Yeast Biosensors for the Safety of Fermented Beverages
Abstract
1. Introduction
2. Yeast Biosensors: Principles and Design
2.1. Definition and General Architecture of Biosensors
2.2. Advantages of Yeast-Based Systems
2.3. Reporter Systems and Signal Transduction
2.3.1. Fluorescent and Luminescent Reporters
2.3.2. Enzymatic, Colorimetric, and Electrochemical Reporters
3. Detection Targets in Fermented Beverages
3.1. Chemical Contaminants
3.1.1. Heavy Metals
3.1.2. Mycotoxins
3.1.3. Biogenic Amines
3.1.4. Fermentation By-Products (Acetaldehyde, Acetic Acid, Among Others)
3.2. YBB for Spoilage Microorganisms in Fermented Beverages
3.2.1. YBB for Brettanomyces and Other Yeast Contaminants
3.2.2. YBB for Lactic Acid Bacteria and Acetic Acid Bacteria
4. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAB | Acetic Acid Bacteria |
| ADE2 | A gene involved in the adenine biosynthesis pathway in Saccharomyces cerevisiae; when used as a reporter, ADE2 expression enables visual detection via colony color changes (white vs. red) |
| AFB1 | Aflatoxin B1, a highly toxic and carcinogenic mycotoxin produced mainly by Aspergillus species |
| AFM1 | Aflatoxin M1, a hydroxylated metabolite of aflatoxin B1, can appear in milk and fermented products |
| AMR | Antimicrobial resistance |
| ARGs | Antibiotic-resistant bacteria and genes |
| BM3R1 | DNA-binding domain derived from the BM3R1 regulator of Bacillus megaterium; used heterologously to confer specific DNA-binding capability in synthetic transcription factors |
| BN | Boron nitride—a nanomaterial (often hexagonal boron nitride, h-BN) used in sensing applications due to its chemical stability, optical properties, and ability to enhance fluorescence signals |
| BPA | Bisphenol A |
| CD | Carbon dots—nanoscale carbon-based fluorescent nanoparticles known for strong photoluminescence, high stability, and low toxicity |
| CFU | Colony-forming units |
| ConA | Concanavalin A |
| CRISPRi | CRISPR interference—a gene-silencing technology that uses a catalytically inactive Cas protein to repress transcription without cutting DNA |
| CUP1 | Copper Metallothionein 1 promoter—a copper-inducible promoter in S. cerevisiae |
| Cup2 | Copper-responsive transcriptional activator (also known as Ace1) that regulates CUP1 expression |
| DNA | Deoxyribonucleic acid |
| DON | Deoxynivalenol—a trichothecene mycotoxin also known as vomitoxin |
| EDCs | Endocrine-disrupting compounds |
| ELISA | Enzyme-linked immunosorbent assay |
| Fab | Fragment antigen-binding—the antigen-binding region of an antibody, consisting of one constant and one variable domain from both the heavy and light chains |
| Fab@YSD | Fab fragments displayed on the surface of yeast cells using YSD technology |
| FACS | Fluorescence-Activated Cell Sorting—a flow-cytometry-based method that sorts cells according to fluorescent signals |
| FDA | Food and Drug Administration |
| GC-MS | Gas chromatography coupled with mass spectrometry |
| GFP | Green Fluorescent Protein |
| GPCR | G protein-coupled receptor—a large family of membrane receptors that detect extracellular signals (such as pheromones) and activate intracellular signaling cascades |
| GRAS | Generally recognized as safe |
| Haa1 | Acetic-acid-responsive transcriptional regulator in S. cerevisiae that mediates cellular tolerance to acetic acid |
| HAA1 | High Acetic Acid Tolerance 1—a transcription factor in Saccharomyces cerevisiae that regulates genes involved in the cellular response to acetic acid; the HAA1 promoter is activated under acetic acid stress |
| hER | human estrogen receptor |
| HPLC | High-performance liquid chromatography |
| HpSEO1 promoter | The SEO1 gene promoter from Hansenula polymorpha (the prefix Hp denotes the species), often referring to a defined promoter fragment (e.g., 500 bp) used for cadmium-inducible expression |
| HSEO1/HpSEO1 | SEO1 gene promoter from Hansenula polymorpha; HpSEO1 refers explicitly to the 500 bp promoter fragment used in reporter constructs |
| HSEO1 promoter | The promoter region of the SEO1 gene from yeast is responsive to cadmium and other heavy metals. It has been used to drive reporter gene expression in metal-responsive biosensors |
| IARC | International Agency for Research on Cancer |
| IUPAC | International Union of Pure and Applied Chemistry |
| LAB | Lactic Acid Bacteria |
| LACZ | Gene encoding β-galactosidase, widely used as a colorimetric reporter gene |
| LacZ | A reporter gene encoding β-galactosidase, an enzyme commonly used in colorimetric assays (e.g., X-gal hydrolysis) to report promoter activity |
| LOQ | Limit of quantification |
| Luc | Luciferase (most commonly firefly luciferase), which emits light in the presence of a substrate such as luciferin |
| Lux | Luciferase system encoded by the lux operon (typically bacterial luciferase that produces light autonomously |
| LuxCDABE | Bacterial luciferase (lux) gene cassette consists of five genes (CDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations |
| MACS | Magnetic-Activated Cell Sorting—a technique that uses magnetic beads to isolate cells expressing specific surface markers |
| mCherry | A basic (constitutively fluorescent) red fluorescent protein was published in 2004, derived from Discosoma sp., reported to be a very rapidly maturing monomer with low acid sensitivity |
| NADH | Nicotinamide adenine dinucleotide plus hydrogen |
| QCM | Quartz Crystal Microbalance |
| Raman | Raman spectroscopy—an analytical technique based on inelastic scattering of light, providing molecular “fingerprint” information about chemical compounds |
| RFP | Red Fluorescent Protein |
| SERS | Surface-Enhanced Raman Scattering—an advanced form of Raman spectroscopy in which the Raman signal is greatly amplified by molecules adsorbed onto nanostructured metallic surfaces (typically silver or gold) |
| SPiDER-βGal | A reagent that detects β-galactosidase and possesses high cell-permeability and intracellular retentivity |
| sTF | Synthetic Transcription Factor—an engineered regulatory protein that combines functional domains (e.g., DNA-binding and activation domains) to control gene expression in response to a specific stimulus |
| TF | Transcription factor |
| PFAS | Per- and polyfluoroalkyl substances (informally called “forever chemicals”) are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain |
| WGA | Wheat Germ Agglutinin |
| YAS | Yeast Androgen Screen |
| YES | Yeast Estrogen Screen |
| YBB | Yeast-based biosensors |
| YFP | Yellow Fluorescent Protein |
| YSD | Yeast Surface Display—a technology in which proteins (e.g., antibodies) are displayed on the surface of yeast cells |
| ZON | Zearalenone |
References
- Mainardi, P.H.; Bidoia, E.D. Food safety management: Preventive strategies and control of pathogenic microorganisms in food. Eur. J. Biol. Res. 2024, 14, 13–32. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 1 December 2025).
