In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
Abstract
1. Introduction
2. Experiments and Methods
2.1. Analysis of Oil and Water Physical Properties
2.2. Experiment on Factors Affecting the Stability of Emulsions
2.2.1. Experimental Materials
2.2.2. Experimental Methods and Procedures
2.3. Physical Simulation of Oil Displacement in Porous Media
2.3.1. Experimental Materials and Instruments
2.3.2. Experimental Methods and Procedures
2.4. Nuclear Magnetic Resonance Two-Dimensional Spectrum Oil Displacement
2.4.1. Experimental Materials and Instruments
2.4.2. Experimental Methods and Procedures
3. Results and Discussion
3.1. Analysis of Factors Affecting the Stability of Emulsions
3.1.1. Shear Rate
3.1.2. Water Cut
3.1.3. Emulsifying Temperature
3.1.4. Shearing Time
3.2. Experiment on Core Oil Displacement Efficiency
3.2.1. Low-Permeability Core
3.2.2. Medium-Permeability Core
3.2.3. High-Permeability Core
3.3. In Situ Emulsification and EOR Mechanism
3.3.1. Pure Fluid Component
3.3.2. EOR Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peralta, A.F.; Botechia, V.E.; Santos, A.A.; Schiozer, D.J. Model-based production strategy optimization for a heavy oil reservoir considering waterflooding and intelligent wells. Geoenergy Sci. Eng. 2025, 246, 213457. [Google Scholar] [CrossRef]
- He, A.Q.; Li, J.J.; Jiang, M.C.; Fang, Y.J.; Wang, Z.Q.; Yang, H.T.; Mou, X.Y.; Jiang, H.Q. Study of cyclic waterflooding for improving oil recovery in Lukeqin heavy oil reservoir. Geoenergy Sci. Eng. 2023, 223, 211467. [Google Scholar] [CrossRef]
- Shen, F.; Cheng, L.S.; Sun, Q.; Huang, S.J. Evaluation of the vertical producing degree of commingled production via waterflooding for multilayer offshore heavy oil reservoirs. Energies 2018, 11, 2428. [Google Scholar] [CrossRef]
- Li, Y.B.; Jia, H.F.; Pu, W.F.; Wei, B.; Wang, S.S.; Yuan, N. Investigation of feasibility of alkali-cosolvent flooding in heavy oil reservoirs. Petrol. Sci. 2023, 20, 1608–1619. [Google Scholar] [CrossRef]
- Afolabi, F.; Mahmood, S.M.; Sharifigaliuk, H.; Kamarozaman, M.I.H.B.K.; Mansor, F.N.N.B.M. Investigations on the enhanced oil recovery capacity of novel bio-based polymeric surfactants. J. Mol. Liq. 2022, 368, 120813. [Google Scholar] [CrossRef]
- Liu, F.; Li, Y.F.; Li, X.Q.; Wang, X.W. Study on the properties changes of reversible invert emulsion during the process from O/W to W/O with Alkali. Molecules 2024, 29, 62. [Google Scholar] [CrossRef] [PubMed]
- Lü, T.; Wu, Y.; Qi, D.M.; Sun, Y.Y.; Zhang, D.; Zhao, H.T. Fabrication of alkyl/amino siloxane-modified magnetic nanoparticles for simultaneous demulsification of O/W and W/O emulsions. Colloids Surf. A 2022, 648, 129295. [Google Scholar] [CrossRef]
- Kong, W.T.; Pan, Y.L.; Bhushan, B.; Zhao, X.Z. Superhydrophilic Al2O3 particle layer for efficient separation of oil-in-water (O/W) and water-in-oil (W/O) emulsions. Langmuir 2020, 36, 13285–13291. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.P.C.; Nayak, R.R. Nonionic glycolipids for chromium flotation-and emulsion (W/O and O/W)-Based bioactive release. Langmuir 2018, 34, 14347–14357. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.Q.; Wang, Y.Q.; Liu, Y.H.; Wang, L. A new method for calculating the viscosity of W/O and O/W emulsion. J. Pet. Sci. Eng. 2018, 171, 928–937. [Google Scholar] [CrossRef]
- Niu, Z.; Manica, R.; Li, Z.L.; He, X.; Sjoblom, J.; Xu, Z.H. Interfacial properties pertinent to W/O and O/W emulsion systems prepared using polyaromatic compounds. Colloids Surf. A 2019, 575, 283–291. [Google Scholar] [CrossRef]
- Hu, M.Z.; Bischoff, B.L.; Morales-Rodriguez, M.E.; Gray, K.A.; Davison, B.H. Superhydrophobic or hydrophilic porous metallic/ceramic tubular membranes for continuous separations of biodiesel-water W/O and O/W emulsions. Ind. Eng. Chem. Res. 2019, 58, 1114–1122. [Google Scholar] [CrossRef]
- Sharma, E.; Rawate, H.; Thaokar, R.M.; Juvekar, V.A. Interfacial rheology as a tool to characterize the dynamics of spontaneous emulsification. Langmuir 2025, 41, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Zabar, M.K.; Phan, C.M.; Barifcani, A. Quantifying the spontaneous emulsification of a heavy hydrocarbon with the presence of a strong surfactant. Colloids Surf. A 2023, 656, ARTN 130425. [Google Scholar] [CrossRef]
- Petroni, M.H.O.; Corona, R.R.B.; Sad, C.M.S.; Ramos, R.; Castro, J.M.; Franco, L.G.; da Silva, M.; Elias, M.Z.; Castro, E.V.R. Role of asphaltenes and resins at the interface of petroleum emulsions (W/O): A literature review. Geoenergy Sci. Eng. 2024, 239, 212932. [Google Scholar] [CrossRef]
- Kazimov, S.P.; Ahmed, F.F. Displacement of emulsified oil from formation with a composite system. Pet. Sci. Technol. 2016, 34, 1663–1667. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, X.Y.; Cheng, L.; Zhang, H.; Tang, J.; Chen, H.; Fan, Q.; Ouyang, X. Effect of asphaltenes on the stability of water in crude oil emulsions. Materials 2025, 18, 630. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.L.; Lai, L.; Zhang, H. Stabilization mechanism of emulsion gels of crude oil with low asphaltene, resin, and wax contents. J. Mol. Liq. 2025, 417, 126496. [Google Scholar] [CrossRef]
- Shakouri, S.; Mohammadzadeh-Shirazi, M. Machine learning approaches for assessing stability in acid-crude oil emulsions: Application to mitigate formation damage. Petrol. Sci. 2025, 22, 894–908. [Google Scholar] [CrossRef]
- Song, F.Y.; Zheng, H.L.; Li, T.Y.; Fu, X.W.; Feng, C.; Ma, C.K.; Jiang, S.T.; Wang, J.N.; Huang, Y.J.; Zhou, F.Y. The influence of asphaltene and resin on the stability of crude oil emulsion and its demulsification mechanism. J. Mol. Liq. 2024, 413, 125924. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.J.; Liang, Q.; Duan, M.; Fang, S.W.; Zhang, C.S.; Chen, J.Q. Demulsification law of polyether demulsifier for W/O crude oil emulsion containing hydrophobically modified polyacrylamide in water. J. Mol. Liq. 2024, 394, 123805. [Google Scholar] [CrossRef]
- Chang, J.J.; Song, Z.J.; Ji, B.Y.; Lun, Z.M.; Tang, Y.Q.; Qi, Y.B. Study on emulsification of heavy oil in porous media. Energy Fuels 2025, 39, 4728–4745. [Google Scholar] [CrossRef]
- Ning, J.; Wei, B.; Mao, R.X.; Wang, Y.Y.; Shang, J.; Sun, L. Pore-level observations of an alkali-induced mild O/W emulsion flooding for economic enhanced oil recovery. Energy Fuels 2018, 32, 10595–10604. [Google Scholar] [CrossRef]
- He, M.M.; Pu, W.F.; Yang, X.R. Experimental study on the effect of high water cut on the emulsifying properties of crude oil. Colloids Surf. A 2023, 674, 131917. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhong, L.G.; Lyu, C.H.; Liu, Y.G.; Zhang, S.J. W/O emulsions generated by heavy oil in porous medium and its effect on re-emulsification. Fuel 2022, 310, 122344. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Pu, W.F.; Zhao, R.B.; Pang, S.S. Study on the mechanism of W/O emulsion flooding to enhance oil recovery for heavy oil reservoir. J. Pet. Sci. Eng. 2022, 209, 109899. [Google Scholar] [CrossRef]
- Pu, W.F.; He, Y.; Wu, T.; He, W.; Chen, Q.Y.; Yang, F.; Jiang, H.J.; Hou, S.K. Emulsification and interfacial characteristics of different surfactants enhances heavy oil recovery: Experimental evaluation and molecular dynamics simulation study. J. Disper. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Amirmoshiri, M.; Zeng, Y.; Chen, Z.; Singer, P.M.; Puerto, M.C.; Grier, H.; Kamarul Bahrim, R.Z.; Vincent-Bonnieu, S.; Farajzadeh, R.; Biswal, S.L.; et al. Probing the effect of oil type and saturation on foam flow in porous media: Core-Flooding and nuclear magnetic resonance (NMR) imaging. Energy Fuels 2018, 32, 11177–11189. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.Q.; Liu, Z.Y.; Trivedi, J.; Gao, W.B.; Sui, M.Y. Experimental investigation on the enhanced oil recovery efficiency of polymeric surfactant: Matching relationship with core and emulsification ability. Petrol. Sci. 2023, 20, 619–635. [Google Scholar] [CrossRef]
- Sagala, F.; Kantzas, A.; Hethnawi, A.; Maaref, S.; Nassar, N.N. Formulation of spontaneous in situ emulsification using sodium lauryl sulfate grafted nanopyroxene for enhanced heavy oil recovery in sandstone reservoirs. Energy Fuels 2023, 37, 12838–12853. [Google Scholar] [CrossRef]
- Du, D.J.; Li, J.T.; Pu, W.F.; He, W.; Lu, J.Y.; Xu, L.; Li, B.W.; Zeng, Q.X. Experimental study on EOR potential of in-situ water in oil emulsion in the low-temperature conglomerate reservoirs. Geoenergy Sci. Eng. 2024, 241, 213097. [Google Scholar] [CrossRef]
- Wang, T.F.; Wang, L.L.; Wang, J.X.; Qin, H.L.; Yuan, C.D. In-situ emulsification synergistic self-profile control system on heavy oil reservoir development: Prescription construction and EOR mechanism investigation. J. Pet. Sci. Eng. 2022, 219, 111069. [Google Scholar] [CrossRef]
- Gou, R.; Pu, W.F.; Liu, R.; Chen, Y.Q.; Zhang, T.; Lin, X.S. A novel hybrid hyperbranched nanowire CNTs for enhancing oil recovery through increasing viscoelasticity and high-viscous emulsions to compensate reservoir heterogeneity. Colloids Surf. A 2022, 654, 130118. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Zhao, Y.H.; Zhang, H.J.; Zhao, Q.; Shi, C.Y.; Qin, J.H.; Su, Z.H.; Wang, G.Q.; Liu, Y.; Hou, J.R. Combined imbibition system with black nanosheet and low-salinity water for improving oil recovery in tight sandstone reservoirs. Petrol. Sci. 2023, 20, 1562–1571. [Google Scholar] [CrossRef]
- Yousufi, M.M.; Dzulkarnain, I.B.; Elhaj, M.E.M.; Sufian, S.B.; Negash, B.M.; Hagar, H.S.; Ahmed, S. Evaluation of activated carbon as a Pickering emulsion Stabilizer for conformance control at high temperature and Salinity: A Focus on stability and rheology. J. Mol. Liq. 2025, 419, 126764. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, Y.; Lun, Z.M. Factors, mechanisms, and kinetics of spontaneous emulsification for heavy oil-in-water emulsions. Molecules 2024, 29, 2998. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.J.; Wang, Z.H.; Li, J.L.; Xu, Y.F.; Xin, H. Effect of interface structure and behavior on the fluid flow characteristics and phase interaction in the petroleum industry: State of the art review and outlook. Energy Fuels 2023, 37, 10245–10268. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhao, Y.A.; Gao, X.F.; Wen, J.; Li, L.Y.; Zhang, H. Intelligent control of emulsion stability and evaluation of selective water shutoff performance. Colloids Surf. A 2024, 683, 132961. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Yuan, S.L. Emulsification of surfactant on oil droplets by molecular dynamics simulation. Molecules 2020, 25, 3008. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Z.; Liao, G.Z.; Gong, L.Y.; Luan, H.X.; Chen, Q.S.; Liu, W.D.; Liu, D.; Feng, Y.J. New insights into the mechanism of surfactant enhanced oil recovery: Micellar solubilization and in-situ emulsification. Petrol. Sci. 2022, 19, 870–881. [Google Scholar] [CrossRef]
- Zhong, H.Y.; Shi, B.W.; Bi, Y.B.; Cao, X.T.; Zhang, H.; Yu, C.Z.; Tang, H.L. Interaction of elasticity and wettability on enhanced oil recovery in viscoelastic polymer flooding: A case study on oil droplet. Geoenergy Sci. Eng. 2025, 231, 213827. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Q.; Zhou, Z.H. Study on the effect of different viscosity reducers on viscosity reduction and emulsification with Daqing crude oil. Molecules 2023, 28, 1399. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Z.Y.; Gao, Y.D.; Liu, C.L.; Li, Y.Y.; Tang, X.C.; Chen, X.; Li, Y.Q. Review and perspective on the mechanisms and application of in situ emulsification for enhanced oil recovery. Energy Fuels 2024, 38, 29–42. [Google Scholar] [CrossRef]
Density | Viscosity (65 °C) | SARA Fractions | |||
---|---|---|---|---|---|
S | A1 | R | A2 | ||
0.923 g/cm3 | 56.39 mPa·s | 69.6 | 23.7 | 3.8 | 2.9 |
Ions of Formation Water | K+ + Na+ | Mg2+ | Ca2+ | HCO3− | Cl− | CO32− | Total Salinity mg/L |
---|---|---|---|---|---|---|---|
mg/L | 721.28 | 19.32 | 15.92 | 899.58 | 581.22 | 78.06 | 2315.38 |
Experiment Number | Core Number | Length (cm) | Diameter (cm) | Water Measurement Permeability (mD) | Porosity (%) | Original Oil Saturation (%) |
---|---|---|---|---|---|---|
1 | 50-3 | 7.13 | 3.83 | 7.4 | 13.6 | 61.3 |
2 | 100-3 | 7.12 | 3.81 | 46.5 | 15.6 | 68.9 |
3 | 500-9 | 7.91 | 3.81 | 100.7 | 17.2 | 67.6 |
4 | 500-10 | 7.89 | 3.82 | 112.6 | 17.6 | 65.4 |
5 | 800-6 | 7.85 | 3.82 | 590.7 | 18.3 | 64.6 |
Number | Length (cm) | Diameter (cm) | Pore Volume (mL) | Water Measurement Permeability (mD) | Porosity (%) | Saturated Oil Quantity (mL) | Oil Saturation (%) |
---|---|---|---|---|---|---|---|
2000-3 | 6.975 | 2.528 | 6.58 | 515.7 | 18.79 | 6.3 | 95.74 |
2000-4 | 7.052 | 2.531 | 5.37 | 1333.9 | 15.13 | 5 | 93.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Shi, M.; Li, J.; Shi, B.; Su, X.; Zhao, Y.; Guo, Q.; Yuan, Y. In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism. Energies 2025, 18, 3879. https://doi.org/10.3390/en18143879
Wang L, Shi M, Li J, Shi B, Su X, Zhao Y, Guo Q, Yuan Y. In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism. Energies. 2025; 18(14):3879. https://doi.org/10.3390/en18143879
Chicago/Turabian StyleWang, Liangliang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo, and Yuan Yuan. 2025. "In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism" Energies 18, no. 14: 3879. https://doi.org/10.3390/en18143879
APA StyleWang, L., Shi, M., Li, J., Shi, B., Su, X., Zhao, Y., Guo, Q., & Yuan, Y. (2025). In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism. Energies, 18(14), 3879. https://doi.org/10.3390/en18143879