Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
- -
- Quartz sand (dried) (Figure 3a)—crystalline powder; grain size 0.1–0.3 mm; composition: SiO2 > 97.0%, traces of CaO, MgO, and Fe2O3; residual moisture content < 0.2% by weight; relative bulk density: approx. 1500 kg/m3; grain size: >0.250 mm 0.2%, <0.125 mm 16.4%;
- -
- Natural sorbent—exfoliated vermiculite (Figure 3b)—natural material; molecular formula: Mg3(Si4O10)(OH)24H2O; maximum moisture content 1.5% (±1%); grain size: <0.125 mm (0.25%), >4 mm (0%); Average bulk density: 116.89 kg/m3; Average water absorption: 303%; Average hydrocarbon absorption: 151.1%; Application temperature: −260 °C to +1200 °C;
- -
- Fire extinguishing, transport, and storage granulate (Figure 3c)—inorganic, thermally blown glass granulate based on recycled glass (container glass and flat glass—soda-lime-silicate glass); composition: SiO2 72%, Na2O 13%, CaO 8%, Al2O3 2%, MgO 3%, K2O 1%; solid granules, grain size 1.0–4.0 mm; bulk density 340–460 kg/m3.
2.2. Equipment
- –
- The battery extinguishing test stand was developed by CNBOP-PIB, Józefów, Poland; it was constructed from a steel frame measuring 2 × 2 m and adjustable in height to approximately 0.7 m, with a safety net between the tray and the frame measuring 1.7 × 1.7 m (Figure 2b);
- –
- K-type sheathed thermocouples rated for temperatures up to 1200 °C;
- –
- Data logger/DI-2008 Thermocouple and Voltage Data Acquisition System measurement card, WinDaq Recording Software; DATAQ Instruments, Inc., Aurora, OH, USA;
- –
- Laserliner ThermoSpot-Vision pyrometer with a reading range of −15 °C to +500 °C;
- –
- “Gil Air 3” individual aspirators supplied by Sensidyne LP, St. Petersburg, FL, USA; calibration of the individual aspirators was performed using a “Gilibrator 2” film gas flowmeter supplied by Sensidyne LP, USA;
- –
- Tray dimensions: diameter 53 cm, height 278 cm, volume 71 L, made of stainless steel;
- –
- Shimadzu QC 2010SE gas chromatograph equipped with an AOC 20i+s autosampler and a Zebron ZB-PAH-EU 30 m I.D. 0.25 mm column with a 20 μm film thickness;
- –
- AS 120.R2 Plus analytical balance supplied by Radwag S.A. Radom, Poland;
- –
- 1200 W fireclay heating element for a tiled stove (ceramic heater).
2.3. Fire Tests
2.4. Physicochemical Testing of Dust and Air Samples
- –
- Injection temperature: 320 °C Pulsed Splitless (1 min, 130 kPa)
- –
- Splitless time: 40 s
- –
- Injection volume: 2 μL
- –
- Carrier gas: helium 2.0 mL/min, constant flow, linear velocity 50.7 cm/s
- –
- Temperature: Isothermal program at 40 °C for 1 min, then increased at a rate of 15 °C/min to 320 °C, maintained for 10 min
- –
- Ion Source Temp.: 260 °C
- –
- Interface temp: 300 °C
- –
- Detector voltage: 1.3 kV
- –
- Solvent cut time: 8 min
- –
- Detector mode: SIM
- –
- Event time: 1 s
3. Results and Discussion
3.1. Fire Extinguishing Effectiveness of the Analyzed Agents
3.2. Pollutant Emissions During a Battery Fire
3.3. PAHs in Fire Debris
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesiak, P.; Pietrzela, D.; Mortka, P. Methods Used to Extinguish Fires in Electric Vehicles. Saf. FIRE Technol. 2021, 58, 38–57. [Google Scholar] [CrossRef]
- Guo, L.; Thornton, D.B.; Koronfel, M.A.; Steohens, I.E.L.; Ryan, M.P. Degradation in lithium ion battery current collectors. J. Phys. Energy 2021, 3, 032015. [Google Scholar] [CrossRef]
- Singh, B.; Singh, P.; Tejani, G.G.; Sharma, S.K.; Mousavirad, S.J. Role of lithium-ion batteries in microgrid system. Transp. Eng. 2025, 21, 100368. [Google Scholar] [CrossRef]
- Pan, L. Why Lithium-Ion Batteries Outperform Traditional Batteries, Large Power. 2025. Available online: https://www.large-battery.com/pl/blog/lithium-battery-advantages-over-traditional/ (accessed on 30 October 2025).