- Ali, A.A.; Altemimi, A.B.; Alhelfi, N.; Ibrahim, S.A. Application of biosensors for detection of pathogenic food bacteria: A review. Biosensors 2020, 10, 58. [Google Scholar] [CrossRef]
- Di Salvo, E.; Bartolomeo, G.; Vadalà, R.; Costa, R.; Cicero, N. Mycotoxins in ready-to-eat foods: Regulatory challenges and modern detection methods. Toxics 2025, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mishra, A.; Shukla, K.; Jindal, T.; Shukla, S. Food Contamination: It’s Stages And Associated Illness. Int. J. Pharm. Chem. Biol. Sci. 2020, 10, 1–7. [Google Scholar]
- Sankarankutty, K.M. Biosensors and their applications for food safety. Glob. J. Pathol. Microbiol. 2014, 2, 15–21. [Google Scholar] [CrossRef]
- Pop, O.L.; Ciont, C.; Gabbianelli, R.; Coldea, T.E.; Pop, C.R.; Mudura, E.; Min, T.; Rangnoi, K.; Yamabhai, M.; Vlair, R.; et al. Contaminants and toxins in fermented food. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13428. [Google Scholar] [CrossRef]
- Sawant, S.S.; Park, H.-Y.; Sim, E.-Y.; Kim, H.-S.; Choi, H.-S. Microbial fermentation in food: Impact on functional properties and nutritional enhancement—A review of recent developments. Fermentation 2025, 11, 15. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gomez-Sala, B.; O’Connor, E.M.; Kenny, J.G.; Cotter, P.D. Global regulatory frameworks for fermented foods. Front. Nutr. 2022, 9, 902642. [Google Scholar] [CrossRef]
- Fayyaz, K.; Nawaz, A.; Olaimat, A.N.; Akram, K.; Farooq, U.; Fatima, M.; Siddiqui, S.A.; Rana, I.S.; Mahnoor, M.; Shahbaz, H.M. Microbial toxins in fermented foods. J. Food Drug Anal. 2022, 30, 523–537. [Google Scholar] [CrossRef]
- Romero-Luna, H.E.; Peredo-Lovillo, A.; Dávila-Ortiz, G. Tepache: A Pre-Hispanic Fermented Beverage as a Potential Source of Probiotic Yeasts. In Hispanic Foods: Chemistry of Fermented Foods; ACS Publications: Washington, DC, USA, 2022; pp. 135–147. [Google Scholar] [CrossRef]
- Motlhanka, K.; Lebani, K.; Boekhout, T.; Zhou, N. Fermentative microbes of khadi beverage. Fermentation 2020, 6, 51. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, Μ.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Hendriks, H. Associations between Low to Moderate Consumption of Alcoholic Beverage Types and Health Outcomes: A Systematic Review. Alcohol Alcohol. 2022, 57, 176–184. [Google Scholar] [CrossRef]
- Gonchar, M.; Smutok, O.; Karkovska, M.; Stasyuk, N.; Gayda, G. Yeast-based biosensors for clinical diagnostics and food control. In Biotechnology of Yeasts and Filamentous Fungi; Springer: Cham, Switzerland, 2017; pp. 391–412. [Google Scholar] [CrossRef]
- Finlay, B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2012, 8, 26–38. [Google Scholar] [CrossRef]
- Pokharel, P.; Dhakal, S.; Dozois, C. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins 2019, 11, 4. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical assessment of mycotoxins in beverages and their control measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Avîrvarei, A.C.; Salanță, L.C.; Pop, C.R.; Mudura, E.; Pasqualone, A.; Anjos, O.; Coldea, T.E. Fruit-based fermented beverages: Contamination sources and emerging technologies applied to assure their safety. Foods 2023, 12, 838. [Google Scholar] [CrossRef]
- Choi, J.; Rotter, S.; Ritz, V.; Kneuer, C.; Marx-Stoelting, P.; de Lourdes Marzo Solano, M.; Oertel, A.; Rudzok, S.; Ziková-Kloas, A.; Tralau, T.; et al. Thresholds of adversity for endocrine disrupting substances: A conceptual case study. Arch. Toxicol. 2024, 98, 2019–2045. [Google Scholar] [CrossRef]
- Brescia, S. Thresholds of adversity and their applicability to endocrine disrupting chemicals. Crit. Rev. Toxicol. 2020, 50, 213–218. [Google Scholar] [CrossRef]
- Demeneix, B.; Vandenberg, L.; Ivell, R.; Zoeller, R. Thresholds and endocrine disruptors: An Endocrine Society policy perspective. J. Endocr. Soc. 2020, 4, bvaa085. [Google Scholar] [CrossRef]
- Youssef, M.; Helal, A.; Khedr, Y. Endocrine disrupting chemicals and human health: A review of toxicological mechanisms and regulatory challenges. J. Biomed. Biochem. 2025, 4, 14–26. [Google Scholar] [CrossRef]
- Hilz, E.; Gore, A. Endocrine-disrupting chemicals: Science and policy. Policy Insights Behav. Brain Sci. 2023, 10, 142–150. [Google Scholar] [CrossRef]
- Chaves, C.; Salamandane, A.; Vieira, E.; Salamandane, C. Antibiotic resistance in fermented foods chain: Evaluating the risks of emergence of enterococci as an emerging pathogen in raw milk cheese. Int. J. Microbiol. 2024, 2024, 2409270. [Google Scholar] [CrossRef]
- Vinayamohan, P.; Viju, L.; Joseph, D.; Venkitanarayanan, K. Fermented foods as a potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation 2023, 9, 688. [Google Scholar] [CrossRef]
- Li, Y.; Fu, S.; Klein, M.; Wang, H. High prevalence of antibiotic resistance in traditionally fermented foods as a critical risk factor for host gut antibiotic resistome. Microorganisms 2023, 12, 1433. [Google Scholar] [CrossRef]
- Calsin-Cutimbo, M.; Huamán-Castilla, N.; Mayta-Hancco, J.; Escobedo-Pacheco, E.; Zirena-Vilca, F. Study of the effect of antibiotics in drinking water on the content of antioxidant compounds in red wines. Molecules 2023, 28, 206. [Google Scholar] [CrossRef]
- Annunziata, L.; Campana, G.; De Massis, M.R.; Aloia, R.; Scortichini, G.; Visciano, P. Ochratoxin A in foods and beverages: Dietary exposure and risk assessment. Expo. Health 2025, 17, 481–494. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L 119, 103–130. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 1 December 2025).
- Golge, O.; Yenisehirlioglu, E.; Kabak, B. A preliminary study on patulin contamination in spirit drinks. Food Addit. Contam. Part B Surveill. 2022, 15, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e25643. [Google Scholar] [CrossRef] [PubMed]
- Nalazek-Rudnicka, K.; Wojnowski, W.; Wasik, A. Occurrence of biogenic amines in beers. Foods 2021, 10, 2902. [Google Scholar] [CrossRef]
- Milheiro, J.; Ferreira, L.C.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A simple dispersive solid phase extraction clean-up/concentration method for selective and sensitive quantification of biogenic amines in wines using benzoyl chloride derivatisation. Food Chem. 2019, 274, 110–117. [Google Scholar] [CrossRef]
- Gil, R.L.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. HPLC–potentiometric method for determination of biogenic amines in alcoholic beverages. Food Chem. 2022, 372, 131288. [Google Scholar] [CrossRef] [PubMed]
- Visciano, P.; Schirone, M. Update on biogenic amines in beverages. Foods 2022, 11, 353. [Google Scholar] [CrossRef]
- Li, C.; Han, X.; Han, B.; Deng, H.; Wu, T.; Zhao, X.; Huang, W.; Zhan, J.; You, Y. Survey of biogenic amines in craft beer from China. Food Chem. 2023, 405, 134861. [Google Scholar] [CrossRef]
- Angulo, M.F.; Flores, M.; Aranda, M.; Henríquez-Aedo, K. Fast and selective method for biogenic amines determination in wines and beers by ultra-high-performance liquid chromatography. Food Chem. 2020, 309, 125689. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L. Biogenic amines in alcohol-free beverages. Beverages 2020, 6, 17. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Ferreira, L.C.; Correia, E.; Cosme, F.; Nunes, F.M. Biogenic amines in wines. LWT 2019, 115, 108488. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2021; Volume 1, ISBN 978-2-85038-034-1. [Google Scholar]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L 338, 1–26. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj (accessed on 1 December 2025).
