Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = media viscosity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 248
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

18 pages, 3981 KiB  
Article
Copolymerization Behavior of Acrylamide-Based Polymers in Ionic Liquid Media
by Gaoshen Su, Jingyi Cui, Chaoyang Li, Ping Chen, Yong Li, Wenxue Jiang, Huan Yang, Xiaorong Yu and Liangliang Wang
Polymers 2025, 17(14), 1963; https://doi.org/10.3390/polym17141963 - 17 Jul 2025
Viewed by 312
Abstract
To examine how reaction media influence the copolymerization processes of acrylamide-based copolymers, [BMIM]Oac and water were utilized as the reaction media. Four copolymers P(AM-SSS) (H2O), P(AM-UA) (H2O), P(AM-SSS) (ILs), and P(AM-UA) (ILs) were synthesized using the soluble monomer sodium [...] Read more.
To examine how reaction media influence the copolymerization processes of acrylamide-based copolymers, [BMIM]Oac and water were utilized as the reaction media. Four copolymers P(AM-SSS) (H2O), P(AM-UA) (H2O), P(AM-SSS) (ILs), and P(AM-UA) (ILs) were synthesized using the soluble monomer sodium p-styrene sulfonate (SSS), the insoluble monomer 10-undecylenoic acid (UA), and acrylamide (AM). The properties of the copolymers were characterized using infrared spectroscopy and 1H NMR, and the copolymerization rates of the monomers and the segment sequences of the copolymers were calculated. The results indicated that copolymerization of SSS in ionic liquids could reduce the length of the continuous units of AM in the copolymer’s molecular chain from 231.2866 to 91.1179, with a more uniform distribution within the molecular chain. The thermal stability and micro-morphology of the copolymers were tested using a synchronous thermal analyzer and scanning electron microscopy, and the resistance of the copolymer solutions to temperature, salt, and shear were evaluated. Comparisons revealed that the three-dimensional spatial structure formed by the copolymers in ionic liquids is robust and loose. When AM and SSS polymerize in [BMIM]Oac, the resulting copolymer exhibits a higher viscosity retention rate in temperature and shear resistance tests, with a thermal decomposition temperature reaching 260 °C. Conversely, when AM and UA polymerize in [BMIM]Oac, the copolymer demonstrates good salt resistance, maintaining a viscosity retention rate of 259.04% at a Na+ concentration of 200,000 mg/L. Therefore, the ionic liquid [BMIM]Oac can enhance the various application performances of copolymers formed by monomers with different solubilities and AM. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

