Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Regional Zoning Rationale and Framework
2.3. Data Sources and Preprocessing
2.4. Research Methods
2.4.1. APCS-MLR Model
2.4.2. PMF Model
2.4.3. Health Risk Evaluation
3. Results
3.1. Spatial Distribution Characteristics of Heavy Metal Concentration in Groundwater
3.2. Source Apportionment of Heavy Metals
3.2.1. Correlation Analysis
3.2.2. Source Analysis Based on APCS-MLR Model
3.2.3. Source Analysis Based on PMF Model
3.2.4. Integrated Source Apportionment
3.3. Human Health Risk Assessment
3.3.1. Probabilistic Health Risk Assessment
3.3.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheng, D.; Meng, X.; Wen, X.; Wu, J.; Yu, H.; Wu, M. Contamination Characteristics, Source Identification, and Source-Specific Health Risks of Heavy Metal(Loid)s in Groundwater of an Arid Oasis Region in Northwest China. Sci. Total Environ. 2022, 841, 156733. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Jia, L.; Jiang, Y.; Wang, Z.; Duan, H.; Shen, M.; Tian, Y.; Lu, J. Progress and Prospect on Monitoring and Evaluation of United Nations SDG 6 (Clean Water and Sanitation) Target. Bull. Chin. Acad. Sci. 2021, 36, 904–913. [Google Scholar] [CrossRef]
- Raji, S.A.; Demehin, M.O. “Long Walk to 2030”: A Bibliometric and Systematic Review of Research Trends on the UN Sustainable Development Goal 3. Dialogues Health 2023, 2, 100132. [Google Scholar] [CrossRef]
- Qian, J.; Li, W.; Zhang, L.; Zhang, K.; Wang, S.; Li, S. Source and Research Status of Heavy Metal Pollution in Groundwater: A Review. Earth Environ. 2018, 46, 613–620. [Google Scholar] [CrossRef]
- Chen, W.; Yu, S.; Dong, Q.; Liao, J.; Wang, S.; Liu, G.; Zhang, W. Source Analysis and Health Risk Assessment of Heavy Metals in Groundwater in the Northeast of Changde City. Geol. China 2025, 1–20. Available online: https://link.cnki.net/urlid/11.1167.p.20250304.1000.002 (accessed on 18 January 2026).
- Chang, S.; Song, Y.; Chen, H.; Zhao, X.; Cui, J.; Zhang, L. Source Apportionment and Health Risk Identification of Heavy Metals in Groundwater for Typical District in North China. Environ. Monit. China 2024, 40, 172–182. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, H.; Mi, Z.; Shao, Z.; Li, X. Source and Health Risk Assessment of Heavy Metals in Groundwater of Datong Basin. Environ. Sci. 2024, 46, 239–252. [Google Scholar] [CrossRef]
- Jiang, X.; Peng, H.; Pan, Y.; Zeng, M.; Xue, Z.; Zhang, R. Source Determination and Health Risk Assessment of Heavy Metals in Groundwater of Guangzhou. Environ. Sci. 2025, 46, 6880–6893. [Google Scholar] [CrossRef]
- Duan, X.; Yuan, H.; Ye, T.; Huang, Y.; Li, J.; Yuan, G.; Albanese, S. Geostatistical Mapping and Quantitative Source Apportionment of Potentially Toxic Elements in Top- and Sub-Soils: A Case of Suburban Area in Beijing, China. Ecol. Indic. 2020, 112, 106085. [Google Scholar] [CrossRef]
- Li, K. Characteristics and Risk Assessment of Heavy Metals Pollution in Multi-media from the Cold Region River and Typical Riparian City. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- Lu, J.; Wu, J.; Zhang, C.; Zhang, Y. Possible Effect of Submarine Groundwater Discharge on the Pollution of Coastal Water: Occurrence, Source, and Risks of Endocrine Disrupting Chemicals in Coastal Groundwater and Adjacent Seawater Influenced by Reclaimed Water Irrigation. Chemosphere 2020, 250, 126323. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Huang, Y.; Wu, H. Contamination Characteristics and Source Apportionment of Soil Heavy Metals in an Abandoned Pyrite Mining Area of Tongling City, China. Environ. Sci. 2023, 45, 407–416. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P.; Wang, J.; Xie, S.; Chen, F.; Zhan, Z.; Ren, J.; Zhang, H.; Liu, D.; Meng, Y. Geochemical characteristics of lateral hyporheic zone between the river water and groundwater, a case study of Maanxi in Chongqing. Environ. Sci. 2016, 37, 2478–2486. [Google Scholar] [CrossRef]
- Shao, Y.; Yan, B.; Zhang, K.; Zhang, B.; Zhang, Y.; Li, B.; Chen, Y.; Xiang, F.; Zhuang, X.; Guo, S. Distribution, Environmental Risks, and Source Apportionment of Heavy Metals in the Lake Sediments and Riparian Soils in Bangong Co Lake of the Qinghai–Tibet Plateau in China. Sustainability 2025, 17, 11274. [Google Scholar] [CrossRef]
- Shang, T.; Ren, Y.; Mu, Y.; Zhang, J.; Wen, C.; Zhou, J.; Zhang, Y. Distribution Characteristics and Source Analysis of Heavy Metals in Sediments from the Tianshui Segment of the Weihe River. Res. Environ. Sci. 2025, 38, 2229–2239. [Google Scholar] [CrossRef]
- Wang, M.; Ma, W.; Sui, S.; Wang, M.; Wang, Y.; Jiang, F.; Guo, X.; Xing, M.; Han, Q.; Jia, B.; et al. Heavy Metals and Water-Soluble Inorganic Ions in Park Dust of a Chinese Megacity: Machine Learn-ing-Driven Source Assignment and Control Prioritization. J. Environ. Chem. Eng. 2025, 13, 117898. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhou, Y.; Sun, Y.; Ji, Y.; Zeng, Y. Spatial distribution, source apportionment and health risk assessment of inorganic pollutants of surface water and groundwater in the southern margin of Junggar Basin, Xinjiang, China. J. Environ. Manag. 2022, 319, 115757. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fei, Y.; Li, Y.; Bao, X.; Zhang, P. Pollution Source Identification Methods and Remediation Technologies of Groundwater: A Review. China Geol. 2024, 7, 125–137. [Google Scholar] [CrossRef]
- Peng, C.; Liang, J.; Ren, K.; Zeng, J.; Tang, W.; Pan, X. Quantitative identification of factors affecting groundwater quality in Dianchi Lake Basin based on PCA-APCS-MLR model. Res. Environ. Sci. 2024, 37, 1116–1126. [Google Scholar] [CrossRef]
- Yu, N.; Han, Y.; Liu, G.; Zhuang, F.; Wang, Q. The Hydrochemical Characteristics Evolution and Driving Factors of Shallow Groundwater in Luxi Plain. Sustainability 2025, 17, 6432. [Google Scholar] [CrossRef]
- Pan, Y.; Peng, H.; Hou, Q.; Peng, K.; Shi, H.; Wang, S.; Zhang, W.; Zeng, M.; Huang, C.; Xu, L.; et al. Priority Control Factors for Heavy Metal Groundwater Contamination in Peninsula Regions Based on Source-Oriented Health Risk Assessment. Sci. Total Environ. 2023, 894, 165062. [Google Scholar] [CrossRef]
- Liu, S.; Yi, B.; Liu, F.; Liu, C.; Yang, S.; Zhang, H.; Kang, W.; Jiang, K. Groundwater metal pollution and health risk assessment in river valley heavy industrial cities of arid regions in China. China Geol. 2025, 8, 526–539. [Google Scholar] [CrossRef]
