Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (930)

Search Parameters:
Keywords = heavy metal hazard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1003 KB  
Article
Ex Situ Sediment Remediation Using the Electrokinetic (EK) Two-Anode Technique (TAT) Supported by Mathematical Modeling
by Nataša Duduković, Dejan Krčmar, Dragana Tomašević Pilipović, Nataša Slijepčević, Dragana Žmukić, Đurđa Kerkez and Anita Leovac Maćerak
Technologies 2026, 14(2), 86; https://doi.org/10.3390/technologies14020086 (registering DOI) - 1 Feb 2026
Abstract
Heavy metals are non-biodegradable environmental pollutants, and if present in sludge/sediment in elevated concentrations, they can cause serious problems. In this paper, the possibility of applying two-anode electrokinetic treatment was investigated for the ex situ remediation of copper (Cu) and nickel (Ni)-contaminated sediments. [...] Read more.
Heavy metals are non-biodegradable environmental pollutants, and if present in sludge/sediment in elevated concentrations, they can cause serious problems. In this paper, the possibility of applying two-anode electrokinetic treatment was investigated for the ex situ remediation of copper (Cu) and nickel (Ni)-contaminated sediments. The influence of the following parameters on the treatment efficiency was investigated: applied electric field, physicochemical changes in the system, and the characteristics of the pollution (concentration and forms of metal occurrence). Additionally, based on the results of the sequential extraction procedure, a risk assessment of sediment before and after treatment was performed. Also, we developed a mathematical model that allows us to define the time required to reduce nickel and copper to non-hazardous levels from contaminated sediment via electrokinetic treatment. The results obtained indicate that changes in the pseudo-total content and changes in Cu and Ni availability along the electrokinetic cell are consistent with the physicochemical changes in the sediment. The amount of applied electric field does not notably affect the treatment efficiency in most cases. Based on the results, the majority of samples of treated sediment can be dislocated without special protection measures. The most acceptable treatment for ex situ remediation is the one with solar panels, as it is considered economically and environmentally most appropriate. For this treatment, according to risk assessment code, the risk was found to be low (Cu) to moderately low (Ni). Since more than 50% of Cu and Ni content is related to the organic and residual fraction, and based on the physicochemical conditions and high percentage of clay, we can assume that there are no environmental hazards. This work serves as a starting point for the developed mathematical model that has proven to be very promising for prediction of the time necessary for sediment metal remediation. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

18 pages, 1524 KB  
Article
Metal Concentrations in Edible Leafy Vegetables and Their Potential Risk to Human Health
by Elizabeth Kola, Linton F. Munyai, Caswell Munyai, Sydney Moyo, Farai Dondofema, Naicheng Wu and Tatenda Dalu
Int. J. Environ. Res. Public Health 2026, 23(2), 188; https://doi.org/10.3390/ijerph23020188 - 31 Jan 2026
Viewed by 52
Abstract
Leafy green vegetables provide important nutrients for human growth; however, human health is highly compromised through consumption of vegetables contaminated by heavy metals. Therefore, the study aimed to investigate the bioaccumulation of heavy metals in five different leafy green vegetables and soils and [...] Read more.
Leafy green vegetables provide important nutrients for human growth; however, human health is highly compromised through consumption of vegetables contaminated by heavy metals. Therefore, the study aimed to investigate the bioaccumulation of heavy metals in five different leafy green vegetables and soils and determine the human health risks that may arise from consuming those vegetables from Tonga town in Mpumalanga province, South Africa. Soils and five edible leafy vegetables (i.e., lettuce, cabbage, rape, pumpkin leaves, and spinach) were assessed for bio-concentration factor, daily intake of metals, health risk, and target hazard quotient across the study sites. The Si, K, Na, Ca, Mg, Al, and Fe concentrations were high in the soils. In general, vegetables exhibited elevated Ca, Fe, Si, Al, and Sr levels, although spinach had high Na concentrations. The bioconcentration factor showed the following trends: Mg > B > Si > V for trace metals and Cr > Co > Mn > Ni > B for heavy metals in lettuce, spinach, and pumpkin leaves. The human risk index for all vegetables showed that all metals were not likely to induce any health hazards to humans, and the target hazard quotient for B, Si, V, Al, Cr, Mn, Fe, Ni, Zn, and Pb showed potential for substantial health risk hazard. The findings of this study generally reveal that the concentrations of the analysed metals exceeded the permissible limits established by the World Health Organisation and the Food and Agricultural Organisation. Given the high levels of metals detected in the soil and vegetables within the study area, it is important to investigate the potential implications for human health and mitigate both acute and chronic health challenges associated with heavy metal exposure. Furthermore, this study will guide policymakers in developing improved regulations and safety standards for agricultural practices and environmental protection, particularly for vulnerable peri-urban and rural communities. Full article
Show Figures