16 pages, 2822 KiB  
Article
Research on the Mechanism of Wellbore Strengthening Influence Based on Finite Element Model
by Erxin Ai, Qi Li, Zhikun Liu, Liupeng Wang and Chengyun Ma
Processes 2025, 13(7), 2185; https://doi.org/10.3390/pr13072185 - 8 Jul 2025
Viewed by 261
Abstract
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In [...] Read more.
Wellbore strengthening is a widely applied technique to mitigate wellbore leakage during drilling operations in complex formations characterized by narrow mud weight windows. This method enhances the wellbore’s pressure-bearing capacity by using lost circulation materials (LCMs) to bridge natural or induced fractures. In recent years, advanced sealing technologies such as wellbore reinforcement have gradually been applied and developed, but their related influencing factors and mechanisms have not been deeply revealed. This article uses the Cohesive module of ABAQUS to establish a wellbore fracture sealing model. By establishing a porous elastic finite element model, the elastic mechanics theory of porous media is combined with finite element theory. Under the influence of factors such as anisotropy of geostress, reservoir elastic modulus, Poisson’s ratio, and fracturing fluid viscosity, the circumferential stress distribution of the wellbore after fracture sealing is simulated. The simulation results show that stress anisotropy has a significant impact on Mises stress. The greater the stress anisotropy, the more likely the wellbore sealing is to cause wellbore rupture or instability. Therefore, it is necessary to choose a suitable wellbore direction to avoid high stress concentration areas. The elastic modulus of the reservoir is an important parameter that affects wellbore stability and fracturing response, especially in high modulus reservoirs where the effect is more pronounced. Poisson’s ratio has a relatively minor impact. In fracturing and plugging design, the viscosity of fracturing fluid should be reasonably selected to balance the relationship between plugging efficiency and wellbore mechanical stability. In the actual drilling process, priority should be given to choosing the wellbore direction that avoids high stress concentration areas to reduce the risk of wellbore rupture or instability induced by plugging, specify targeted wellbore reinforcement strategies for high elastic modulus reservoirs; using models to predict fracture response characteristics can guide the use of sealing materials, achieve efficient bridging and stable sealing, and enhance the maximum pressure bearing capacity of the wellbore. By simulating the changes in circumferential stress distribution of the wellbore after fracture sealing, the mechanism of wellbore reinforcement was explored to provide guidance for mechanism analysis and on-site application. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 3863 KiB  
Article
Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions
by Hiroshi Kimura, Haruka Tanabe and Susumu Shinoki
Fluids 2025, 10(7), 178; https://doi.org/10.3390/fluids10070178 - 6 Jul 2025
Viewed by 216
Abstract
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains [...] Read more.
Smectite clay minerals are known to readily form thixotropic physical gels in aqueous media, even at low volume fractions. Although the rheological properties of these gels are closely related to the microstructure of the network, the influence of the clay’s physicochemical characteristics remains insufficiently understood. In this study, we systematically investigated the relationships between particle size, cation exchange capacity, and zeta potential, and the rheological behavior of aqueous dispersions of four synthetic smectites. After thorough deionization, dispersions were prepared at controlled NaCl concentrations. We found that the zeta potential strongly correlates with the fineness of the network structure and governs macroscopic rheological responses such as viscosity, yield stress, and gelation behavior. Even under identical conditions, gel transparency and structural coarseness varied significantly among clay types. Furthermore, the storage modulus was influenced not only by network density but also by the intrinsic stiffness of the clay branches. These findings demonstrate that zeta potential serves as a unified indicator of structure and function in smectite dispersions and offer useful insights for gel design in colloidal and soft matter systems. Full article
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Effect of Pore-Scale Anisotropic and Heterogeneous Structure on Rarefied Gas Flow in Three-Dimensional Porous Media
by Wenqiang Guo, Jinshan Zhao, Gang Wang, Ming Fang and Ke Zhu
Fluids 2025, 10(7), 175; https://doi.org/10.3390/fluids10070175 - 3 Jul 2025
Viewed by 292
Abstract
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of [...] Read more.
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of the conventional Darcy’s law. To address these issues, the Quartet Structure Generation Set (QSGS) method is improved to construct anisotropic and heterogeneous three-dimensional porous media, and the lattice Boltzmann method (LBM) with the multiple relaxation time (MRT) collision operator is adopted. Using MRT-LBM, the pressure boundary conditions at the inlet and outlet are firstly dealt with using the moment-based boundary conditions, demonstrating good agreement with the analytical solutions in two benchmark tests of three-dimensional Poiseuille flow and flow through a body-centered cubic array of spheres. Combined with the Bosanquet-type effective viscosity model and Maxwellian diffuse reflection boundary condition, the gas flow at high Knudsen (Kn) numbers in three-dimensional porous media is simulated to study the relationship between pore-scale anisotropy, heterogeneity and Kn, and permeability and micro-scale slip effects in porous media. The slip factor is positively correlated with the anisotropic factor, which means that the high Kn effect is stronger in anisotropic structures. There is no obvious correlation between the slip factor and heterogeneity factor. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