- Pan, Y.; Han, W.; Shi, H.; Liu, X.; Xu, S.; Li, J.; Peng, H.; Zhao, X.; Gu, T.; Huang, C.; et al. Incorporating Environmental Capacity Considerations to Prioritize Control Factors for the Management of Heavy Metals in Soil. J. Environ. Manag. 2024, 351, 119820. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wang, L.; Tang, Z.; Yang, S.; Wang, M.; Feng, X.; He, C.; Han, Q.; Guo, F.; Yang, B. Distribution, Assessment, and Causality Analysis of Soil Heavy Metals Pollution in Complex Contaminated Sites: A Case Study of a Chemical Plant. Environ. Geochem. Health 2024, 46, 526. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, J.; Li, P.; Wang, Y. Distribution Characteristics, Source Identification and Health Risk Assessment of Trace Metals in the Coastal Groundwater of Taizhou City, China. Environ. Res. 2023, 238, 117085. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zeng, M.; Peng, H.; Huang, C.; Sun, H.; Hou, Q.; Pi, P. Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. Int. J. Environ. Res. Public Health 2022, 19, 7827. [Google Scholar] [CrossRef]
- Hui, K.; Hu, W.; Xi, B.; Yuan, Y.; Lu, H.; Tan, W. Source Analysis of Heavy Metals in Groundwater of Centralized Drinking Water Sources and Seasonal Variations of Health Risks in Wuzhou City, Pearl River Delta, China. Environ. Chem. Ecotoxicol. 2025, 8, 392–407. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, B. Groundwater Heavy Metal Contamination and Health Risk Assessment: A Case Study of South Dongting Lake, China. Water 2025, 17, 3036. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Q.; Xu, G.; Ren, Y.; Su, Y.; Pan, Z.; Cao, Y. Characterization and source apportionment of heavy metal contamination in groundwater at industrial sites. Res. Environ. Sci. 2024, 38, 610–621. [Google Scholar] [CrossRef]
- Xia, J.; Gao, L.; Yang, J. Analysis of Heavy Metal Sources in Xutuan Mining Area Based on APCS-MLR and PMF Model. Appl. Sci. 2025, 15, 4249. [Google Scholar] [CrossRef]
- Li, X. Probabilistic Health Risk Assessment of Heavy Metals in Groundwater of Typical Industrial Remaining Sites. Environ. Sci. Technol. 2025, 48, 156–165. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, X.; Wang, R.; Meng, Z.; Wang, L.; Cao, X.; Lou, Z. Distribution and Source Resolution of Heavy Metals in an Electroplating Site and Their Health Risk Assessment. Sustainability 2023, 15, 12166. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Wang, D.; Fan, Z.; Yang, X. Metallogenic Characteristics and Regularities of Hengyang Basin and Its Surrounding Areas. Geol. Surv. China 2024, 11, 78–91. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, L.; Dong, Z.; Cui, C.; Wang, W.; Li, Z.; Han, Y.; Peng, Y.; Yang, J. Temporal Changes in Precipitation and Correlation with Large Climate Indicators in the Hengshao Drought Corridor, China. Ecol. Indic. 2024, 167, 112715. [Google Scholar] [CrossRef]
- Hengyang Municipal People’s Government. Landform Type. Available online: https://www.hengyang.gov.cn/hyly/hygk/zrdl/20200111/i45680.html (accessed on 17 December 2025).
- DZ/T 0288-2015; Specification for Regional Groundwater Contamination Investigation and Evaluation. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2015.
- HJ164-2020; Technical Specifications for Environmental Monitoring of Groundwater. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- Du, J.; Jia, C.; Ding, Y.; Yang, X.; Feng, K.; Wei, M. Advancing Wetland Groundwater Pollution Zoning: A Novel Integration of Monte Carlo Health Risk Modeling and Machine Learning. J. Hazard. Mater. 2025, 494, 138412. [Google Scholar] [CrossRef]
- Hunan Provincial Physical Fitness Monitoring Center. Bulletin of the Fifth National Physical Fitness Monitoring in Hunan Province. Available online: https://tyj.hunan.gov.cn/tyj/xxgk/tzgg/202211/t20221128_29139563.html (accessed on 28 November 2025).
- Zhao, X.; Duan, X.; Wang, B.; Chen, Y.; Cao, S.; Wang, L.; Jiang, Y.; Guo, J.; Li, T.; Ma, J.; et al. Highlights of the Chinese Exposure Factors Handbook (Adults); China Environmental Science Press: Beijing, China, 2014. [Google Scholar]
- Mao, K.; Li, H.; Ming, Q.; Liu, H.; Zhao, H.; Lu, B.; Hao, W. Health risk assessment in the groundwater of a certain mine in Hunan. North China Geol. 2023, 46, 57–66+88. [Google Scholar] [CrossRef]
- Zhao, X.; Duan, X.; Wang, B.; Zhao, L.; Cheng, H.; Cao, S.; Yu, D.; Ma, J.; Wang, D.; Wang, X.; et al. Report of Environmental Exposure Related Activity Patterns Research of Chinese Population (Children); China Environmental Science Press: Beijing, China, 2016. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Exposure Factors Handbook. Available online: https://www.epa.gov/expobox/exposure-factors-handbook-2011-edition (accessed on 17 November 2025).
- GB/T 14848-2017; Standard for Groundwater Quality. Standards Press of China: Beijing, China, 2017.
- Bábek, O.; Sracek, O.; Všianský, D.; Holá, M. Groundwater Red Beds in Holocene Fuvial Sediments as a Product of Iron and Manganese Redox Cycling; Morava River, Czechia. Sedimentology 2023, 70, 2220–2240. [Google Scholar] [CrossRef]
- Lu, S.; Su, X.; Feng, X.; Sun, C. Sources and influencing factors of arsenic in nearshore zone during river water infiltration. Earth Sci. Front. 2021, 29, 455–467. [Google Scholar] [CrossRef]
- He, S.; Rao, Z.; Wei, K.; Wang, J.; Huang, D.; Zhu, Q. Effects of long-term fertilization on the distribution of heavy metal profiles in double cropping paddy field. J. Agric. Resour. Environ. 2025. [Google Scholar] [CrossRef]
- Yuan, K.; Xiong, S.; Liang, J.; Li, Y.; Qiao, Y.; Li, H.; Chen, Q. Status and risk analysis of copper and zinc pollution in livestock manure. J. Agro-Environ. Sci. 2020, 39, 1837–1842. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhou, Y.; Sun, Y.; Han, S.; Liu, J.; Lu, H.; Bai, F.; Yan, Z. Migration and Transformation Mechanism of High Arsenic Groundwater in Oasis Belt in Middle Part of Northern Piedmont of Tianshan Mountain. Earth Sci. 2022, 49, 253–270. [Google Scholar] [CrossRef]
- Dey, S.; Tripathy, B.; Kumar, M.S.; Das, A.P. Ecotoxicological Consequences of Manganese Mining Pollutants and Their Biological Remediation. Environ. Chem. Ecotoxicol. 2023, 5, 55–61. [Google Scholar] [CrossRef]
- Wang, L.; Chang, S.; Tu, X.; Wang, E.; Li, C. Spatial and Temporal Variations of Heavy Metals and Probabilistic Health Risks in Groundwater Drinking Water Source in the Yellow River Basin. Environ. Sci. 2025, 1–22. [Google Scholar] [CrossRef]










| Heavy Metal Factor | PC/cm·h−1 | RFD/mg·(kg·d)−1 | SF/mg·(kg·d)−1 | ||
|---|---|---|---|---|---|
| Ingestion | Dermal | Ingestion | Dermal | ||
| Tl | 0.001 | 0.00001 | 0.00001 | — | — |
| As | 0.0018 | 0.0003 | 0.0003 | 1.5 | 3.66 |
| Cd | 0.001 | 0.0005 | 0.0005 | 6.1 | 0.38 |
| Pb | 0.000004 | 0.0014 | 0.00042 | — | — |
| Zn | 0.0006 | 0.3 | 0.3 | — | — |
| Fe | 0.0001 | 0.3 | 0.045 | — | — |
| Mn | 0.0001 | 0.046 | 0.0018 | — | — |
| No. | Symbol | Parameter | Unit | Distribution | Adults | Children |
|---|---|---|---|---|---|---|
| 1 | IR | Ingestion rate | L·d−1 | Lognormal | (1.23, 0.27) [17] | (1.12, 0.27) [17] |
| 2 | EF | Exposure frequency | d·a−1 | Triangular | (180, 350, 365) [5] | (180, 350, 365) [5] |
| 3 | ED | Exposure duration | a | Uniform | (0, 70) [5] | (0, 6) [5] |
| 4 | BW | Body weight | kg | Normal | (62.58, 20.7) [39] | (18.65, 4.05) [39] |
| 5 | AT | Averaging time | d | Point | 25,550 [40] | 25,550 [40] |
| 6 | SA | Skin surface area | cm2 | Point | 17,657 [41] | 6500 [42] |
| 7 | ET | Exposure time | h/d | Point | 0.25 [40] | 0.45 [42] |
| 8 | CF | Unit conversion factor | L·cm−1 | Point | 0.001 [43] | 0.001 [43] |
| Heavy Metal | Unit | Max | Min | Average | SD | CoV | OSR (%) Before Tailing | OSR (%) After Tailing | Standards | |
|---|---|---|---|---|---|---|---|---|---|---|
| Class III | Class IV | |||||||||
| As | mg/L | 2.476 × 10−2 | 8.485 × 10−5 | 1.821 × 10−3 | 3.041 × 10−3 | 1.670 | 2.371 | 2.371 | ≤0.010 | ≤0.050 |
| Cd | mg/L | 8.588 × 10−4 | 1.503 × 10−5 | 9.142 × 10−5 | 1.131 × 10−4 | 1.237 | 0.000 | 0.000 | ≤0.005 | ≤0.010 |
| Pb | mg/L | 6.601 × 10−3 | 1.835 × 10−5 | 3.575 × 10−4 | 7.628 × 10−4 | 2.133 | 0.279 | 0.000 | ≤0.010 | ≤0.100 |
| Zn | mg/L | 5.506 × 10−1 | 4.738 × 10−4 | 1.765 × 10−2 | 4.578 × 10−2 | 2.594 | 0.418 | 0.000 | ≤1.000 | ≤5.000 |
| Fe | mg/L | 5.584 × 10−1 | 4.071 × 10−3 | 4.859 × 10−2 | 7.546 × 10−2 | 1.553 | 2.092 | 2.092 | ≤0.300 | ≤2.000 |
| Mn | mg/L | 1.644 | 8.485 × 10−5 | 4.893 × 10−2 | 1.674 × 10−1 | 3.422 | 9.763 | 9.763 | ≤0.100 | ≤1.500 |
| Tl | mg/L | 5.546 × 10−4 | 3.597 × 10−6 | 3.058 × 10−5 | 4.878 × 10−5 | 1.595 | 3.208 | 3.208 | ≤0.0001 | ≤0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, S.; Shuai, H.; Yu, H.; Liu, Y.; Jing, Y.; Kong, Y.; Liu, Y.; Wu, D. Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach. Sustainability 2026, 18, 1225. https://doi.org/10.3390/su18031225
Li S, Shuai H, Yu H, Liu Y, Jing Y, Kong Y, Liu Y, Wu D. Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach. Sustainability. 2026; 18(3):1225. https://doi.org/10.3390/su18031225
Chicago/Turabian StyleLi, Shuya, Huan Shuai, Hong Yu, Yongqian Liu, Yingli Jing, Yizhi Kong, Yaqian Liu, and Di Wu. 2026. "Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach" Sustainability 18, no. 3: 1225. https://doi.org/10.3390/su18031225
APA StyleLi, S., Shuai, H., Yu, H., Liu, Y., Jing, Y., Kong, Y., Liu, Y., & Wu, D. (2026). Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach. Sustainability, 18(3), 1225. https://doi.org/10.3390/su18031225