Figure 1

23 pages, 2315 KB  
Review
Purification of Synthetic Gypsum: Techniques and Mechanisms
by Can Wu, Wenting Xu, Zhizhao Song, Qingyun Ma, Qingjun Guan, Xuhui Qi, Xiaoya Li, Chengpeng Yang and Honghu Tang
Molecules 2026, 31(3), 484; https://doi.org/10.3390/molecules31030484 - 30 Jan 2026
Viewed by 126
Abstract
Synthetic gypsum (SG) is produced in massive quantities, yet hazardous impurities limit its reuse. This review summarized the impurity types in various SGs and the corresponding removal methods. Physical methods, such as washing, screening, magnetic separation, and others, exploit solubility and size/density differences [...] Read more.
Synthetic gypsum (SG) is produced in massive quantities, yet hazardous impurities limit its reuse. This review summarized the impurity types in various SGs and the corresponding removal methods. Physical methods, such as washing, screening, magnetic separation, and others, exploit solubility and size/density differences to remove soluble salts and particulates. Chemical methods, including acid leaching, precipitation/solidification, and so on, can dissolve or immobilize phosphates, fluorides, and heavy metals. Flotation utilizes the differences in the physicochemical properties of solid surfaces to remove insoluble impurities. The thermal treatment is mainly used to decompose organics and improve whiteness. Microbial methods achieve environmentally friendly cleanup through metabolic leaching or microbially induced carbonate precipitation. The phase-transformation method is a recently developed method that can achieve synergistic effects of deep impurity removal and high-value utilization by reconstructing gypsum crystals to release co-crystallized impurities. Most impurity-removal methods target only a single type of impurity. At present, purifying SG requires a combination of multiple methods, which is not recommended from a cost perspective. Subsequent research on removing impurities from SG should focus on simultaneously removing multiple major impurities in a single process, as well as the synergistic effects between impurity removal and the high-value utilization of gypsum. Full article
Show Figures