17 pages, 2493 KiB  
Article
Comparative Evaluation of Xanthan Gum, Guar Gum, and Scleroglucan Solutions for Mobility Control: Rheological Behavior, In-Situ Viscosity, and Injectivity in Porous Media
by Jose Maria Herrera Saravia and Rosangela Barros Zanoni Lopes Moreno
Polymers 2025, 17(13), 1742; https://doi.org/10.3390/polym17131742 - 23 Jun 2025
Viewed by 300
Abstract
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility [...] Read more.
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility ratio. In this work, we compare three biopolymers (i.e., Xanthan Gum, Scleroglucan, and Guar Gum) using a core flood test on Indiana Limestone with 16–19% porosity and 180–220 mD permeability at 60 °C and 30,905 mg/L of salinity. We injected solutions at 100–1500 ppm and 0.5–6 cm3/min to measure the Resistance Factor (RF), Residual Resistance Factor (RRF), in situ viscosity, and relative injectivity. All polymers behaved as pseudoplastic fluids with no shear thickening. The RF rose from ~1.1 in the dilute regime to 5–16 in the semi-dilute regime, and the RRF spanned 1.2–5.8, indicating moderate, reversible permeability impairment. In-site viscosity reached up to eight times that of brine, while relative injectivity remained 0.5. Xanthan Gum delivered the highest viscosity boost and strongest shear thinning, Scleroglucan offered a balance of stable viscosity and a moderate RF, and Guar Gum gave predictable but lower viscosity enhancement. These results establish practical guidelines for selecting polymer types, concentration, and flow rate in reservoir-condition polymer flood designs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2920 KiB  
Article
Comprehensive Study on Viscosity-Increasing and Oil Displacement Characteristics of Functional Polymer
by Jingang He, Xiangao Jin, Xiaoying Liu, Lin Yuan, Ruina Liu, Sian Chen, Hao Wu, Wei Yang, Jingyu Wang, Haixiang Zhang, Xuanzuo An, Meng Fan and Bicheng Gan
Processes 2025, 13(6), 1859; https://doi.org/10.3390/pr13061859 - 12 Jun 2025
Viewed by 362
Abstract
Polymer flooding is one of the critical methods for enhancing oil recovery (EOR) in domestic and international oilfields. Since the large-scale implementation of industrial polymer flooding in Daqing Oilfield in 1996, the overall recovery rate has increased by over 10%. With the advancement [...] Read more.
Polymer flooding is one of the critical methods for enhancing oil recovery (EOR) in domestic and international oilfields. Since the large-scale implementation of industrial polymer flooding in Daqing Oilfield in 1996, the overall recovery rate has increased by over 10%. With the advancement of chemical flooding technologies, conventional polymer flooding can no longer meet the practical demands of oilfield development. This study focuses on functional polymers, such as salt-resistant polymers and polymeric surfactants, tailored for Class II and III reservoirs in Daqing Oilfield. A series of experiments, including emulsification experiments, hydrodynamic characteristic size-reservoir compatibility comparison experiments, polymer retention experiments in porous media, and core flooding experiments, were conducted to investigate the differences between functional polymers and conventional polymers in terms of intrinsic properties and application performance. Comparative analyses of molecular chemical structures and micro-aggregation morphologies between functional polymers (branched polymers and polymeric surfactants) and conventional polymers revealed structural composition disparities and distinct viscosity-enhancing properties. From the perspective of aqueous solution viscosity enhancement mechanisms, functional polymers exhibit a three-stage viscosity-enhancing mechanism: bulk viscosity, associative viscosity, and emulsion-induced viscosity enhancement. The hydrodynamic characteristic sizes of polymers were analyzed to evaluate their compatibility with reservoir pore structures, and the seepage resistance mechanisms of both polymeric surfactants and salt-resistant polymers were identified. Core flooding experiments conclusively demonstrated the superior practical performance of functional polymers over conventional polymers. The application of functional polymers in polymer flooding can effectively enhance oil recovery. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