- Oliveira, M.; Barbosa, J.; Teixeira, P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol. Res. 2025, 297, 128187. [Google Scholar] [CrossRef]
- Dordevic, D.; Capikova, J.; Dordevic, S.; Tremlová, B.; Gajdács, M.; Kushkevych, I. Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies. Heliyon 2023, 9, e15452. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Delegated Regulation (EU) 2019/934 of 12 March 2019 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards wine-growing areas where the alcoholic strength may be increased, authorised oenological practices and restrictions applicable to the production and conservation of grapevine products, the minimum percentage of alcohol for by-products and their disposal, and publication of OIV files. Off. J. Eur. Union 2019, L 149, 1–52. Available online: https://eur-lex.europa.eu/eli/reg_del/2019/934/oj (accessed on 1 December 2025).
- Tungkijanansin, N.; Alahmad, W.; Nhujak, T.; Varanusupakul, P. Determination of preservatives in fermented foods by liquid chromatography. Food Chem. 2020, 329, 127161. [Google Scholar] [CrossRef]
- Meena, M.; Prajapati, P.; Ravichandran, C.; Sehrawat, R. Natamycin: A natural preservative for food applications—A review. Food Sci. Biotechnol. 2021, 30, 1481–1496. [Google Scholar] [CrossRef]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Silva, R.F.; Chaves, S.R.; Sousa, M.J.; Côrte-Real, M. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines—Minireview. Appl. Microbiol. Biotechnol. 2011, 89, 271–280. [Google Scholar] [CrossRef]
- Kokkinakis, M.; Tsakiris, I.; Tzatzarakis, M.; Vakonaki, E.; Alegakis, A.; Papachristou, S.; Karzi, V.; Kokkinaki, A.; Goumenou, M.; Kallionakis, M.; et al. Carcinogenic, ethanol, acetaldehyde and noncarcinogenic higher alcohols, esters, and methanol compounds found in traditional alcoholic beverages: A risk assessment approach. Toxicol. Rep. 2020, 7, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Sohnius, E.M. The role of acetaldehyde outside ethanol metabolism. Food Chem. Toxicol. 2008, 46, 2903–2911. [Google Scholar] [CrossRef]
- Guittin, C.; Maçna, F.; Picou, C.; Perez, M.; Barreau, A.; Poitou, X.; Farines, V. New online monitoring approaches to describe acetaldehyde kinetics during wine fermentation. Fermentation 2023, 9, 299. [Google Scholar] [CrossRef]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Virtuoso, S.; Raggi, C.; Maugliani, A.; Baldi, F.; Gentili, D.; Narciso, L. Toxicological effects of naturally occurring endocrine disruptors on various human health targets: A rapid review. Toxics 2024, 12, 256. [Google Scholar] [CrossRef]
- Inês, A.; Cosme, F. Biosensors for detecting food contaminants—An overview. Processes 2025, 13, 380. [Google Scholar] [CrossRef]
- Otles, S.; Topkaya, S.N.; Ozyurt, V.H. Recent advances in biosensors in beverages. In Engineering Tools in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–445. [Google Scholar]
- Adeniran, A.; Sherer, M.; Tyo, K.E.J. Yeast-based biosensors: Design and applications. FEMS Yeast Res. 2015, 15, fov011. [Google Scholar] [CrossRef]
- Moraskie, M.; Roshid, M.H.O.; O’Connor, G.; Dikici, E.; Zingg, J.-M.; Deo, S.; Daunert, S. Microbial whole-cell biosensors. Biosens. Bioelectron. 2021, 191, 113359. [Google Scholar] [CrossRef]
- Wahid, E.; Ocheja, O.B.; Marsili, E.; Guaragnella, C.; Guaragnella, N. Biological and technical challenges for implementation of yeast-based biosensors. Microb. Biotechnol. 2023, 16, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Martin-Yken, H. Yeast-based biosensors: Current applications and new developments. Biosensors 2020, 10, 51. [Google Scholar] [CrossRef]
- Gregório, B.; Ramos, I.; Marques, S.; Barreiros, L.; Magalhães, L.; Schneider, R.; Segundo, M. Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine-disrupting compounds. Talanta 2024, 271, 125665. [Google Scholar] [CrossRef]
- Xu, T.; Young, A.; Narula, J.; Sayler, G.; Ripp, S. High-throughput analysis of endocrine-disrupting compounds using BLYES and BLYAS bioluminescent yeast bioassays. Methods Mol. Biol. 2020, 2081, 29–41. [Google Scholar] [CrossRef]
- Weaver, A.A.; Halweg, S.; Joyce, M.; Lieberman, M.; Goodson, H.V. Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Anal. Bioanal. Chem. 2015, 407, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.; Miranda, E.; Amaral, L.; Carvalho, C.; Castro, B.B.; Sousa, M.K.; Chaves, S.R. Novel yeast-based biosensor for environmental monitoring of tebuconazole. Appl. Microbiol. Biotechnol. 2024, 108, 10. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. Compendium of Chemical Terminology (Gold Book), 5th ed.; IUPAC: Research Triangle Park, NC, USA, 2025. [Google Scholar] [CrossRef]
- Hart, J.K.; Martinez, K. Environmental sensor networks: A revolution in the earth system science? Earth-Sci. Rev. 2006, 78, 177–191. [Google Scholar] [CrossRef]
- Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-enabled biosensors in food packaging. Foods 2025, 14, 1403. [Google Scholar] [CrossRef]
- Srinivasan, B.; Tung, S. Development and applications of portable biosensors. J. Lab. Automat. 2015, 20, 365–389. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, W.; Mulchandani, A. Microbial biosensors. Anal. Chim. Acta 2006, 568, 200–210. [Google Scholar] [CrossRef]
- Walmsley, R.M.; Keenan, P. The Eukaryote Alternative: Advantages of Using Yeasts in Place of Bacteria in Microbial Biosensor Development. Biotechnol. Bioprocess Eng. 2000, 5, 387–394. Available online: https://link.springer.com/content/pdf/10.1007/bf02931936.pdf (accessed on 1 December 2025). [CrossRef]
- Dhakal, S.; Macreadie, I. The use of yeast in biosensing. Microorganisms 2022, 10, 1772. [Google Scholar] [CrossRef]
- Ding, N.; Zhou, S.; Deng, Y. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. ACS Synth. Biol. 2021, 10, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Gayda, G.; Stasyuk, N.; Smutok, O.; Gonchar, M.; Sibirny, A.A. Yeast-based biosensors for clinical diagnostics, food control, and environmental safety. In Biotechnology of Yeasts and Filamentous Fungi; Springer: Cham, Switzerland, 2025; pp. 405–435. [Google Scholar]
- Belkin, S. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 2003, 6, 206–212. [Google Scholar] [CrossRef]