- Du, H.; Wang, Y.; Kang, Y.; Zhao, Y.; Tian, Y.; Wang, X.; Tan, Y.; Liang, Z.; Wozny, J.; Li, T.; et al. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries. Adv. Mater. 2024, 36, e2401482. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Yuan, M.Q.; Liu, K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 2020, 43, 58–70. [Google Scholar] [CrossRef]
- Rahmani, A.; Dibaj, M.; Akrami, M. Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review. Batteries 2024, 10, 265. [Google Scholar] [CrossRef]
- Rasool, G.; Xinhua, W.; Sun, T.; Hayat, T.; Sheremet, M.; Uddin, A.; Shahzad, H.; Abbas, K.; Razzaq, I.; Yuexin, W. Recent advancements in battery thermal management system (BTMS): A review of performance enhancement techniques with an emphasis on nano-enhanced phase change materials. Heliyon 2024, 10, e36950. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Chiavazzo, E.; Mongibello, L. Trending applications of Phase Change Materials in sustainable thermal engineering: An up-to-date review. Energy Convers. Manag. X 2025, 25, 100862. [Google Scholar] [CrossRef]
- Yuan, S.; Chang, C.; Yan, S.; Zhou, P.; Qian, X.; Yuan, M.; Liu, K. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 2021, 62, 262–280. [Google Scholar] [CrossRef]
- Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manag. 2019, 200, 112071. [Google Scholar] [CrossRef]
- MarketsandMarkets. Global EV Manufacturing Ecosystem Market. Future of EV Manufacturing. Report Code AT 9248. 2024. Available online: https://www.marketsandmarkets.com/Market-Reports/future-of-ev-manufacturing-market-255751150.html?gad_source=1&gad_campaignid=251804956&gclid=Cj0KCQiArOvIBhDLARIsAPwJXOby6hET4_l0SNUi6ueMm7BRBfwkjlwOw91sgImusAZ-QD3xwQE_E1EaAi0YEALw_wcB (accessed on 17 November 2025).
- Struzewska, J.; Kaminski, J.; Durka, P.; Jeleniewicz, G.; Kłos, M.; Zagrajek, K. Impact of the development of electromobility in Poland on the background level of atmospheric pollution. Environ. Eng. Res. 2025, 30, 240328. [Google Scholar] [CrossRef]
- Ubaldi, S.; Di Bari, C.; Quinterno, M.; De Rosa, A.; Mazzaro, M.; Ferrigno, G.; Secci, D.; Russo, P. Suppression capacity and environmental impact of three extinguishing agents for lithium-ion battery fires. Case Stud. Chem. Environ. Eng. 2024, 10, 100810. [Google Scholar] [CrossRef]
- Janik, P.; Tępiński, J. Fire Safety of Lithium-Ion Battery Warehouses–Challenges and Dilemmas. Saf. Fire Technol. 2025, 65, 98–107. [Google Scholar] [CrossRef]
- Wolny, P.; Mikołajczyk, P.; Mikołajczyk, P.; Nadarzyński, A.; Lesiak, P.; Bąk, D.; Kaczmarzyk, P. Reflections on Lithium-Ion Cells. Genesis of the Problem and Theoretical Introduction. Saf. Fire Technol. 2024, 63, 70–86. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Duan, Q.; Chen, M.; Xu, J.; Zhao, C.; Sun, J.; Wang, Q. Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion batettery fires. J. Energy Storage 2020, 32, 101801. [Google Scholar] [CrossRef]
- Zalosh, R.; Gandhi, P.; Barowy, A. Lithium-ion Energy storage battery explosion incidents. J. Loss Prev. Process Ind. 2021, 72, 104560. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Gniazdowska, J.; Zielecka, M.; Bąk, D.; Dziechciarz, A.; Klapsa, W.; Rabajczyk, M.N. Electric and hybrid vehicle fires-metal emission hazard. Appl. Sci. 2025, 15, 12165. [Google Scholar] [CrossRef]
- Bugryniec, P.; Resendiz, E.G.; Nwophoke, S.M.; Khanna, S.; James, C.; Brown, S.F. Review of gas emissions from lithium-ion battery thermal runaway failure—Considering toxic and flammable compounds. J. Energy Storage 2024, 87, 111288. [Google Scholar] [CrossRef]
- Babiński, K.; Gemra, A.; Janik, P.; Jelonek, B.; Kamiński, M.; Kielin, J.; Klapsa, W.; Kowalik, A.; Krawczyk, K.; Kwiatkowski, M.; et al. Guidelines for Fire Protection of Garages in Construction Objects Intended for Charging Electric and Plug-in Hybrid Cars; CNBOP-PIB: Józefów, Poland, 2024; 165p. [Google Scholar] [CrossRef]
- EN 3-7:2004+A1:2008; Portable Fire Extinguishers—Part 7: Characteristics, Performance Requirements and Test Methods. Comite Europeen de Normalisation: Brussels, Belgium, 2008.