45 pages, 3763 KiB  
Review
Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review
by Marina S. Astanina, Nikita S. Gibanov, Igor V. Miroshnichenko, Egor A. Tarasov and Mikhail A. Sheremet
Nanomaterials 2025, 15(10), 757; https://doi.org/10.3390/nano15100757 - 18 May 2025
Viewed by 535
Abstract
Heat pipes are highly efficient heat transfer devices relying on phase-change mechanisms, with performance heavily influenced by working fluids and operational dynamics. This review article comprehensively examines hydrodynamics and heat transfer in heat pipes, contrasting conventional working fluids with nanofluid-enhanced systems. In the [...] Read more.
Heat pipes are highly efficient heat transfer devices relying on phase-change mechanisms, with performance heavily influenced by working fluids and operational dynamics. This review article comprehensively examines hydrodynamics and heat transfer in heat pipes, contrasting conventional working fluids with nanofluid-enhanced systems. In the present work we discuss mathematical models governing fluid flow and heat transfer, emphasizing continuum and porous media approaches for wick structures. Functional dependencies of thermophysical properties (e.g., viscosity, surface tension, thermal conductivity) are reviewed, highlighting temperature-driven correlations and nanofluid modifications. Transport mechanisms within wicks are analyzed, addressing capillary-driven flow, permeability, and challenges posed by nanoparticle integration. Fourth, interfacial phase-change conditions—evaporation and condensation—are modeled, focusing on kinetic theory and empirical correlations. Also, numerical and experimental results are synthesized to quantify performance enhancements from nanofluids, including thermal resistance reduction and capillary limit extension, while addressing inconsistencies in stability and pressure drop trade-offs. Finally, applications spanning electronics cooling, aero-space, and renewable energy systems are evaluated, underscoring nanofluids’ potential to expand heat pipe usability in extreme environments. The review identifies critical gaps, such as long-term nanoparticle stability and scalability of lab-scale models, while advocating for unified frameworks to optimize nanofluid selection and wick design. This work serves as a foundational reference for researchers and engineers aiming to advance heat pipe technology through nanofluid integration, balancing theoretical rigor with practical feasibility. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

25 pages, 1437 KiB  
Review
Review of the Color Gradient Lattice Boltzmann Method for Simulating Multi-Phase Flow in Porous Media: Viscosity, Gradient Calculation, and Fluid Acceleration
by Fizza Zahid and Jeffrey A. Cunningham
Fluids 2025, 10(5), 128; https://doi.org/10.3390/fluids10050128 - 13 May 2025
Cited by 2 | Viewed by 1173
Abstract
The lattice Boltzmann method (LBM) is widely applied to model the pore-scale two-phase flow of immiscible fluids through porous media, and one common variant of the LBM is the color gradient method (CGM). However, in the literature, many competing algorithms have been proposed [...] Read more.
The lattice Boltzmann method (LBM) is widely applied to model the pore-scale two-phase flow of immiscible fluids through porous media, and one common variant of the LBM is the color gradient method (CGM). However, in the literature, many competing algorithms have been proposed for accomplishing different steps in the CGM. Therefore, this paper is the first in a series that aims to critically review and evaluate different algorithms and methodologies that have been proposed for use in the CGM. Specifically, in this paper, we (1) provide a brief introduction to the LBM and CGM that enables and facilitates consideration of more sophisticated topics subsequently; (2) compare three methods for modeling the behavior of fluids of moderately different viscosities; (3) compare two methods for calculating the color gradient; and (4) compare two methods for modeling external forces or accelerations acting upon the fluids of interest. These topics are selected for the first paper in the series because proper selection of these algorithms is necessary and sufficient to perform two common “benchmark” simulations, namely bubble tests and layered Poiseuille flow. Future papers in the series will build upon these topics, considering more challenging conditions or phenomena. By systematically reviewing key aspects, features, capabilities, and limitations of the CGM, this series of papers will extend our collective ability to apply the method to a variety of important fluid flow problems in geosciences and engineering. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers, 2024)
Show Figures