- Ibraheem, R.E.; Campbell, R.E. Designs and applications of fluorescent protein-based biosensors. Curr. Opin. Chem. Biol. 2010, 14, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Daunert, S.; Barrett, G.; Feliciano, J.S.; Shetty, R.S.; Shrestha, S.; Smith-Spencer, W. Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev. 2000, 100, 2705–2738. [Google Scholar] [CrossRef]
- Rotariu, L.; Bala, C.; Magearu, V. New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Anal. Chim. Acta 2004, 513, 119–123. [Google Scholar] [CrossRef]
- Garjonyte, R.; Melvydas, V.; Malinauskas, A. Amperometric biosensors for lactic acid based on baker’s and wine yeast. Microchim. Acta 2008, 164, 177–183. [Google Scholar] [CrossRef]
- Hassan, R.Y.; Febbraio, F.; Andreescu, S. Microbial electrochemical systems: Principles, construction and biosensing applications. Sensors 2021, 21, 1279. [Google Scholar] [CrossRef]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Galarion, L.; Mitchell, J.; Randall, C.; O’Neill, A. An extensively validated whole-cell biosensor for specific, sensitive and high-throughput detection of antibacterial inhibitors targeting cell-wall biosynthesis. J. Antimicrob. Chemother. 2023, 78, 646–655. [Google Scholar] [CrossRef]
- Hui, C.; Guo, Y.; Liu, L.; Zheng, H.; Gao, C.; Zhang, W. Construction of an RFP-lacZα bicistronic reporter system and its application in lead biosensing. PLoS ONE 2020, 15, e0228456. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hui, C.; Liu, L.; Zheng, H.; Wu, H. Improved monitoring of low-level transcription in Escherichia coli by a β-galactosidase α-complementation system. Front. Microbiol. 2019, 10, 1454. [Google Scholar] [CrossRef]
- Doura, T.; Kamiya, M.; Obata, F.; Yamaguchi, Y.; Hiyama, T.Y.; Matsuda, T.; Fukamizu, A.; Noda, M.; Miura, M.; Urano, Y. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. 2016, 55, 9620–9624. [Google Scholar] [CrossRef] [PubMed]
- Mihailovskaya, V.S.; Bogdanova, D.A.; Demidov, O.N.; Rybtsov, S.A. Method of multiplex immune profiling of mouse blood cells with highly sensitive detection of reporter β-galactosidase LacZ. Biochemistry 2025, 90, 636–644. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Zhu, W.; Li, H.; Wang, W. Bacterial bioluminescence assay for bioanalysis and bioimaging. Anal. Bioanal. Chem. 2021, 414, 75–83. [Google Scholar] [CrossRef]
- Viviani, V.; Pelentir, G.; Bevilaqua, V. Bioluminescence color-tuning firefly luciferases: Engineering and prospects for real-time intracellular pH imaging and heavy metal biosensing. Biosensors 2022, 12, 400. [Google Scholar] [CrossRef]
- Pazzagli, M.; Devine, J.; Peterson, D.; Baldwin, T. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal. Biochem. 1992, 204, 315–323. [Google Scholar] [CrossRef]
- Li, H.; Sun, H. The metallome and the biological periodic table: A metal atlas in cells. Cell Syst. 2025, 16, 101344. [Google Scholar] [CrossRef]
- Gutiérrez, J.C.; Amaro, F.; Martín-González, A. Heavy metal whole-cell biosensors using eukaryotic microorganisms. Front. Microbiol. 2015, 6, 48. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, D.; Mo, Q.; Yuan, J. Engineering Saccharomyces cerevisiae-based biosensors for copper detection. Microb. Biotechnol. 2022, 15, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Roda, B.; Cevenini, L.; Michelini, E.; Mezzanotte, L.; Reschiglian, P.; Hakkila, H.; Vitra, M. Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal. Bioanal. Chem. 2011, 401, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Vopálenská, I.; Váchová, L.; Palková, Z. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens. Bioelectron. 2015, 72, 160–167. [Google Scholar] [CrossRef]
- Žunar, B.; Mosrin, C.; Bénédetti, H.; Vallée, B. Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper. Biosens. Bioelectron. 2022, 214, 114502. [Google Scholar] [CrossRef]
- Park, J.; Sohn, M.J.; Oh, D.; Kwon, O.; Rhee, S.K.; Hur, C.; Lee, S.Y.; Gellissen, G.; Kang, H.A. Identification of the Cadmium-Inducible Hansenula polymorpha SEO1 Gene Promoter by Transcriptome Analysis and Its Application to Whole-Cell Heavy-Metal Detection Systems. Appl. Environ. Microbiol. 2007, 73, 5990–6000. [Google Scholar] [CrossRef]
- Gao, G.; Qian, J.; Fang, D.; Yu, Y.; Zhi, J. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal. Chim. Acta 2016, 924, 21–28. [Google Scholar] [CrossRef]
- Lehmann, M.; Riedel, K.; Adler, K.; Kunze, G. Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens. Bioelectron. 2000, 15, 211–219. [Google Scholar] [CrossRef]
- Shetty, R.S.; Deo, S.K.; Liu, Y.; Daunert, S. Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol. Bioeng. 2004, 88, 664–670. [Google Scholar] [CrossRef]
- Popenda, A.; Wiśniowska, E.; Manuel, C. Biosensors in environmental analysis of microplastics and heavy metal compounds–A review on current status and challenges. Desalin. Water Treat. 2024, 319, 100456. [Google Scholar] [CrossRef]
- Schappert, K.T.; Khachatourians, G.G. A yeast bioassay for T-2 toxin. J. Microbiol. Methods 1984, 1, 195–200. [Google Scholar] [CrossRef]
- Engler, K.H.; Coker, R.D.; Evans, I.H. A novel colorimetric yeast bioassay for detecting trichothecene mycotoxins. J. Microbiol. Methods 1999, 35, 207–218. [Google Scholar] [CrossRef]
- Mitterbauer, R.; Weindorfer, H.; Safaie, N.; Krska, R.; Lemmens, M.; Ruckenbauer, P.; Kuchler, K.; Adam, G. A sensitive and inexpensive yeast bioassay for the mycotoxin zearalenone and other compounds with estrogenic activity. Appl. Environ. Microbiol. 2003, 69, 805-11. [Google Scholar] [CrossRef]
- Promberger, A.; Dornstauder, E.; Frühwirth, C.; Schmid, E.R.; Jungbauer, A. Determination of estrogenic activity in beer by biological and chemical means. J. Agric. Food Chem. 2001, 49, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Bui, V.N.; Nguyen, T.T.H.; Mai, C.T.; Bettarel, Y.; Hoang, T.Y.; Trinh, T.T.L.; Truong, N.H.; Chu, H.H.; Nguyen, V.T.T.; Nguyen, H.D.; et al. Procarcinogens—Determination and Evaluation by Yeast-Based Biosensor Transformed with Plasmids Incorporating RAD54 Reporter Construct and Cytochrome P450 Genes. PLoS ONE 2016, 11, e0168721. [Google Scholar] [CrossRef]
- Su, J.; Zhu, B.; Inoue, A.; Oyama, H.; Morita, I.; Dong, J.; Yasuda, T.; Sugita-Konishi, Y.; Kitaguchi, T.; Kobayashi, N.; et al. The Patrol Yeast: A New Cell-Based Biosensor System Detecting a Range of Toxic Substances Including Aflatoxins. Biosens. Bioelectron. 2023, 219, 114793. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Du, L.; Geng, L.; Liu, X.; Xu, Z.; Liu, R.; Liu, W.; Zuo, H.; Chen, Z.; Wang, X.; et al. A novel yeast-based biosensor for the quick determination of Deoxynivalenol. Anal. Chim. Acta 2024, 1315, 342760. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Iordache, F.; Stanca, L.; Mitranescu, E.; Bader Stoica, L.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Biosensors for Food Mycotoxin Determination: A Comparative and Critical Review. Chemosensors 2024, 12, 92. [Google Scholar] [CrossRef]
- Costantini, A.; Vaudano, E.; Pulcini, L.; Carafa, T.; Garcia-Moruno, E. An Overview on Biogenic Amines in Wine. Beverages 2019, 5, 19. [Google Scholar] [CrossRef]
- Givanoudi, S.; Heyndrickx, M.; Depuydt, T.; Khorshid, M.; Robbens, J.; Wagner, P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. Sensors 2023, 23, 613. [Google Scholar] [CrossRef]
- Bhatt, A.; Jain, S.; Navani, N.K. Rapid, Sensitive, and Specific Microbial Whole-Cell Biosensor for the Detection of Histamine: A Potential Food Toxin. J. Agric. Food Chem. 2024, 72, 27466–27478. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Z.; Cao, H.; Ye, T.; Hao, L.; Yu, J.; Yuan, M.; Xu, F. A Molecularly Imprinted Fluorescence Sensor for the Simultaneous and Rapid Detection of Histamine and Tyramine in Cheese. Foods 2025, 14, 1475. [Google Scholar] [CrossRef]
- Cartus, A.T.; Lachenmeier, D.W.; Guth, S.; Roth, A.; Baum, M.; Diel, P.; Eisenbrand, G.; Engeli, B.; Hellwig, M.; Humpf, H.-U.; et al. Acetaldehyde as a Food Flavoring Substance: Aspects of Risk Assessment. Mol. Nutr. Food Res. 2023, 67, e2200661. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.J.; Theruvathu, J.A. DNA adducts from acetaldehyde: Implications for alcohol-related carcinogenesis. Alcohol 2005, 35, 187–193. [Google Scholar] [CrossRef]
- Arias-Pérez, I.; Sáenz-Navajas, M.P.; De La Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the role of acetaldehyde and other aldehydes in the odour and tactile nasal perception of red wine. Food Chem. 2021, 361, 130081. [Google Scholar] [CrossRef]
- Garcia, L.; Perrin, C.; Nolleau, V.; Godet, T.; Farines, V.; Garcia, F.; Caillé, S.; Saucier, C. Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods 2022, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Kim, H.W.; Kim, S.S.; Neri, G. Nanostructured metal oxide gas sensors for acetaldehyde detection. Chemosensors 2019, 7, 56. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.; Wang, J.; He, J.; Hou, H.; Li, K. Fast and highly selective detection of acetaldehyde in liquor and spirits by forming aggregation-induced emission luminogen. Sens. Actuators B Chem. 2019, 285, 617–624. [Google Scholar] [CrossRef]
- Titoiu, A.M.; Necula-Petrareanu, G.; Visinescu, D.; Dinca, V.; Bonciu, A.; Mihailescu, C.N.; Purcarea, C.; Boukherroub, R.; Szunerits, S.; Vasilescu, A. Flow injection enzymatic biosensor for aldehydes based on a Meldola Blue-Ni complex electrochemical mediator. Microchim. Acta 2020, 187, 550. [Google Scholar] [CrossRef]
- Shitanda, I.; Oshimoto, T.; Loew, N.; Motosuke, M.; Watanabe, H.; Mikawa, T.; Itagaki, M. Biosensor for low-level acetaldehyde gas detection. Biosens. Bioelectron. 2023, 238, 115555. [Google Scholar] [CrossRef]
- Liang, B.; Wang, X.; Li, H.; Zhang, Y.; Xu, Q.; Zhao, T.; Sun, C.; Liu, Y. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde. Biosens. Bioelectron. 2021, 193, 113566. [Google Scholar] [CrossRef]
- Liu, W.; Cao, J.; Wu, D.; Wu, Y.; Qin, Y.; Liu, Y.; Zhao, X.; Song, Y. Development of an advanced acetaldehyde detection solution based on yeast and bacterial surface display technology. J. Biotechnol. 2025, 398, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Bayón, M.A.; Eder, M.; Polo, M.C.; Tenorio, C.; Martín-Álvarez, P.J.; Calvo de la Banda, M.T.; Ruiz-Larrea, F.; Moreno-Arribas, M.V. Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem. 2005, 53, 8729–8735. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.; Vlad, D.; Unden, G. Significance of pantothenate for glucose fermentation by Oenococcus oeni and suppression of erythritol and acetate production. Arch. Microbiol. 2001, 175, 26–31. [Google Scholar] [CrossRef]
- Hahne, K.; Rödel, G.; Ostermann, K. A fluorescence-based yeast sensor for monitoring acetic acid. Eng. Life Sci. 2021, 21, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Mormino, M.; Siewers, V.; Nygård, Y. Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae. FEMS Yeast Res. 2021, 21, foab049. [Google Scholar] [CrossRef]
- Mormino, M.; Lenitz, I.; Siewers, V.; Nygård, Y. Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microb. Cell Factories 2022, 21, 214. [Google Scholar] [CrossRef]
- Blick, E.; Mormino, M.; Siewers, V.; Nygård, Y. Development of an Haa1-based biosensor for acetic acid sensing in Saccharomyces cerevisiae. In Synthetic Promoters: Methods and Protocols; Springer: New York, NY, USA, 2024; pp. 221–238. [Google Scholar]
- Samphao, A.; Butmee, P.; Saejueng, P.; Pukahuta, C.; Švorc, Ľ.; Kalcher, K. Monitoring of glucose and ethanol during wine fermentation by a bienzymatic biosensor. J. Electroanal. Chem. 2018, 816, 179–188. [Google Scholar] [CrossRef]
- Kharkova, A.; Kuznetsova, L.; Perchikov, R.; Gertsen, M.; Melnikov, P.; Zaitsev, N.; Zhang, J.; Arlyapov, V. Bionanocomposite four-channel biosensor for rapid and convenient monitoring of glucose, lactate, ethanol and starch. Gels 2025, 11, 355. [Google Scholar] [CrossRef]
- Monošík, R.; Magdolen, P.; Streďanský, M.; Šturdík, E. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry. Food Chem. 2013, 138, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Piermarini, S.; Volpe, G.; Esti, M.; Simonetti, M.; Palleschi, G. Real-time monitoring of alcoholic fermentation with low-cost amperometric biosensors. Food Chem. 2011, 127, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Kuswandi, B.; Irmawati, T.; Hidayat, M.; Musa, A. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples. Sensors 2014, 14, 2135–2149. [Google Scholar] [CrossRef]
- Jumal, J.; Othman, S. A review on biosensors and their applications in food and beverage industry. J. Fatwa Manag. Res. 2019, 17, 1–15. [Google Scholar] [CrossRef]
- Rêgo, E.S.B.; Santos, D.L.; Hernández-Macedo, M.L.; Padilha, F.F.; López, J.A. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem. 2022, 121, 276–285. [Google Scholar] [CrossRef]
- Ostrov, N.; Jimenez, M.; Billerbeck, S.; Brisbois, J.; Matragrano, J.; Ager, A.; Cornish, V.W. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 2017, 3, e1603221. [Google Scholar] [CrossRef]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage yeasts in the wine industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Poggesi, S.; Zhou, L.; Bariani, G.C.; Mittapalli, R.; Manzano, M.; Ionescu, R.E. Quartz crystal microbalance genosensing of Brettanomyces bruxellensis yeast in wine using a rapid drop-and-collect protocol. Crystals 2021, 11, 562. [Google Scholar] [CrossRef]
- Villalonga, M.L.; Borisova, B.; Arenas, C.B.; Villalonga, A.; Arévalo-Villena, M.; Sánchez, A.; Villalonga, R. Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core–shell magnetic nanoparticles. Sens. Actuators B Chem. 2019, 279, 15–21. [Google Scholar] [CrossRef]
- De Bellis, D.; Di Stefano, A.; Simeone, P.; Catitti, G.; Vespa, S.; Patruno, A.; Marchisio, M.; Mari, E.; Granchi, L.; Viti, C.; et al. Rapid detection of Brettanomyces bruxellensis in wine by polychromatic flow cytometry. Int. J. Mol. Sci. 2022, 23, 15091. [Google Scholar] [CrossRef]
- Windholtz, S.; Bonanges, C.; Moreau, M.; Nicolato, T.; Renouf, V. Digital PCR: A tool for the early detection of Brettanomyces in wine. In Proceedings of the 45th World Congress of Vine and Wine (OIV 2024), Dijon, France, 14–18 October 2024. [Google Scholar]
- Tubia, I.; Paredes, J.; Pérez-Lorenzo, E.; Arana, S. Brettanomyces bruxellensis growth detection using interdigitated microelectrode-based sensors by impedance analysis. Sens. Actuators A Phys. 2018, 269, 175–181. [Google Scholar] [CrossRef]
- van Wyk, S.; Silva, F.V.M. Enumeration of Brettanomyces in wine using impedance. Appl. Microbiol. 2021, 1, 352–360. [Google Scholar] [CrossRef]
- Daniels-Treffandier, H.; Campbell, C.; Kheir, J.; Salameh, D.; Lteif, R.; Brandam, C.; Taillandier, P. A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using 144 4-ethylphenol methylene hydroxylase (4-EPMH). Eur. Food Res. Technol. 2017, 243, 1117–1125. [Google Scholar] [CrossRef]
- Larcher, R.; Nicolini, G.; Puecher, C.; Bertoldi, D.; Moser, S.; Favaro, G. Determination of volatile phenols in wine using high-performance liquid chromatography with a coulometric array detector. Anal. Chimica Acta 2007, 582, 55–60. [Google Scholar] [CrossRef]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef]
- Madilo, F.; Kunadu, A.P.-H.; Tano-Debrah, K.; Saalia, F.K.; Kolanisi, U. Diversity of production techniques and microbiology of African cereal-based traditional fermented beverages. J. Food Qual. 2024, 2024, 1241614. [Google Scholar] [CrossRef]
- Pinto, C.; Pinho, D.; Cardoso, R.; Custódio, V.; Fernandes, J.; Sousa, S.; Pinheiro, M.; Egas, C.; Gomes, A.C. Wine fermentation microbiome: A landscape from different Portuguese wine appellations. Front. Microbiol. 2015, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Nwaiwu, O.; Aduba, C.; Igbokwe, V.; Sam, C.; Ukwuru, M. Traditional and artisanal beverages in Nigeria: Microbial diversity and safety issues. Beverages 2020, 6, 53. [Google Scholar] [CrossRef]
- Lorenzini, M.; Cappello, M.; Green, A.; Zapparoli, G. Effects of film-forming Pichia and Candida yeasts on cider and wine as post-fermentation contaminants. Lett. Appl. Microbiol. 2023, 77, ovad099. [Google Scholar] [CrossRef]
- Franco, W.; Benavides, S.; Valencia, P.; Ramírez, C.; Urtubia, A. Native yeasts and lactic acid bacteria isolated from spontaneous fermentation of seven grape cultivars from the Maule region (Chile). Foods 2021, 10, 1737. [Google Scholar] [CrossRef]
- Escalante, W. Perspectives and uses of non-Saccharomyces yeasts in fermented beverages. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Nemo, R.; Bacha, K. Microbial dynamics and growth potential of selected pathogens in Ethiopian traditional fermented beverages. Ann. Microbiol. 2021, 71, 35. [Google Scholar] [CrossRef]
- Perpetuini, G.; Rossetti, A.; Battistelli, N.; Arfelli, G.; Tofalo, R. Adhesion properties, biofilm forming potential and susceptibility to disinfectants of contaminant wine yeasts. Microorganisms 2021, 9, 654. [Google Scholar] [CrossRef]
- De Melo Pereira, G.; Maske, B.; De Carvalho Neto, D.; Karp, S.G.; De Dea Lindner, J.; Martin, J.G.; De Oliveira Hosken, B.; Soccol, C.R. What is Candida doing in my food? A review and safety alert on its use as starter cultures in fermented foods. Microorganisms 2022, 10, 1855. [Google Scholar] [CrossRef] [PubMed]
- Sá, S.; Júnior, A.J.; Lima-Neto, R.; Andrade, C.A.S.; Oliveira, M.D.L. Lectin-based impedimetric biosensor for differentiation of pathogenic Candida species. Talanta 2020, 220, 121375. [Google Scholar] [CrossRef]
- Ribeiro, K.; Frías, I.; Da Silva, A.; Lima-Neto, R.; Sá, S.; Franco, O.L.; Oliveira, M.D.L.; Andrade, C.A.S. Impedimetric peptide-based sensor differentiates ploidy of Candida species. Biochem. Eng. J. 2021, 167, 107918. [Google Scholar] [CrossRef]
- Katrlík, J.; Holazová, A.; Medovarská, I.; Seilerová, I.; Gemeiner, P.; Bystrický, S. SPR biosensor chip based on mannan isolated from Candida dubliniensis yeasts applied in immunization effectiveness testing. Sens. Actuators B Chem. 2022, 355, 130883. [Google Scholar] [CrossRef]
- Pla, L.; Santiago-Felipe, S.; Tormo-Mas, M.A.; Ruiz-Gaitán, A.; Pemán, J.; Valentín, E.; Sancenón, F.; Aznar, E.; Martínez-Máñez, R. Oligonucleotide-capped nanoporous anodic alumina biosensor for rapid and accurate detection of Candida auris in clinical samples. Emerg. Microbes Infect. 2021, 10, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Villegas, D.; Gohil, N.; Lamo, P.; Gurajala, S.; Bagiu, I.; Vulcanescu, D.; Horhat, F.; Șorop, V.; Diaconu, M.; Sorop, M.; et al. Innovative biosensing approaches for swift identification of Candida species. Life 2023, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; He, N.; Yuan, J. Cascaded amplifying circuit enables sensitive detection of fungal pathogens. Biosens. Bioelectron. 2024, 250, 116058. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Alperstein, L.; Sundstrom, J.; Solomon, M.; Brady, M.; Borneman, A.; Jiranek, V. A special drop: Characterising yeast isolates associated with fermented beverages produced by Australia’s Indigenous peoples. Food Microbiol. 2023, 112, 104216. [Google Scholar] [CrossRef] [PubMed]
- Piraine, R.; Retzlaf, G.; Gonçalves, V.; Cunha, R.; Conrad, N.; Bochman, M.L.; Leite, F.C. Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum, Pichia kluyveri and Candida intermedia. Eur. Food Res. Technol. 2023, 249, 133–148. [Google Scholar] [CrossRef]
- Augustiniene, E.; Jonuskiene, I.; Kailiuvienė, J.; Mažonienė, E.; Baltakys, K.; Malys, N. Application of whole-cell biosensors for analysis and improvement of L- and D-lactic acid fermentation by Lactobacillus spp. from the waste of glucose syrup production. Microb. Cell Factories 2023, 22, 233. [Google Scholar] [CrossRef]
- Piedra, F.; Castro, G.; Mendoza, V.; Piñerox, A.; Arcentales, M.; Vivas, F.; Alcívar, A.; Linzan, A.; Carpio, L.; Góngora-Muñoz, E.; et al. Development of a sensor to quantify lactic acid in beer. Arab. J. Chem. 2024, 17, 105639. [Google Scholar] [CrossRef]
- Kernbach, S.; Kernbach, O.; Kuksin, I.; Kernbach, A.; Nepomnyashchiy, Y.; Dochow, T.; Bobrov, A. Biosensor based on electrochemical dynamics of fermentation in yeast Saccharomyces cerevisiae. Environ. Res. 2022, 204, 113535. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, L.; Li, M.; Lee, J.; Zhu, Y.; Liu, Y.; Sun, L.; Tu, Q.; Zhao, G.; Liang, D. Rapid screening and identification of lactic acid bacteria and yeasts based on Ramanomes technology and its application in fermented food. Food Res. Int. 2024, 197, 115249. [Google Scholar] [CrossRef]
- Wu, H.; Liu, S.; Li, M.; Zhao, L.; Zhu, Y.; Zhao, G.; Sun, L.; Liu, Y.; Liang, D. Isolation and purification of lactic acid bacteria and yeasts based on a multichannel magnetic flow device and rapid qualitative and quantitative detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 327, 125296. [Google Scholar] [CrossRef]
- Xie, Z.; Cao, M.; Chen, Y.; Cheng, L.; Qin, S.; Tian, B.; Jiang, Z. Activity detection of lactic acid bacteria based on fluorescence color difference of boron and nitrogen co-doped carbon dots. Food Biosci. 2025, 64, 105880. [Google Scholar] [CrossRef]
- Menezes, A.; Ramos, C.; Dias, D.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef]
- Bisquert, R.; Guillén, A.; Muñiz-Calvo, S.; Guillamón, J. Engineering a GPCR-based yeast biosensor for a highly sensitive melatonin detection from fermented beverages. Sci. Rep. 2024, 14, 17852. [Google Scholar] [CrossRef]
- Jarque, S.; Bittner, M.; Bláha, L.; Hilscherová, K. Yeast biosensors for detection of environmental pollutants: Current state and limitations. Trends Biotechnol. 2016, 34, 408–419. [Google Scholar] [CrossRef] [PubMed]


| Category | Contaminant/Toxin | Adverse Health Effects | Maximum Limit |
|---|---|---|---|
| Mycotoxins | Ochratoxin A | Nephrotoxic, hepatotoxic, teratogenic, immunotoxic, and carcinogenic, also associated with protein synthesis inhibition, DNA damage, oxidative stress, and multi-organ toxicity [30] | 2 μg/kg [31] |
| Patulin | Hepatotoxic, nephrotoxic, immunosuppressive, embryotoxic; acute exposure linked to gastrointestinal, neurological, and pulmonary effects [32] | 50 μg/kg [31] | |
| Biogenic amines | Histamine | Hypotension, flushing, headache, gastrointestinal disturbances, cardiovascular and neurological effects, and respiratory complications [33] | No maximum legal limit established; reported levels 0.1–5.0 mg/L in beer; <LOQ-28.1 mg/L in red wine; 0.3 mg/L in white wine [34,35,36] |
| Tyramine | Hypertensive crises, migraines, nausea, vomiting, neurological disorders, hypertension, and respiratory effects [37] | No maximum legal limit established; reported levels 0.4–31.7 mg/L and 0.10–84.88 mg/L in beer; 1.8–4.3 mg/L in red wine; 1.0 mg/L in white wine [34,36,38,39] | |
| Putrescine | Potentiates the toxicity of other amines; potential carcinogenic precursor; cardiovascular alterations [40] | No maximum legal limit established; reported levels 2.18–46.14 mg/L in beer; 1.8–82.1 mg/L in red wine; 0.3 mg/L in white wine [32,38,41] | |
| Heavy Metals | Cadmium (Cd) | Carcinogenic and toxic effects: cancer risk, renal dysfunction, neurological and cardiovascular disorders [7] | 0.01 mg/L [42] |
| Lead (Pb) | 0.20 mg/kg (harvests 2001–2015); 0.15 mg/kg (2016–2021); 0.10 mg/kg (from 2022 onwards) [31] | ||
| Arsenic (As) | 0.2 mg/L [42] | ||
| Boron (as boric acid) | 80 mg/L [42] | ||
| Bromide (Br−) | 1 mg/L (up to 3 mg/L in wines from brackish subsoil) [42] | ||
| Copper (Cu) | 1 mg/L (2 mg/L for liqueur wines) [42] | ||
| Fluoride (F−) | 1 mg/L (3 mg/L if cryolite-treated vineyards) [42] | ||
| Silver (from silver chloride) | <0.1 mg/L [42] | ||
| Sodium (excess) | 80 mg/L [42] | ||
| Zinc (Zn) | 5 mg/L [42] | ||
| Organic contaminants | Diethylene glycol | 10 mg/L (limit of quantification) [42] | |
| Ethylene glycol (Ethanediol) | 10 mg/L [42] | ||
| Methanol | 400 mg/L (red wines); 250 mg/L (white and rosé wines) [42] | ||
| Pathogenic Microorganisms | Escherichia coli | Indicative of fecal contamination; some strains are pathogenic, causing severe stomach cramps, bloody diarrhea, and vomiting [6] | Absence in 25 mL [43] |
| Listeria monocytogenes | Severe illness (meningitis, sepsis, miscarriage, neonatal infection); mild gastrointestinal symptoms in non-invasive cases [44] | Absence in 25 mL [43] | |
| Preservatives/Additives | Sulphites (SO2) | Allergic reactions, asthma, gastrointestinal symptoms [45] | 150–400 mg/L depending on wine type and residual sugar [42,46] |
| Sorbic acid | Generally safe but may cause allergic reactions or off-flavors if above limits [47] | 200 mg/L [42] | |
| Natamycin | Generally safe; poorly absorbed; high doses may cause gastrointestinal irritation, nausea, and diarrhea [48] | 5 μg/L (provisional decision limit) [42] | |
| Fermentation by-products | Acetic acid (volatile acidity) | Excess levels cause an undesirable vinegar-like flavor, which is also indicative of spoilage fermentation [49] | 1.2 g/L (20 mEq/L) [42,46] |
| Acetaldehyde | Possibly carcinogenic (IARC Group 2B); facial flushing, nausea, vomiting, tachycardia, hypotension; hepatotoxic and neurotoxic effects [50] | No maximum legal limit established. Typical concentration ranges in fermented beverages:
| |
| Endocrine-disrupting compounds (EDCs) | BPA, phthalates, PFAS (such as Teflon), pesticides | Obesity, diabetes, and fertility issues | No maximum legal limit established or quantified. Found in food, packaging, and water [21,53] |
| Flame retardants, alkylphenols | Neurodevelopment, hormone-sensitive cancers | No maximum legal limit established or quantified. Consumer products, dust [21,53] | |
| Natural estrogens, plasticizers | Thyroid, reproductive, and metabolic effects | No maximum legal limit established or quantified. Aquatic environment [21,54] | |
| Antibiotics | Tetracyclines, penicillins, macrolides, and others | Continual exposure to and resistance to antibiotics create an AMR problem in the food chain. | No numeric “safe antibiotic dose” in the food product itself [26,27] |
| Type of Yeast-Based Biosensor | Reporter Signal/Detection Principle | Typical Analytes | Main Advantages | Limitations/Notes | Ref. |
|---|---|---|---|---|---|
| Fluorescent/ Luminescent | Expression of fluorescent or luminescent proteins such as GFP, RFP, YFP, Lux, or Luc. Detection based on fluorescence or light emission intensity. | Heavy metals, toxic compounds | High sensitivity; direct visual or instrumental readout; no substrate addition required; rapid response. | Requires excitation light (for fluorescence); luminescence depends on enzymatic activity. | [57,60,74,75,76] |
| Enzymatic/ Colorimetric | Enzyme-mediated reactions produce visible color or absorbance changes, often using β-galactosidase or peroxidase as reporter enzymes. | General toxic compounds, metabolic stress indicators | Simple, low-cost, suitable for visual or spectrophotometric detection. | Limited quantitative precision; possible interference from matrix effects. | [60,69,77,78] |
| Electrochemical/ Amperometric | Measurement of electric current, potential, or conductance variation resulting from yeast metabolic reactions or redox activity. | Heavy metals, volatile organic acids | High sensitivity; portable and compatible with low-cost devices; suitable for real-time or in situ monitoring. | Requires electrode calibration and stable measurement conditions. | [77,79,80] |
| Target Category | Analyte | Biosensor System/Reporter Gene | Yeast Species | Main Application/Advantage | Ref. |
|---|---|---|---|---|---|
| Heavy metals | Cu2+ | Cup1 promoter—GFP | S. cerevisiae | Highly selective copper detection | [91] |
| Cup1 promoter—luciferase | S. cerevisiae | Sensitive luminescent detection | [92] | ||
| CUP1 promoter—LacZ/ADE2 | S. cerevisiae | Colorimetric/auxotrophic detection | [93] | ||
| Engineered Cup1 promoter + dual fluorescent reporters (Cup2 overexpression) | S. cerevisiae | Broad linear range; high specificity | [94] | ||
| Cd2+ | HSEO1 promoter—GFP | S. cerevisiae | Dose-dependent Cd detection | [95] | |
| HpSEO1 promoter—GFP | Hansenula polymorpha | Yeast-based Cd biosensing | [95] | ||
| Cu2+, Cd2+ | Multi-organism biosensor (includes S. cerevisiae) | Mixed microbes | Dual-metal detection | [96] | |
| Mycotoxins | T2 toxin, Verrucarin A | β-galactosidase inhibition assay | Kluyveromyces fragilis, K. marxianus | Early yeast toxin biosensors | [100,101] |
| Zearalenone | Human estrogen receptor (hER)—growth-based biosensor | S. cerevisiae | Detects estrogenic mycotoxin activity | [102] | |
| hER + firefly luciferase reporter | S. cerevisiae | Sensitive bioluminescent detection | [103] | ||
| Aflatoxin B1 | Reporter gene induction (GFP/LacZ) | S. cerevisiae | Yeast genotoxicity-based detection | [104] | |
| Aflatoxin B1, M1 | β-galactosidase assay | S. cerevisiae | Colorimetric aflatoxin biosensor | [105] | |
| Deoxynivalenol (DON) | Yeast surface display (Fab antibodies) | S. cerevisiae | Particular DON binding | [106] | |
| YSD chemiluminescent biosensor | S. cerevisiae | DON detection in beverages | [106] | ||
| Biogenic amines | – | – | – | No yeast-based biosensors have been reported | - |
| Fermentation by-products | Acetaldehyde | Enzyme surface display (acetaldehyde dehydrogenase) | E. coli + S. cerevisiae | Detection in wine | [120] |
| Optical biosensor based on enzyme surface display | E. coli + S. cerevisiae | Acetaldehyde detection in beverages | [121] | ||
| Acetic acid | Haa1 promoter—tRFP | S. cerevisiae | Monitoring volatile acidity | [124] | |
| Haa1–BM3R1 synthetic transcription factor | S. cerevisiae | Quantitative metabolic sensing | [125] | ||
| Haa1-based CRISPRi screening biosensor | S. cerevisiae | Identification of acetic-acid-sensitive strains | [126] | ||
| Optimized Haa1 synthetic promoter biosensor | S. cerevisiae | Improved precision for industrial biotechnology | [127] |
| Approach/Host | Target Signal | Relevance to LAB/AAB Beverages | Ref. |
|---|---|---|---|
| Yeast Haa1 TF biosensor | Acetic acid (fluorescence) | Indirect AAB monitoring, strain screening | [124,125,126] |
| L/D-lactate whole-cell (bacteria) | Lactic acid | LAB fermentation monitoring, optimization | [163] |
| Lactate oxidase electrode | Lactic acid in beer | Inline/at-line beer quality control | [164] |
| SERS + magnetic enrichment | LAB & yeast cells | Rapid cell-level monitoring in fermentations | [166,167] |
| BN-CD fluorescence | LAB/yeast viability | Fast activity readout in starters | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Afonso, S.; Oliveira, I.; Vilela, A. Yeast Biosensors for the Safety of Fermented Beverages. Biosensors 2026, 16, 64. https://doi.org/10.3390/bios16010064
Afonso S, Oliveira I, Vilela A. Yeast Biosensors for the Safety of Fermented Beverages. Biosensors. 2026; 16(1):64. https://doi.org/10.3390/bios16010064
Chicago/Turabian StyleAfonso, Sílvia, Ivo Oliveira, and Alice Vilela. 2026. "Yeast Biosensors for the Safety of Fermented Beverages" Biosensors 16, no. 1: 64. https://doi.org/10.3390/bios16010064
APA StyleAfonso, S., Oliveira, I., & Vilela, A. (2026). Yeast Biosensors for the Safety of Fermented Beverages. Biosensors, 16(1), 64. https://doi.org/10.3390/bios16010064

