to ZnCl2-induced cross-linking. Specifically, ZnO facilitated porous architectures and aromatic structures with six or more rings. Mg-based compounds induce the formation of a highly stacked carbon structure primarily composed of crosslinked cyclic alkenes, rather than large polyaromatic domains. Upon further thermal treatment, these aliphatic-rich stacked structures can be progressively transformed into aromatic frameworks through dehydrogenation reactions at elevated temperatures. A high-surface-area porous carbon material (PVC/ZnO-800, SSA = 609.382 m2 g−1) was synthesized, demonstrating a specific capacitance of 306 F g−1 at 1 A g−1 current density. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

Review

Jump to: Research

39 pages, 3987 KB  
Review
Ultrasonic-Assisted Fabrication of TiO2-Based Composite Photocatalysts for Enhanced Photocatalysis of Organic Pollutants: A Review
by Jenny Hui Foong Chau, Ethan Dern Huang Kong, Jing Chang Chia, Chin Wei Lai, Joon Ching Juan, Yue Li, Ping Xiang, Irfan Anjum Badruddin and Amit Kumar
Catalysts 2025, 15(11), 1010; https://doi.org/10.3390/catal15111010 - 27 Oct 2025
Viewed by 525
Abstract
Water contamination and the global energy crisis are two of the most significant challenges in the world. Titanium dioxide (TiO2) has garnered attention due to its promising photocatalytic performance. However, its wide band gap energy limits its efficiency under visible light [...] Read more.
Water contamination and the global energy crisis are two of the most significant challenges in the world. Titanium dioxide (TiO2) has garnered attention due to its promising photocatalytic performance. However, its wide band gap energy limits its efficiency under visible light irradiation. To address this, TiO2-based composite photocatalysts have been developed to narrow the band gap energy and suppress the recombination of electron–hole pairs, thereby enhancing photocatalytic performance. The ultrasonic technique, through acoustic cavitation, facilitates a synthetic process involving localized transient high-pressure and high-temperature conditions to produce photocatalysts with superior photocatalytic capabilities. This review focuses on ultrasonication and ultrasonic-assisted fabrication method for modifying TiO2 into visible light-driven composite heterostructures. It discusses the parameters of ultrasonication that influence the synthesis and modification of these composites, along with the factors affecting photocatalytic performance. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Viewed by 777
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

19 pages, 3220 KB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Viewed by 1147
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

Back to TopTop