Figure 1

12 pages, 1234 KiB  
Article
Diffusion of Sodium Hyaluronate in Artificial Saliva to Optimize Its Topical Application
by Francisco J. R. Carmo, Esmeraldo P. Z. Salote, Artur J. M. Valente, Ana C. F. Ribeiro, Pedro M. G. Nicolau and Sónia I. G. Fangaia
Molecules 2025, 30(10), 2140; https://doi.org/10.3390/molecules30102140 - 13 May 2025
Viewed by 533
Abstract
Hyaluronic acid (or hyaluronan) is a polysaccharide with therapeutic applications in dentistry due to its lubricating, anti-inflammatory, and antibacterial properties. This study evaluates the diffusion, conductivity, and viscosity of the sodium salt of HyH (that is, NaHy) with different molecular weights (124 kDa, [...] Read more.
Hyaluronic acid (or hyaluronan) is a polysaccharide with therapeutic applications in dentistry due to its lubricating, anti-inflammatory, and antibacterial properties. This study evaluates the diffusion, conductivity, and viscosity of the sodium salt of HyH (that is, NaHy) with different molecular weights (124 kDa, 245 kDa, and 1800 kDa) in artificial saliva at pH 2.3, 4, 5, 6.8, and 8. Using the Taylor dispersion technique at 298.15 K, diffusion coefficients were determined and analyzed based on Fick’s second law equation. Results showed that NaHy diffusion was higher at acidic pH, particularly at pH 2.3, and decreased at pH 8, likely due to structural compaction in acidic conditions and expansion in alkaline media. The higher molecular weight of this polysaccharide exhibited greater diffusion and conductivity, suggesting an extended conformation that enhances mobility. These findings indicate that both pH and molecular weight significantly influence NaHy transport properties. Optimizing these parameters may enhance HA’s bioavailability and effectiveness in topical oral applications, improving its therapeutic potential in treating periodontal and oral conditions. Full article
Show Figures

Figure 1

20 pages, 3854 KiB  
Article
EHD Instability Modes of Power-Law Fluid Jet Issuing in Gaseous Streaming via Permeable Media
by Mohamed F. El-Sayed, Mohamed F. E. Amer and Doaa M. Mostafa
Fluids 2025, 10(5), 110; https://doi.org/10.3390/fluids10050110 - 25 Apr 2025
Viewed by 443
Abstract
The instability of a non-Newtonian dielectric fluid jet of power-law (P-L) type injected when streaming dielectric gas through porous media is examined using electrohydrodynamic (EHD) linear analysis. The interfacial boundary conditions (BCs) are used to derive the dispersion relation for both shear-thinning (s-thin) [...] Read more.
The instability of a non-Newtonian dielectric fluid jet of power-law (P-L) type injected when streaming dielectric gas through porous media is examined using electrohydrodynamic (EHD) linear analysis. The interfacial boundary conditions (BCs) are used to derive the dispersion relation for both shear-thinning (s-thin) and shear-thickening (s-thick) fluids. A detailed discussion is outlined on the impact of dimensionless flow parameters. The findings show that jet breakup can be categorized into two instability modes: Rayleigh (RM) and Taylor (TM), respectively. For both fluids, the system in TM is found to be more unstable than that found in RM, and, for s-thick fluids, it is more unstable. For all P-L index values, the system is more unstable if a porous material exists than when it does not. It is demonstrated that the generalized Reynolds number (Ren), Reynolds number (Re), P-L index, dielectric constants, gas-to-liquid density, and viscosity ratios have destabilizing influences; moreover, the Weber number (We), electric field (EF), porosity, and permeability of the porous medium have a stabilizing impact. Depending on whether its value is less or more than one, the velocity ratio plays two different roles in stability, and the breakup length and size of P-L fluids are connected to the maximal growth level and the instability range in both modes. Full article
Show Figures