Figure 1

20 pages, 5061 KB  
Article
Phosphorus Tailings Sand Synergized with Multiple Solid Wastes for the Preparation of Cementitious Materials: Properties and Mechanisms
by Zhaoshan Wang, Yongfu He, Hui Luo, Qi Wang, Haiqian Sun, Huanqing Song, Xuehui Zhao and Bao-Jie He
Buildings 2026, 16(3), 521; https://doi.org/10.3390/buildings16030521 - 27 Jan 2026
Viewed by 140
Abstract
In this study, phosphorus tailings sand (PTS) was ground into fine powder and incorporated with slag and fly ash to formulate a cementitious material composed solely of solid wastes. The current research aimed to promote the high-value utilization of local solid waste resources [...] Read more.
In this study, phosphorus tailings sand (PTS) was ground into fine powder and incorporated with slag and fly ash to formulate a cementitious material composed solely of solid wastes. The current research aimed to promote the high-value utilization of local solid waste resources in Lianyungang and to explore their potential application in soil stabilization and ground improvement. Through optimization of component dosage and the proportions of alkaline activators, the effects on workability, mechanical properties, drying shrinkage, wet–dry cycles, microstructural evolution, and heavy-metal leaching behavior were comprehensively examined. The findings revealed that at the optimal ratio of PTS–slag powder–fly ash = 5:2.5:2.5, the developed cementitious material demonstrated a 28-day compressive strength of 33.8 MPa, along with 4.5 MPa flexural strength, and 168 mm flow spread. Moreover, the 28-day drying shrinkage reached a minimal value of 0.038%, with reduced mass loss of 6.7% after wet–dry cycling. Furthermore, under non-freezing conditions, the leaching content of Zn, Mn, Pb, and Cu from the PTS-based multi-solid-waste cementitious system remained below the permissible limits for non-hazardous discharge established by Chinese environmental regulations. These findings provide an innovative pathway for the resource-efficient application of phosphorus tailings sand and several solid wastes while offering technical guidance for silt stabilization and ecological restoration efforts in the Lianyungang region, highlighting promising engineering application prospects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1900 KB  
Article
Speciation and Mobility of Cr and Ni in Serpentine Rocks and Derived Sediments (Tuscany, Italy)
by Fabrizio Franceschini
Standards 2026, 6(1), 5; https://doi.org/10.3390/standards6010005 - 27 Jan 2026
Viewed by 88
Abstract
Large outcrops of ophiolites from exposed land surfaces can potentially impact the geochemistry of much greater areas through transport and weathering. Derived soil and sediments contain significant concentrations of heavy metals, including chromium and nickel. In the context of environmental risk analysis, there [...] Read more.
Large outcrops of ophiolites from exposed land surfaces can potentially impact the geochemistry of much greater areas through transport and weathering. Derived soil and sediments contain significant concentrations of heavy metals, including chromium and nickel. In the context of environmental risk analysis, there is a necessity to obtain more information about the distribution of Cr and Ni in serpentine rocks and their derived associated geological matrices, and about how easily Cr could be released and then oxidized in the environment, causing pollution of groundwater. The aim of this study was to evaluate the distribution of Cr and Ni in the geochemical fractions containing Fe and Mn and the role of Fe and Mn oxides (crystalline and non-crystalline) in redox processes leading to the formation of Cr(VI) during serpentine soil weathering. Through the combination of chemical selective sequential extraction (SSE) and X-ray diffraction, solid samples belonging to ophiolitic rocks and their derived soils and sediments in southern Tuscany were investigated. The applied SSE method followed the established extraction scheme commonly used in sequential selective extraction procedures. The extraction was accomplished in seven successive steps, using appropriate reagents to destroy the binding agents between the target metal and the specific soil fraction to release the heavy metals selectively from their structural context. The results indicated significant differences in the availability and mobility of Cr and Ni in soils, with Cr concentrations ranging from 200 to 950 μg/g and Ni from 274 to 665 μg/g in reactive fractions. Cr is tightly bound to well-crystallized Fe-oxides and primary rock-derived phases, whereas Ni is substantially more mobile, being mainly controlled by Mn-oxides and amorphous Fe-oxides. Weakly acidic solutions or systems with high redox potential increase Cr and Ni mobility in the environment due to Fe/Mn hydroxides produced by the weathering of serpentinites. An ORP higher than 1000 mV leads to the formation of Cr(VI) by oxidation of Cr(III), increasing the mobility of Cr in groundwater and the hazard for human health. The analytical activity carried out in this research can be used to identify the potential risk of Cr(VI) release in groundwater from serpentine and derived geomaterials. Full article
(This article belongs to the Section Standards in Environmental Sciences)
Show Figures

Figure 1

23 pages, 7455 KB  
Article
Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach
by Shuya Li, Huan Shuai, Hong Yu, Yongqian Liu, Yingli Jing, Yizhi Kong, Yaqian Liu and Di Wu
Sustainability 2026, 18(3), 1225; https://doi.org/10.3390/su18031225 - 26 Jan 2026
Viewed by 130
Abstract
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming [...] Read more.
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming to systematically unravel the spatial patterns, source contributions, and associated health risks of heavy metals in local groundwater. Based on 717 spring and well water samples collected in 2024, we determined pH and seven heavy metals (As, Cd, Pb, Zn, Fe, Mn, and Tl). By integrating hydrogeological zoning, lithology, topography, and river networks, the study area was divided into 11 assessment units, clearly revealing the spatial heterogeneity of heavy metals. The results demonstrate that exceedances of Cd, Pb, and Zn were sporadic and point-source-influenced, whereas As, Fe, Mn, and Tl showed regional exceedance patterns (e.g., Mn exceeded the standard in 9.76% of samples), identifying them as priority control elements. The spatial distribution of heavy metals was governed the synergistic effects of lithology, water–rock interactions, and hydrological structure, showing a distinct “acidic in the northeast, alkaline in the southwest” pH gradient. Combined application of the APCS-MLR and PMF models resolved five principal pollution sources: an acid-reducing-environment-driven release source (contributing 76.1% of Fe and 58.3% of Pb); a geogenic–anthropogenic composite source (contributing 81.0% of Tl and 62.4% of Cd); a human-perturbation-triggered natural Mn release source (contributing 94.8% of Mn); an agricultural-activity-related input source (contributing 60.1% of Zn); and a primary geological source (contributing 89.9% of As). Monte Carlo simulation-based health risk assessment indicated that the average hazard index (HI) and total carcinogenic risk (TCR) for all heavy metals were below acceptable thresholds, suggesting generally manageable risk. However, As was the dominant contributor to both non-carcinogenic and carcinogenic risks, with its carcinogenic risk exceeding the threshold in up to 3.84% of the simulated adult exposures under extreme scenarios. Sensitivity analysis identified exposure duration (ED) as the most influential parameter governing risk outcomes. In conclusion, we recommend implementing spatially differentiated management strategies: prioritizing As control in red-bed and granite–metamorphic zones; enhancing Tl monitoring in the northern and northeastern granite-rich areas, particularly downstream of the Mishui River; and regulating land use in brick-factory-dense riparian zones to mitigate disturbance-induced Mn release—for instance, through the enforcement of setback requirements and targeted groundwater monitoring programs. This study provides a scientific foundation for the sustainable management and safety assurance of groundwater resources in regions with similar geological and anthropogenic settings. Full article
Show Figures

Figure 1

28 pages, 1138 KB  
Review
Yeast Biosensors for the Safety of Fermented Beverages
by Sílvia Afonso, Ivo Oliveira and Alice Vilela
Biosensors 2026, 16(1), 64; https://doi.org/10.3390/bios16010064 - 16 Jan 2026
Viewed by 749
Abstract
Yeast biosensors represent a promising biotechnological innovation for ensuring the safety and quality of fermented beverages such as beer, wine, and kombucha. These biosensors employ genetically engineered yeast strains to detect specific contaminants, spoilage organisms, or hazardous compounds during fermentation or the final [...] Read more.
Yeast biosensors represent a promising biotechnological innovation for ensuring the safety and quality of fermented beverages such as beer, wine, and kombucha. These biosensors employ genetically engineered yeast strains to detect specific contaminants, spoilage organisms, or hazardous compounds during fermentation or the final product. By integrating synthetic biology tools, researchers have developed yeast strains that can sense and respond to the presence of heavy metals (e.g., lead or arsenic), mycotoxins, ethanol levels, or unwanted microbial metabolites. When a target compound is detected, the biosensor yeast activates a reporter system, such as fluorescence, color change, or electrical signal, providing a rapid, visible, and cost-effective means of monitoring safety parameters. These biosensors offer several advantages: they can operate in real time, are relatively low-cost compared to conventional chemical analysis methods, and can be integrated directly into the fermentation system. Furthermore, as Saccharomyces cerevisiae is generally recognized as safe (GRAS), its use as a sensing platform aligns well with existing practices in beverage production. Yeast biosensors are being investigated for the early detection of contamination by spoilage microbes, such as Brettanomyces and lactic acid bacteria. These contaminants can alter the flavor profile and shorten the product’s shelf life. By providing timely feedback, these biosensor systems allow producers to intervene early, thereby reducing waste and enhancing consumer safety. In this work, we review the development and application of yeast-based biosensors as potential safeguards in fermented beverage production, with the overarching goal of contributing to the manufacture of safer and higher-quality products. Nevertheless, despite their substantial conceptual promise and encouraging experimental results, yeast biosensors remain confined mainly to laboratory-scale studies. A clear gap persists between their demonstrated potential and widespread industrial implementation, underscoring the need for further research focused on robustness, scalability, and regulatory integration. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Graphical abstract

18 pages, 2782 KB  
Article
Can Cigarette Butt-Derived Cellulose Acetate Nanoplastics Induce Toxicity in Allolobophora caliginosa? Immunological, Biochemical, and Histopathological Insights
by Zeinab Bakr, Shimaa Mohamed Said, Naser A. Elshimy, Mohamed Abd El-Aal and Gehad N. Aboulnasr
Microplastics 2026, 5(1), 12; https://doi.org/10.3390/microplastics5010012 - 15 Jan 2026
Viewed by 180
Abstract
Plastic pollution is a major global challenge, especially nanoplastics (NPs) emerging as harmful pollutants due to their small size, reactivity, and persistence in ecosystems. Among them, cigarette butts composed of cellulose acetate (CA) are one of the most widespread and hazardous sources of [...] Read more.
Plastic pollution is a major global challenge, especially nanoplastics (NPs) emerging as harmful pollutants due to their small size, reactivity, and persistence in ecosystems. Among them, cigarette butts composed of cellulose acetate (CA) are one of the most widespread and hazardous sources of terrestrial NPs. In this study, the immunotoxic, biochemical, and histopathological effects of cellulose acetate nanoplastics (CA-NPs) derived from smoked cigarette butts (SCB-NPs), unsmoked cigarette butts (USCB-NPs), and commercial cellulose acetate (CCA-NPs) were evaluated on the earthworm Allolobophora caliginosa. Adult worms were exposed for 30 days to 100 mg/kg CA-NPs in artificial soil under controlled laboratory conditions. Results revealed that SCB-NPs induced the most pronounced alterations, including increased lysozyme and metallothionein levels, reduced phagocytic and peroxidase activities, and depletion of protein and carbohydrate reserves. Histological examination showed vacuoles in epithelial layer vacuolization, space between muscle fiber disruption, and degeneration in gut and body wall, especially under SCB-NP exposure. USCB-NPs and CCA-NPs caused milder but still significant effects. Taken together, these findings highlight that the high toxicity of SCB-NPs is due to the presence of combustion-derived toxicants (nicotine, polycyclic aromatic hydrocarbons, and heavy metals), which exacerbate oxidative stress, immune suppression, and tissue damage in soil invertebrates. This study underscores the ecological risk of cigarette butt-derived NPs and calls for urgent policy measures to mitigate their terrestrial impacts. Full article
Show Figures

Figure 1

22 pages, 11988 KB  
Article
Heavy Metal Pollution and Health Risk Assessments of Urban Dust in Downtown Murcia, Spain
by Ángeles Gallegos, Francisco Bautista, Pura Marín-Sanleandro, Elvira Díaz-Pereira, Antonio Sánchez-Navarro, María José Delgado-Iniesta, Miriam Romero, María-Felicidad Bógalo and Avto Goguitchaichvili
Urban Sci. 2026, 10(1), 46; https://doi.org/10.3390/urbansci10010046 - 12 Jan 2026
Viewed by 394
Abstract
Around eight million people—mainly in cities—die prematurely from pollution-related diseases; thus, studies of urban dust have become increasingly relevant over the last two decades. In this study, an assessment of heavy metal and metalloid contamination in urban dust was conducted in downtown Murcia, [...] Read more.
Around eight million people—mainly in cities—die prematurely from pollution-related diseases; thus, studies of urban dust have become increasingly relevant over the last two decades. In this study, an assessment of heavy metal and metalloid contamination in urban dust was conducted in downtown Murcia, Spain. The objectives were to evaluate the level of contamination and the associated health risks, both with a spatially explicit focus. One hundred and twenty-eight urban dust samples were collected, each from a 1-square-meter area, using plastic tools to prevent contamination. The dust was dried and weighed, then acid-digested before analysis via inductively coupled plasma mass spectrometry. Corresponding maps were then generated using a geographic information system. The elements analyzed in the urban dust (with their median concentrations, given in mg/kg) were As (2.14), Bi (14.06), Cd (0.38), Co (1.88), Cr (71.17), Cu (142.60), Fe (13,752), Mn (316.64), Mo (3.90), Ni (21.94), Pb (106.27), Sb (6.54), Se (4.34), Sr (488.08), V (28.05), and Zn (357.33). The sequence of median concentrations for the analyzed elements was Fe > Sr > Zn > Mn > Cu > Pb > Cr > V > Ni > Bi > Sb > Se > Mo > As > Co > Cd. The pollution assessment reveals that the city is moderately polluted. Using local background levels, the elements with median values exceeding the threshold for considerable contamination were As, Cu, Pb, Sb, Se, and Zn. Using the global background level, the elements with median values exceeding the threshold for considerable contamination were Bi, Cu, Mo, Pb, Sb, Se, and Zn. The median value of the sum of the hazard index (1.82) indicates a risk to children’s health. The hazard index revealed that 43% of the sites pose a relative risk to children. In contrast to previous global studies, the present research provides a multi-scale assessment of urban pollution and health risks. Pollution is evaluated by metal, city, zone, and site, while health risks are assessed by metal, city, and site. We recommend a strategy for both local authorities and residents. Full article
Show Figures

Figure 1

39 pages, 1790 KB  
Review
Lactic Acid Bacteria as the Green and Safe Food Preservatives: Their Mechanisms, Applications and Prospects
by Yuwei Zhang, Lianrui Li, Xiaoyang Pang, Shuwen Zhang, Yang Liu, Yunna Wang, Ning Xie and Xu Li
Foods 2026, 15(2), 241; https://doi.org/10.3390/foods15020241 - 9 Jan 2026
Viewed by 424
Abstract
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean [...] Read more.
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean label” products, have driven the search for natural alternatives. Lactic acid bacteria (LAB), recognized as the Generally Recognized as Safe (GRAS) microorganisms, have emerged as the promising bio-preservatives due to their safety, effectiveness, and multifunctionality. This review systematically summarized the core antimicrobial properties of LAB, including their inhibitory spectrum against foodborne pathogens, spoilage microorganisms, viruses, parasites, and their ability to degrade toxic substances such as mycotoxins, pesticides, and heavy metals. Key inhibitory mechanisms of LAB are highlighted, encompassing the production of antimicrobial metabolites, leading to metabolism disruption and cell membrane damage, nutrition and niche competition, quorum-sensing interference, and anti-biofilm formation. Furthermore, recent advances in LAB applications in preserving various food matrices (meat, dairy products, fruits and vegetables, cereals) are integrated, including their roles in enhancing food sensory quality, extending shelf life, and retaining nutritional value. The review also discusses critical factors influencing LAB’s inhibitory activity (medium composition, culture conditions, ionic components, pathway regulator, etc.) and the challenges associated with the application of LAB. Finally, future research directions are outlined, including the novel LAB and metabolites exploration, AI-driven cultural condition optimization, genetic engineering application, nano-encapsulation and active packaging development, and building up the LAB-based cellular factories. In conclusion, LAB and their antimicrobial metabolites hold great promise as green and safe food preservatives. This review is to provide comprehensive theoretical support for the rational improvement and efficient application of LAB-based natural food preservatives, contributing to the development of a safer and more sustainable food processing and preservation systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

29 pages, 904 KB  
Review
Risks Associated with Dietary Exposure to Contaminants from Foods Obtained from Marine and Fresh Water, Including Aquaculture
by Martin Rose
Int. J. Environ. Res. Public Health 2026, 23(1), 85; https://doi.org/10.3390/ijerph23010085 - 7 Jan 2026
Viewed by 572
Abstract
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture [...] Read more.
Aquatic environments have been a critical source of nutrition for millennia, with wild fisheries supplying protein and nutrients to populations worldwide. A notable shift has occurred in recent decades with the expansion of aquaculture, now representing a fast-growing sector in food production. Aquaculture plays a key role in mitigating the depletion of wild fish stocks and addressing issues related to overfishing. Despite its potential benefits, the sustainability of both wild and farmed aquatic food systems is challenged by anthropogenic pollution. Contaminants from agricultural runoff, industrial discharges, and domestic effluents enter freshwater systems and eventually reach marine environments, where they may be transported globally through ocean currents. Maintaining water quality is paramount to food safety, environmental integrity, and long-term food security. In addition to conventional seafood products such as fish and shellfish, foods such as those derived from microalgae are gaining attention in Western markets for their high nutritional value and potential functional properties. These organisms have been consumed in Asia for generations and are now being explored as sustainable foods and ingredients as an alternative source of protein. Contaminants in aquatic food products include residues of agrochemicals, persistent organic pollutants (POPs) such as dioxins, polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFASs), as well as brominated flame retardants and heavy metals. Public and scientific attention has intensified around plastic pollution, particularly microplastics and nanoplastics, which are increasingly detected in aquatic organisms and are the subject of ongoing toxicological and ecological risk assessments. While the presence of these hazards necessitates robust risk assessment and regulatory oversight, it is important to balance these concerns against the health benefits of aquatic foods, which are rich in omega-3 fatty acids, high-quality proteins, vitamins, and trace elements. Furthermore, beyond direct human health implications, the environmental impact of pollutant sources must be addressed through integrated management approaches to ensure the long-term sustainability of aquatic ecosystems and the food systems they support. This review covers regulatory frameworks, risk assessments, and management issues relating to aquatic environments, including the impact of climate change. It aims to serve as a comprehensive resource for researchers, policymakers, food businesses who harvest food from aquatic systems and other stakeholders. Full article
Show Figures

Figure 1

16 pages, 1233 KB  
Article
Organ-Based Accumulation, Translocation, and Associated Health Risk of Al, Ni, and Zn in Tomatoes, Peppers, Eggplants, Cucumbers, and Corn from an Industrial Zone in Düzce, Türkiye
by Harun Demirci, Hakan Sevik, Ismail Koc, Handan Ucun Ozel, Ramazan Erdem, Fatih Adiguzel, Erol Imren and Halil Baris Ozel
Foods 2026, 15(2), 196; https://doi.org/10.3390/foods15020196 - 6 Jan 2026
Viewed by 317
Abstract
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully [...] Read more.
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully examined. This study investigated the variation in aluminum (Al), nickel (Ni), and zinc (Zn) concentrations by species and organ in tomatoes, peppers, eggplants, cucumbers, and corn grown near the industrial zone in Düzce, a heavily polluted city in Europe. We determined bioconcentration factors (BCFs) and translocation factors (TFs) in plant organs and assessed the health risk through the Target Hazard Quotient (THQ) and Hazard Index (HI). The results show that Al pollution in the region significantly exceeded the World Health Organization (WHO) and European Union (EU) limit values, and accumulated in all plant organs, including fruits. Furthermore, high levels of metals were translocated from the soil into the organs of peppers and tomatoes. The HI indicated a potential non-carcinogenic health risk (HI > 1) from the consumption of tomatoes, cucumbers, and peppers, primarily driven by Ni. Based on these results, it is recommended that local authorities address Al pollution in the region, avoiding the cultivation of tomatoes and peppers and instead cultivating corn and eggplant. We also observed that Zn levels were very high in the aerial parts of the plants, reaching up to 90% compared to Ni and Al. This study underscores the need to reduce Zn absorption rates, as dietary intake can pose a significant threat to human health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

18 pages, 2044 KB  
Article
Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants
by Anna Rabajczyk, Justyna Gniazdowska, Piotr Stojek, Piotr Mortka and Tomasz Lutoborski
Materials 2026, 19(1), 180; https://doi.org/10.3390/ma19010180 - 3 Jan 2026
Viewed by 341
Abstract
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell [...] Read more.
The production and use of Li-ion batteries (LIBs) is steadily increasing each year, leading to a growing number of battery-powered products. Consequently, the number of chemical hazards associated with the operation and other stages of the life cycle of this type of cell is increasing as well. Therefore, this study examined the impact of selected extinguishing agents for extinguishing Li-ion battery fires—namely, a dedicated extinguishing granulate, a natural sorbent (exfoliated vermiculite), and quartz sand—on the level of heat and released substances. The study determined the emission of heavy metals and polycyclic aromatic hydrocarbons (PAH) into the air during a cell fire, the concentration of the inhalable aerosol fraction, and the concentration of hazardous substances in the extinguishing agent residue. The analysis concluded that quartz sand provides the most effective heat removal and insulation of the battery from the external environment, which also reduces the amount of pollutants released into the environment. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Graphical abstract

12 pages, 599 KB  
Article
Toxic and Trace Elements in Raw and Cooked Bluefish (Pomatomus saltatrix) from the Black Sea: Benefit–Risk Analysis
by Katya Peycheva, Veselina Panayotova, Tatyana Hristova, Diana A. Dobreva, Tonika Stoycheva, Rositsa Stancheva, Stanislava Georgieva, Evgeni Andreev, Silviya Nikolova and Albena Merdzhanova
Foods 2026, 15(1), 140; https://doi.org/10.3390/foods15010140 - 2 Jan 2026
Viewed by 535
Abstract
This study evaluated the effects of domestic cooking methods (pan-frying, smoking, and grilling) on the concentrations of elements of toxicological concern and essential elements (Cd, Cr, Cu, Fe, Mn, Ni, Zn, and Pb) in the traditionally consumed Black Sea bluefish (Pomatomus saltatrix [...] Read more.
This study evaluated the effects of domestic cooking methods (pan-frying, smoking, and grilling) on the concentrations of elements of toxicological concern and essential elements (Cd, Cr, Cu, Fe, Mn, Ni, Zn, and Pb) in the traditionally consumed Black Sea bluefish (Pomatomus saltatrix). The investigation also included an assessment of the associated health risks and benefits by calculating carcinogenic and non-carcinogenic effects as well as benefit–risk ratios. Toxic heavy metals such as Cd, Ni, and Pb were found to be below the maximum residual limits (MRLs) established by relevant food safety authorities. Cooking generally led to increased concentrations of both essential and toxic elements compared to raw samples, with the highest increases observed in grilled and smoked samples. Furthermore, evaluations of (a) estimated weekly intakes (EWIs), (b) target hazard quotients (THQs) for Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn, and (c) hazard quotient ratios for essential fatty acids (HQEFA) relative elements indicated that consumption of these cooked bluefish species does not pose significant health risks to consumers. Full article
(This article belongs to the Special Issue Risk Assessment in Food Safety)
Show Figures

Figure 1

15 pages, 1299 KB  
Article
Leachate Analysis of Biodried MSW: Case Study of the CWMC Marišćina
by Anita Ptiček Siročić, Dragana Dogančić, Igor Petrović and Nikola Hrnčić
Processes 2026, 14(1), 141; https://doi.org/10.3390/pr14010141 - 31 Dec 2025
Viewed by 341
Abstract
A major factor in worldwide ecological harm is the large quantity of municipal solid waste generated because of rapid industrialization and population growth. Nowadays, there are numerous mechanical, biological, and thermal waste treatment processes that can reduce the amount of landfilled waste. A [...] Read more.
A major factor in worldwide ecological harm is the large quantity of municipal solid waste generated because of rapid industrialization and population growth. Nowadays, there are numerous mechanical, biological, and thermal waste treatment processes that can reduce the amount of landfilled waste. A variety of analytical tests are conducted to evaluate the potential risks that landfills pose to human health and the environment. Among these, laboratory leaching tests are commonly employed to assess the release of specific waste constituents that may become hazardous to the environment. Municipal solid waste (MSW) management poses significant environmental risks due to leachate contamination in bioreactor landfills, where acidic conditions (pH ≈ 5) can mobilize heavy metals. This study evaluates the reliability of leaching tests for biodried reject MSW from CWMC Marišćina, Croatia, by comparing standard EN 12457-1 and EN 12457-2 methods (L/S = 2 and 10 L/kg) with simulations of aerobic degradation using acetic acid (10 g/L) to maintain pH = 5 over 9 days. Waste composition analysis revealed plastics (35%), paper/cardboard (25%), metals (15%), and glass (10%) as dominant fractions. Although the majority of parameters determined through standard leaching tests remain below the maximum permissible limits for non-hazardous waste, simulations under acidic conditions demonstrated substantial increases in eluate concentrations between days 6 and 9: Hg (+1500%), As (+1322%), Pb (+1330%), Ni (+786%), and Cd (+267%), with TDS rising 33%. These results highlight the underestimation of risks by conventional tests, emphasizing the need for pH-dependent methods to predict in situ leachate behavior in MBO-treated waste and support improved EU landfill regulations for enhanced environmental protection. Full article
(This article belongs to the Special Issue Innovations in Solid Waste Treatment and Resource Utilization)
Show Figures

Figure 1

Back to TopTop