- EN 13890:2009; Workplace Exposure—Procedures for Measuring Metals and Metalloids in Airborne Particles—Requirements and Test Methods. Comite Europeen de Normalisation: Brussels, Belgium, 2009.
- Maloney, T. Extinguishment of Lithium-Ion and Lithium-Metal Battery Fires. Available online: https://www.fire.tc.faa.gov/pdf/TC-13-53.pdf (accessed on 12 November 2025).
- Ghiji, M.; Novozhilov, V.; Moinuddin, K.; Joseph, P.; Burch, I.; Suendermann, B.; Gamble, G. A Review of Lithium-Ion Battery Fire Suppression. Energies 2020, 13, 5117. [Google Scholar] [CrossRef]
- Hazard Control Technologies Europe GmbH. Available online: https://hct-world.com/news/ (accessed on 17 November 2025).
- Luo, W.-T.; Zhu, S.-B.; Gong, J.-H.; Zhou, Z. Research and Development of Fire Extinguishing Technology for Power Lithium Batteries. Procedia Eng. 2018, 211, 531–537. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, R.; Zhu, P. Study on the Effectiveness of Perfluorohexanone in Extinguishing Small-Scale Pool Fires in Enclosed Compartments Under Low-Pressure Conditions. Fire 2025, 8, 472. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Cheng, Y.; Zhou, X.; Zhang, W.; Cao, Y.; Cheng, Q. Research on fire extinguishing agents for lithium-ion battery fires. In Proceedings of the International Conference on Optics, Electronics, and Communication Engineering (OECE 2025), Wuhan, China, 22–24 August 2025; Volume 13965, p. 139654K. [Google Scholar] [CrossRef]
- Wang, X.; He, Z.; Gao, J.; Guo, Y.; Zhang, H.; Wang, M. External Barrier and Internal Attack: Synergistic Effect of Microcapsule Fire Extinguishing Agent and Fine Water Mist on Suppressing Lithium-Ion Battery Fire. Materials 2025, 18, 3082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Zhang, Y.; Li, C.; Wu, Y.; Feng, X.; Lu, L.; Ouyang, M. Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery. J. Energy Storage 2021, 39, 102639. [Google Scholar] [CrossRef]
- Adebanjo, I.T.; Eko, J.; Agbeyegbe, A.G.; Yuk, S.F.; Cowart, S.V.; Nagelli, E.A.; Burpo, F.J.; Allen, J.L.; Tran, D.T.; Bhattarai, N.; et al. A comprehensive review of lithium-ion battery components degradation and operational considerations: A safety perspective. Energy Adv. 2025, 4, 820–877. [Google Scholar] [CrossRef]
- Wu, L.; Nam, K.W.; Wang, X.; Zhou, Y.; Zheng, J.C.; Yang, X.Q.; Zhu, Y. Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries. Chem. Mater. 2011, 23, 3953–3960. [Google Scholar] [CrossRef]
- Sun, H.H.; Dolocan, A.; Weeks, J.A.; Rodriguez, R.; Heller, A.; Mullins, C.B. In Situ Formation of a Multicomponent Inorganic-rich SEI layer Provides a Fast Charging and High Specific Energy Li-metal Battery. J. Mater. Chem. A 2019, 7, 17782–17789. [Google Scholar] [CrossRef]
- Phanomai, G.; Phanomai, K.; Tassananakajit, K.; Wongwises, S.; Trinuruk, P. Experimental Study on the Explosion Intensity of Lithium-Ion Batteries in Air and Helium Environments. In Proceedings of the 13th TSME International Conference on Mechanical Engineering-TSME ICOME 2023, Chiang Mai, Thailand, 12–15 December 2023; Volume AEC0005, pp. 40–49. [Google Scholar]
- Mao, B.; Chen, H.; Jiang, L.; Zhao, C.; Sun, J.; Wang, O. Refined study on lithium ion battery combustion in open space and a combustion chamber. Process Saf. Environ. Prot. 2020, 139, 133–146. [Google Scholar] [CrossRef]
- Li, W.; Xue, Y.; Feng, X.; Rao, S.; Zhang, T.; Gao, Z.; Guo, Y.; Zhou, H.; Zhao, H.; Song, Z.; et al. Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review. J. Energy Storage 2024, 78, 109980. [Google Scholar] [CrossRef]
- Bordes, A.; Papin, A.; Marlair, G.; Claude, T.; El-Masri, A.; Durussel, T.; Bertrand, J.-P.; Truchot, B.; Lecocq, A. Assessment of Run-Off Waters Resulting from Lithium-Ion Battery Fire-Fighting Operations. Batteries 2024, 10, 118. [Google Scholar] [CrossRef]
- Perlipol. Safety Data Sheet. Vermiculite in Accordance with the Criteria of Regulation No EC/1907/2006 and EU/2015/830. 2020. Available online: https://perlipol.com.pl/dokumenty/safty%20data%20sheet%20wermiculit%2025022020.pdf (accessed on 10 November 2025).
- Das, D.; Manna, S.; Puravankara, S. Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries-A Review. Batteries 2023, 9, 193. [Google Scholar] [CrossRef]
- Safe Work Australia. Workplace Exposure Limits for Airborne Contaminants. Work Health and Safety (WHS). 2025. Available online: https://www.safeworkaustralia.gov.au/sites/default/files/2025-05/workplace-exposure-limits-amended-may_2025.pdf (accessed on 5 November 2025).
- The Japan Society for Occupational Health. Recommendation of Occupational Exposure Limits (2018–2019). J. Occup. Health 2018, 60, 419–542. [Google Scholar] [CrossRef]
- Republique Francaise. Legifrance. Droit Nationasl en Vigueur. Sous-Section 1: Fixation des Valeurs Limites D’exposition Professionnelle. Article R4412-149. 2025. Available online: https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000049367736 (accessed on 15 October 2025).
- Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA). Occupational Exposure Limit Values (OELs); IFA Report 2/2024—Grenzwerteliste 2024; Deutsche Gesetzliche Unfallversicherung (DGUV): Sankt Augustin, Germany, 2024. [Google Scholar]
- Occupational Safety and Health Standards. Standard Number 1910.1000-Air Contaminants. Toxic and Hazardous Substances. Permissible Exposure Limits–Annotated Tables. 2016. Available online: https://www.osha.gov/annotated-pels/table-z-1 (accessed on 15 October 2025).
- Minister of Family, Labour and Social Policy. Regulation of the Minister of Family, Labour and Social Policy of 12 June 2018 on the Maximum Permissible Concentrations and Intensities of Factors Harmful to Health in the Work Environment. Available online: https://eli.gov.pl/eli/DU/2018/1286/ogl (accessed on 15 October 2025).
- Hynynen, J.; Willstrand, O.; Blomqvist, P.; Andersson, P. Analysis of combustion gases from large-scale electric vehicle test. Fire Safety J. 2023, 139, 103829. [Google Scholar] [CrossRef]
- Essl, C.; Golubkov, A.W.; Gasser, E.; Nachtnebel, M.; Zankel, A.; Ewert, E.; Fuchs, A. Comprehensive hazard analysis of failing automotive lithium-ion batteries in overtemperature experiments. Batteries 2020, 6, 30. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C. Quantitative identification of emissions from abused prismatic Ni-rich lithium ion batteries. eTransportation 2019, 21, 100031. [Google Scholar] [CrossRef]
- Claassen, M.; Bingham, B.; Chow, J.C.; Watson, J.G.; Wang, Y.; Wang, X. Characterization of Lithium-Ion Battery Fire Emissions—Part 1: Chemical Composition of Fine Particles (PM2.5). Batteries 2024, 10, 301. [Google Scholar] [CrossRef]
- Shi, G.; Cheng, J.; Wang, J.; Zhang, S.; Shao, X.; Chen, X.; Li, X.; Xin, B. A comprehensive review of full recycling and utilization of cathode and anode as well as electrolyte from spent lithium-ion batteries. J. Energy Storage 2023, 72, 108486. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Kong, S.; Wu, Y.; Li, S.; Hu, D.; Hu, K.; Ding, S.; Qiu, H.; Li, W.; et al. Contrasting resistance of polycyclic aromatic hydrocarbons to atmospheric oxidation influenced by burning conditions. Environ. Res. 2022, 211, 113107. [Google Scholar] [CrossRef]
- Held, M.; Tuchschmid, M.; Zennegg, M.; Figi, R.; Schreiner, C.; Mellert, L.D.; Welte, U.; Kompatscher, M.; Hermann, M.; Nachef, L. Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility. Renew. Sustain. Energy Rev. 2022, 165, 112474. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Kim, I.T. Recent Advances in Sodium-Ion Batteries: Cathode Materials. Materials 2023, 16, 6869. [Google Scholar] [CrossRef]





| PAH | Pearson Correlation Coefficient R | RSD [%] |
|---|---|---|
| Naphthalene | 0.9999 | 2.15% |
| Acenaphthylene | 0.9996 | 6.12% |
| Acenaphthene | 0.9991 | 8.17% |
| Fluorene | 0.9984 | 12.47% |
| Phenanthrene | 0.9984 | 12.19% |
| Anthracene | 0.9978 | 11.70% |
| Fluoroanthene | 0.9977 | 11.86% |
| Pyrene | 0.9968 | 12.67% |
| Benzo(a)anthracene | 0.9972 | 13.27% |
| Chrysene | 0.9969 | 10.54% |
| Benzo(k)fluoroanthene | 0.9965 | 10.08% |
| Benzo(b)fluoroanthene | 0.9987 | 10.08% |
| Benzo(a)pyrene | 0.9948 | 8.09% |
| Indeno(1,2,3-cd)pyrene | 0.9947 | 14.20% |
| Dibenzo(a,h)anthracene | 0.9937 | 14.95% |
| Benzene(g,h,i)perylene | 0.9925 | 14.83% |
| Extinguishing Agent | Fire Extinguished [YES/NO] | Fire Site Temperature [°C] | Observations |
|---|---|---|---|
| Quartz sand | YES | <100 | After filling, the flame was immediately extinguished. Explosions were heard inside the tray. No smoke was observed. After the battery was discovered, no trace of embers was found (Figure 5a). |
| Exfoliated vermiculite | YES | <180 | After completely covering the battery, the flame was immediately extinguished. Explosions were heard inside the tray. A minimal amount of smoke was noted. Upon uncovering the battery, no trace of embers was found (Figure 5b). |
| Fire extinguishing granules | YES | <500 | After the battery was completely covered, the flame was immediately extinguished. Explosions were heard inside the tray. Heavy smoke was noted. Upon uncovering the battery, numerous clusters of embers were observed (Figure 5c). |
| PAH | Inhalable Fraction | ||
|---|---|---|---|
| Quartz Sand | Exfoliated Vermiculite | Fire Extinguishing Granules | |
| Naphthalene | 0.0651 | 0.1353 | 0.0343 |
| Acenaphthylene | 0.0198 | 0.0296 | 0.0103 |
| Acenaphthene | 0.0004 | 0.0008 | 0.0004 |
| Fluorene | 0.0046 | 0.0096 | 0.0037 |
| Phenanthrene | 0.0096 | 0.0161 | 0.0057 |
| Anthracene | 0.0013 | 0.0027 | 0.0009 |
| Fluoroantennae | 0.0011 | 0.0035 | 0.0024 |
| Pyrene | 0.0006 | 0.0023 | 0.0019 |
| Benzo(a)anthracene | <0.0001 | 0.0003 | 0.0005 |
| Chrysene | <0.0001 | 0.0002 | 0.0005 |
| Benzo(k)fluoroantennas | 0.0001 | 0.0003 | 0.0003 |
| Benzo(b)fluoroanthenes | 0.0001 | 0.0003 | 0.0003 |
| Benzo(a)pyrene | <0.0001 | 0.0002 | 0.0003 |
| Indeno(1,2,3-cd)pyrene | <0.0001 | 0.0002 | 0.0002 |
| Dibenzo(a,h)anthracene | <0.0001 | 0.0002 | 0.0001 |
| Benzene(g,h,i)perylene | <0.0001 | 0.0001 | <0.0001 |
| TOTAL: | 0.103 | 0.202 | 0.062 |
| Analyte | Inhalable Fraction Quantity | ||
|---|---|---|---|
| Quartz Sand | Exfoliated Vermiculite | Fire Extinguishing Granules | |
| Soot dust | 2.77 | 3.13 | 2.25 |
| including: | |||
| Zinc oxide | <0.021 | <0.021 | <0.021 |
| Aluminum | <0.021 | 0.11 | 0.04 |
| Cadmium | <0.0016 | <0.0016 | <0.0016 |
| Cobalt | <0.01 | 0.06 | 0.02 |
| Lithium | <0.01 | 0.12 | 0.03 |
| Manganese | <0.021 | 0.04 | <0.021 |
| Copper | <0.021 | <0.021 | <0.021 |
| Nickel | <0.021 | 0.56 | 0.18 |
| Lead | <0.021 | <0.21 | <0.021 |
| Iron | <0.021 | 0.03 | <0.021 |
| Toxic Substance | Australia [42] | Japan [43] | France [44] | Germany [45] | USA [46] | Poland [47] |
|---|---|---|---|---|---|---|
| Dust | 10 | 10 | 10 | 10 | 10 | 10 |
| Aluminum | Als—10 Alg—5 | - | Alm—10 Alwf—5 | - | Alif—10 | Alif—2.5 Alrf—1.2 |
| Cobalt | Codf—0.05 | 0.05 | 0.001 | 0.005 | 0.02 | 0.02 |
| Lithium | LiOH—0.025 | LiOH—1.0 | LiOH—0.02 (STEL) | Lisoh—0.2 | LiOH—0.025 | LiOH—0.01 |
| Manganese | Mndf—1 | Mnif—0.1 Mnrf—0.02 | Mnif—0.2 Mnrf—0.05 | Mnif—0.15 | 0.2 | Mnif—0.2 Mnrf—0.05 |
| Nickel | 1 | 1 | 1 | 0.03 | 0.5 | 0.25 |
| PAH | Coal tar (dust and vapor—benzene-soluble fraction)—0.2 | N/A | Coal tar (dust and vapor—benzene-soluble fraction)—0.2 | B(a)P—0.00007 Mixture—0.0007 | Naphthalene—100 Phenanthrene—0.00888 Anthracene—0.00079 Pyrene—0.009 Chrysene—0.00327 B(a)P—0.00249 | as the product of the concentrations of 9 carcinogenic PAHs and their carcinogenicity coefficients—0.002 |
| PAH | The Amount of PAH in the Extinguishing Agent Residues | ||
|---|---|---|---|
| Quartz Sand | Exfoliated Vermiculite | Fire Extinguishing Granules | |
| Naphthalene | 0.078 | 0.833 | 10.50 |
| Acenaphthylene | 0.040 | 0.000 | 2.97 |
| Acenaphthene | 0.011 | 0.066 | 0.89 |
| Fluorene | 0.000 | 0.275 | 27.87 |
| Phenanthrene | 0.159 | 2.453 | 66.24 |
| Anthracene | 0.158 | 0.436 | 14.41 |
| Fluoroantennae | 0.071 | 0.000 | 10.82 |
| Pyrene | 0.101 | 2.202 | 8.32 |
| Benzo(a)anthracene | 0.000 | 0.790 | 1.94 |
| Chrysene | 0.007 | 1.602 | 3.92 |
| Benzo(k)fluoroantennas | 0.000 | 0.000 | 0.96 |
| Benzo(b)fluoroanthenes | 0.000 | 0.000 | 0.96 |
| Benzo(a)pyrene | 0.000 | 0.091 | 0.33 |
| Indeno(1,2,3-cd)pyrene | 0.002 | 0.063 | 0.17 |
| Dibenzo(a,h)anthracene | 0.002 | 0.049 | 0.13 |
| Benzene(g,h,i)perylene | 0.002 | 0.043 | 0.09 |
| TOTAL: | 0.631 | 8.902 | 150.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rabajczyk, A.; Gniazdowska, J.; Stojek, P.; Mortka, P.; Lutoborski, T. Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants. Materials 2026, 19, 180. https://doi.org/10.3390/ma19010180
Rabajczyk A, Gniazdowska J, Stojek P, Mortka P, Lutoborski T. Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants. Materials. 2026; 19(1):180. https://doi.org/10.3390/ma19010180
Chicago/Turabian StyleRabajczyk, Anna, Justyna Gniazdowska, Piotr Stojek, Piotr Mortka, and Tomasz Lutoborski. 2026. "Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants" Materials 19, no. 1: 180. https://doi.org/10.3390/ma19010180
APA StyleRabajczyk, A., Gniazdowska, J., Stojek, P., Mortka, P., & Lutoborski, T. (2026). Evaluation of the Effectiveness of Selected Extinguishing Agents for Extinguishing Li-Ion Batteries and for Capturing Selected Contaminants. Materials, 19(1), 180. https://doi.org/10.3390/ma19010180