Figure 1

20 pages, 2208 KiB  
Article
Food Effect and Formulation: How Soluble Fillers Affect the Disintegration and Dissolution of Tablets in Viscous Simulated Fed State Media
by Muhammad Farooq Umer, Valentin Stahl, Jozef Al-Gousous, Thomas Nawroth, Wei-Jhe Sun, Fang Wu, Wenlei Jiang, Zongming Gao and Peter Langguth
Pharmaceutics 2025, 17(5), 567; https://doi.org/10.3390/pharmaceutics17050567 - 25 Apr 2025
Viewed by 714
Abstract
The food-induced viscosity of the media can alter tablet disintegration and eventually the release of the drug it contains. The extent of this retardation depends on tablet formulation factors, such as the solubility of its excipients. Objectives: This research aimed to study [...] Read more.
The food-induced viscosity of the media can alter tablet disintegration and eventually the release of the drug it contains. The extent of this retardation depends on tablet formulation factors, such as the solubility of its excipients. Objectives: This research aimed to study the effect of filler solubility on the disintegration and dissolution of tablets under different testing conditions. Methods: Tablet formulations containing acetaminophen (as a model compound), mixtures of different ratios of fillers, and other excipients were directly compressed using uniform manufacturing parameters. These formulations were investigated under fasted- and fed-state conditions to determine the influence of viscosity on their disintegration, inspired by the liquid penetration ratio (LPR) theoretical framework. Disintegration and dissolution tests were performed using both compendial and novel testing apparatuses. Results: The soluble fillers in the tablets affected their disintegration and dissolution in the simulated fed-state medium, while fasted-state conditions affected the tablets only marginally. The testing devices showed partially contrasting results, which appeared to be due to the hydrodynamics of the testing media used. The novel CNC (computed numerical control) apparatus offered 3D motion and effectively exposed the tablets to the viscous testing media, unlike the compendial paddle apparatus. Conclusions: This study explored the impact of filler solubility on the disintegration and dissolution of tablets. As the LPR framework revealed, fillers with a higher solubility have positive effects on the disintegration and dissolution of tablets in viscous conditions. Additionally, the proportion of soluble filler used is also inversely correlated with the disintegration time. Further investigation of the formulation parameters, as well as the testing conditions, would provide additional insights into the effects of food on these tablets. Full article
Show Figures

Graphical abstract

14 pages, 1174 KiB  
Article
Assessment of Alternative Media Viability for Cell Growth Phase in the Lab-Scale Xanthan Pruni Production—Part I
by Isabel Santos Pedone, Fabíola Insaurriaga Aquino, Eduardo dos Santos Macedo Costa, Karine Laste Macagnan, Jéssica da Rosa Porto, Anderson Schwingel Ribeiro, Mariane Igansi Alves, Claire Tondo Vendruscolo and Angelita da Silveira Moreira
Fermentation 2025, 11(4), 191; https://doi.org/10.3390/fermentation11040191 - 3 Apr 2025
Viewed by 537
Abstract
Xanthan is a highly relevant commercial microbial biopolymer. Its production occurs in two steps: the bacterium is cultivated in a nitrogen-rich medium for cell multiplication, and the obtained biomass is used as an inoculum for the polymer production phase. Different media compositions for [...] Read more.
Xanthan is a highly relevant commercial microbial biopolymer. Its production occurs in two steps: the bacterium is cultivated in a nitrogen-rich medium for cell multiplication, and the obtained biomass is used as an inoculum for the polymer production phase. Different media compositions for cell growth were investigated, seeking to reduce or replace the peptone used in the standard medium. Peptone (P), yeast extract (YE), and rice parboiling water (RPW) concentration combinations were tested in cultivating Xanthomonas arboricola pv. pruni 101. A CRD 23 design, performed in a shaker, was used to assess the effects of independent variables on xanthan pruni microbial growth, N consumption, yield, viscosity, pseudoplasticity, and xanthan mineral content. After 24 h an increase in N was observed, without any significant impact on cell growth. Xanthan yield increased as a result of the alternative treatments, with P and YE influencing positively. However, T1, with the lowest levels of P, YE, and RPW increased viscosity and pseudoplasticity of xanthan pruni. RPW increased phosphorus, silicon, calcium, and magnesium, and P and YE increased potassium. These results indicate that partial replacement of P by RPW and YE is an economically viable and sustainable approach for the xanthan pruni production. Full article
Show Figures

Figure 1

26 pages, 3633 KiB  
Article
A Comparative Study of Two Synthesis Methods for Poly(Acrylic Acid-Co-Acrylamide) Incorporating a Hyperbranched Star-Shaped Monomer
by Ramses S. Meleán Brito, Agustín Iborra, Juan M. Padró, Cristian Villa-Pérez, Miriam C. Strumia, Facundo Mattea, Juan M. Giussi and Juan M. Milanesio
Polymers 2025, 17(7), 964; https://doi.org/10.3390/polym17070964 - 1 Apr 2025
Cited by 1 | Viewed by 780
Abstract
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with [...] Read more.
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with PEGMA500 arms and modified to contain a single vinyl group, was copolymerized with acrylic acid and acrylamide. Comprehensive polymer characterization was performed using FTIR, NMR, and SEC-MALS-dRI techniques. Rheological assessments revealed that copolymers containing the star-shaped monomer exhibited significantly higher viscosities than those lacking the hyperbranched component, a result attributed to the inter- and intrachain interactions facilitated by the PEGMA500 arms. Additionally, purification studies demonstrated that dialysis was necessary to remove short-chain polymers, particularly for samples synthesized in supercritical media, to achieve optimal rheological performance. Polymers synthesized in a supercritical CO2–ethyl acetate mixture exhibited higher viscosities compared to their water-synthesized counterparts. The integration of the novel star-shaped macromonomer into HPAM-like polymers offers substantial potential for enhanced oil recovery applications. Full article
(This article belongs to the Special Issue Recent Advances in the Polymers Field for the Energy Industry)
Show Figures

Figure 1

22 pages, 17192 KiB  
Article
Investigation of Power-Law Fluid Infiltration Grout Characteristics on the Basis of Fractal Theory
by Fucheng Wei, Jinxing Lai and Xulin Su
Buildings 2025, 15(6), 987; https://doi.org/10.3390/buildings15060987 - 20 Mar 2025
Cited by 6 | Viewed by 393
Abstract
This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through laboratory experiments [...] Read more.
This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through laboratory experiments and numerical simulations. Key findings include the following: (1) The fractal permeability constant demonstrates an exponential dependence on the rheological index (n), with a critical threshold at n = 0.4. Below this threshold, the constant asymptotically approaches zero (slope < 0.1), while beyond it, sensitivity intensifies exponentially, attaining 0.48 at n = 0.9. (2) Non-linear positive correlations exist between the slurry diffusion radius and both the grouting pressure (P) and the water–cement ratio (W/C). Spherical diffusion dominates over columnar diffusion, with their ratio shifting from 1:0.96 at P = 0.1 MPa to 1:0.82 at P = 0.5 MPa. The diffusion distance differential increases from 22 mm to 38 mm as the W/C rises from 0.5 to 0.7, attributable to reduced interfacial shear resistance from decreasing slurry viscosity and yield stress. (3) Experimental validation confirms exponentially decaying model errors: spherical grouting errors decrease from 21.54% (t = 5 s) to 8.43% (t = 15 s) and columnar errors from 25.45% to 10.17%, both within the 50% engineering tolerance. (4) Numerical simulations show that the meander fractal dimension (48 mm) demonstrates a higher sensitivity than the volume fractal dimension (37 mm), with both dimensions reaching maximum values. These findings establish a theoretical framework for optimizing grouting design in heterogeneous porous media. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop