Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,300)

Search Parameters:
Keywords = groundwater source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 26913 KB  
Article
Regional Assessment of Arsenic Accumulation in Rice (Oryza sativa L.) Agroecosystems of the Tejo, Almansor and Sorraia Valleys, Portugal
by Manuela Simões, David Ferreira, Ana Coelho Marques and Ana Rita F. Coelho
Sci 2026, 8(2), 26; https://doi.org/10.3390/sci8020026 - 27 Jan 2026
Abstract
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia [...] Read more.
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia valleys. As such, this study evaluates As pathways across 5000 ha of rice fields in the Tagus, Sorraia, and Almansor alluvial plains by combining soil, water, and plant analyses with a geostatistical approach. The soils exhibited consistently elevated As concentrations (mean of 18.9 mg/kg), exceeding national reference values for agricultural soils (11 mg/kg) and forming a marked east–west gradient with the highest levels in the Tagus alluvium. Geochemical analysis showed that As is strongly correlated with Fe (r = 0.686), indicating an influence of Fe-oxyhydroxides under oxidizing conditions. The irrigation waters showed low As (mean of 2.84 μg/L for surface water and 3.51 μg/L for groundwater) and predominantly low sodicity facies, suggesting that irrigation water is not the main contamination vector. In rice plants, As accumulation follows the characteristic organ hierarchy roots > stems/leaves > grains, with root concentrations reaching up to 518 mg/kg and accumulating progressively in the maturity phase. Arsenic content in harvested rice grains was 266 μg/kg (with a maximum of 413.9 μg/kg), being close to EU maximum limits when considering typical inorganic As proportions, assuming 60 to 90% inorganic fraction. Together, the findings highlight that a combined approach is essential, and identify soil geochemistry (and not irrigation water) as the primary source of As transfer in those agroecosystems, due to the flooded conditions that trigger the reductive dissolution of Fe oxides, releasing As. Additionally, the results also identified the need for targeted monitoring in areas of elevated As content in soils and support future mitigation through As speciation analysis, cultivar selection, improved fertilization strategies, and water-management practices such as Alternate Wetting and Drying (AWD), to ensure the long-term food safety. Full article
Show Figures

Figure 1

17 pages, 888 KB  
Article
High-Resolution Mass Spectrometry Analysis of Legacy and Emerging PFAS in Oilfield Environments: Occurrence, Source, and Toxicity Assessment
by Xuefeng Sun
Toxics 2026, 14(2), 116; https://doi.org/10.3390/toxics14020116 - 26 Jan 2026
Viewed by 31
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic chemicals used in daily life and industrial production. Due to their widespread use, these compounds are frequently detected in environmental samples. Many studies have shown that PFAS pose a significant threat to [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic chemicals used in daily life and industrial production. Due to their widespread use, these compounds are frequently detected in environmental samples. Many studies have shown that PFAS pose a significant threat to both ecological environments and human health, leading to widespread public concern. This study developed and optimized an analytical method for the detection of 32 common PFAS compounds in chemical additives and environmental samples, including oil displacement agents, groundwater and soil, utilizing High-Performance Liquid Chromatography–Quadrupole-Orbitrap High-Resolution Mass Spectrometry (HPLC–Q-Orbitrap HRMS) technology. Applications in an eastern Chinese oilfield revealed significant PFAS accumulation, with ∑PFAS concentrations in groundwater and soil at the well site ranging from 212.29 to 262.80 ng/L and from 23.70 to 71.65 ng/g, respectively, exceeding background levels by 10-fold. The oil displacement agents used in oilfields are one of the important sources of PFAS, particularly p-perfluorous nonenoxybenzenesulfonate (OBS), a perfluorooctanesulfonic acid (PFOS) substitute. Soil analysis indicated greater mobility of short-chain PFAS, while long-chain compounds adsorbed more readily to surface layers. Molecular docking and quantitative structure–property relationship (QSPR) modeling suggest that the bioaccumulation potential of OBS is high and comparable to that of PFOS. Zebrafish embryo assays demonstrated that OBS induced significant concentration-dependent cardiac developmental toxicity, including pericardial edema and apoptosis, showing 1.5–2.4 times greater toxicity than PFOS across multiple endpoints. These findings reveal OBS as a pervasive contaminant with elevated environmental and health risks, necessitating urgent re-evaluation of its use as a PFOS substitute. Full article
(This article belongs to the Special Issue Environmental Transport, Transformation and Effect of Pollutants)
Show Figures

Graphical abstract

23 pages, 7455 KB  
Article
Source Apportionment and Health Risk Assessment of Heavy Metals in Groundwater in the Core Area of Central-South Hunan: A Combined APCS-MLR/PMF and Monte Carlo Approach
by Shuya Li, Huan Shuai, Hong Yu, Yongqian Liu, Yingli Jing, Yizhi Kong, Yaqian Liu and Di Wu
Sustainability 2026, 18(3), 1225; https://doi.org/10.3390/su18031225 - 26 Jan 2026
Viewed by 48
Abstract
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming [...] Read more.
Groundwater, a critical resource for regional water security and public health, faces escalating threats from heavy metal contamination—a pressing environmental challenge worldwide. This study focuses on the central-south Hunan region of China, a mineral-rich, densely populated area characterized predominantly by non-point-source pollution, aiming to systematically unravel the spatial patterns, source contributions, and associated health risks of heavy metals in local groundwater. Based on 717 spring and well water samples collected in 2024, we determined pH and seven heavy metals (As, Cd, Pb, Zn, Fe, Mn, and Tl). By integrating hydrogeological zoning, lithology, topography, and river networks, the study area was divided into 11 assessment units, clearly revealing the spatial heterogeneity of heavy metals. The results demonstrate that exceedances of Cd, Pb, and Zn were sporadic and point-source-influenced, whereas As, Fe, Mn, and Tl showed regional exceedance patterns (e.g., Mn exceeded the standard in 9.76% of samples), identifying them as priority control elements. The spatial distribution of heavy metals was governed the synergistic effects of lithology, water–rock interactions, and hydrological structure, showing a distinct “acidic in the northeast, alkaline in the southwest” pH gradient. Combined application of the APCS-MLR and PMF models resolved five principal pollution sources: an acid-reducing-environment-driven release source (contributing 76.1% of Fe and 58.3% of Pb); a geogenic–anthropogenic composite source (contributing 81.0% of Tl and 62.4% of Cd); a human-perturbation-triggered natural Mn release source (contributing 94.8% of Mn); an agricultural-activity-related input source (contributing 60.1% of Zn); and a primary geological source (contributing 89.9% of As). Monte Carlo simulation-based health risk assessment indicated that the average hazard index (HI) and total carcinogenic risk (TCR) for all heavy metals were below acceptable thresholds, suggesting generally manageable risk. However, As was the dominant contributor to both non-carcinogenic and carcinogenic risks, with its carcinogenic risk exceeding the threshold in up to 3.84% of the simulated adult exposures under extreme scenarios. Sensitivity analysis identified exposure duration (ED) as the most influential parameter governing risk outcomes. In conclusion, we recommend implementing spatially differentiated management strategies: prioritizing As control in red-bed and granite–metamorphic zones; enhancing Tl monitoring in the northern and northeastern granite-rich areas, particularly downstream of the Mishui River; and regulating land use in brick-factory-dense riparian zones to mitigate disturbance-induced Mn release—for instance, through the enforcement of setback requirements and targeted groundwater monitoring programs. This study provides a scientific foundation for the sustainable management and safety assurance of groundwater resources in regions with similar geological and anthropogenic settings. Full article
Show Figures

Figure 1

18 pages, 7389 KB  
Article
Enhanced Deep Convolutional Neural Network-Based Multiscale Object Detection Framework for Efficient Water Resource Monitoring Using Remote Sensing Imagery
by Sultan Almutairi, Mashael Maashi, Hadeel Alsolai, Mohammed Burhanur Rehman, Hanadi Alkhudhayr and Asma A. Alhashmi
Remote Sens. 2026, 18(3), 404; https://doi.org/10.3390/rs18030404 - 25 Jan 2026
Viewed by 95
Abstract
Water resource monitoring can provide beneficial information supporting water management; however, present operational systems are small and provide only a subset of the information needed. Primary advancements consist of the clear explanation of water redistribution and water use from groundwater and river schemes, [...] Read more.
Water resource monitoring can provide beneficial information supporting water management; however, present operational systems are small and provide only a subset of the information needed. Primary advancements consist of the clear explanation of water redistribution and water use from groundwater and river schemes, achieving better spatial detail and increased precision as evaluated against hydrometric observation. In such cases, Earth Observation (EO) satellite systems are persistently creating extensive data, which is now essential for applications in different fields. With readily available open-source satellite imagery, aerial remote sensing is progressively becoming a quick and efficient tool for monitoring land and water resource development actions, demonstrating time and cost savings. At present, the deep learning (DL) model will be beneficial for monitoring water resources and EO utilizing remote sensing. In this paper, a Deep Neural Network-Based Object Detection for Water Resource Monitoring and Earth Observation (DNNOD-WRMEO) model is introduced. The main intention is to develop an effective monitoring and analysis framework for water resources and Earth surface observations using aerial remote sensing images. Initially, the Wiener filter (WF) model was used for image pre-processing. For object detection, the Yolov12 method was used for identifying, locating, and classifying objects within an image, followed by the DNNOD-WRMEO methodology, which implements the ResNet-CapsNet model for the backbone feature extraction method. Finally, the temporal convolutional network (TCN) model was implemented for the classification of water resources. The comparison analysis of the DNNOD-WRMEO methodology exhibited a superior accuracy value of 98.61% compared with existing models under the AIWR dataset. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Resource and Water Environment II)
Show Figures

Figure 1

24 pages, 6240 KB  
Article
Stable Isotope Analysis of Precipitation—Karst Groundwater System (Mt. Učka, Croatia)
by Diana Mance, Maja Radišić, Maja Oštrić, Davor Mance, Alenka Turković-Juričić, Ema Toplonjak and Josip Rubinić
Water 2026, 18(3), 308; https://doi.org/10.3390/w18030308 - 25 Jan 2026
Viewed by 122
Abstract
Karst aquifers provide critical water resources in the Mediterranean region, yet climate change threatens their sustainability. This study integrates stable isotope analysis (δ2H, δ18O), hydrochemistry, and hydrological time series to characterize precipitation–groundwater dynamics in the Mt. Učka karst system [...] Read more.
Karst aquifers provide critical water resources in the Mediterranean region, yet climate change threatens their sustainability. This study integrates stable isotope analysis (δ2H, δ18O), hydrochemistry, and hydrological time series to characterize precipitation–groundwater dynamics in the Mt. Učka karst system (Croatia). Precipitation samples collected across an altitudinal gradient of approximately 1400 m and groundwater from three major groundwater sources were analyzed over a 2.5-year period. Precipitation exhibits pronounced isotopic variability with d-excess values indicating mixed Atlantic–Mediterranean moisture sources. Groundwater is primarily recharged by precipitation from the cold part of the hydrological year. It exhibits substantial attenuation of isotopic signals, which indicates extensive mixing processes but prevents quantitative estimation of mean residence time. Groundwater is predominantly recharged from elevations above 900 m a.s.l., with one spring showing evidence of higher-elevation recharge. Analysis confirms the system’s dual porosity: a rapid, conduit-dominated response indicates high vulnerability to surface contamination, while a sustained, matrix-dominated response provides greater buffering capacity. These findings highlight the vulnerability of karst systems to projected reductions in autumn precipitation, the critical recharge season, and demonstrate the necessity of multi-tracer approaches for comprehensive aquifer characterization. Full article
15 pages, 2514 KB  
Article
Seasonal Shifts in Water Utilization Strategies of Typical Desert Plants in a Desert Oasis Revealed by Hydrogen and Oxygen Stable Isotopes and Leaf δ13C
by Yang Wang, Wenze Li, Wei Cai, Nan Bai, Jiaqi Wang and Yu Hong
Plants 2026, 15(2), 340; https://doi.org/10.3390/plants15020340 - 22 Jan 2026
Viewed by 78
Abstract
Understanding seasonal water acquisition strategies of desert plants is critical for predicting vegetation resilience under increasing hydrological stress in arid inland river basins. In hyper-arid oases, strong evaporative demand and declining groundwater levels impose tightly coupled constraints on plant water uptake across soil–plant–atmosphere [...] Read more.
Understanding seasonal water acquisition strategies of desert plants is critical for predicting vegetation resilience under increasing hydrological stress in arid inland river basins. In hyper-arid oases, strong evaporative demand and declining groundwater levels impose tightly coupled constraints on plant water uptake across soil–plant–atmosphere continua. In this study, we combined hydrogen and oxygen stable isotopes, Bayesian mixing models, soil moisture measurements and groundwater monitoring, and leaf δ13C analysis to quantify monthly water-source contributions and long-term water-use efficiency of three dominant species (Reaumuria soongarica, Tamarix ramosissima, and Populus euphratica) in the Ejina Oasis. Clear ecohydrological niche differentiation was evident among the three species. R. soongarica exhibited moderate temporal flexibility by integrating shallow and deep soil water with episodic groundwater use, whereas T. ramosissima adopted a vertically integrated and hydraulically plastic strategy combining precipitation, multi-depth soil water, and groundwater. In contrast, P. euphratica followed a conservative strategy, relying predominantly on deep soil water with only minor and transient inputs from precipitation and groundwater. Across species and seasons, deep vadose-zone soil water (120–200 cm) consistently acted as the most stable and influential reservoir, buffering seasonal drought and sustaining transpiration. T. ramosissima maintained the highest intrinsic water-use efficiency, and P. euphratica exhibited consistently lower efficiency associated with sustained access to stable deep soil water. These contrasting strategies reveal multiple pathways of hydraulic stability and plasticity that underpin vegetation persistence under progressive groundwater depletion. By linking water-source partitioning with physiological regulation, this study provides a mechanistic basis for understanding plant water-use strategies and informs ecological water management and species-specific restoration in hyper-arid inland oases. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 1925 KB  
Article
From Aquifer to Tap: Comprehensive Quali-Quantitative Evaluation of Plastic Particles Along a Drinking Water Supply Chain of Milan (Northern Italy)
by Andrea Binelli, Alberto Cappelletti, Cristina Cremonesi, Camilla Della Torre, Giada Caorsi and Stefano Magni
J. Xenobiot. 2026, 16(1), 18; https://doi.org/10.3390/jox16010018 - 22 Jan 2026
Viewed by 79
Abstract
This study presents the first evaluation of plastic particle contamination along a complete drinking water supply chain within the distribution system of Milan, Northern Italy. Fourteen grab water samples were collected from various points, including groundwater extraction, post-treatment stages, a public fountain, and [...] Read more.
This study presents the first evaluation of plastic particle contamination along a complete drinking water supply chain within the distribution system of Milan, Northern Italy. Fourteen grab water samples were collected from various points, including groundwater extraction, post-treatment stages, a public fountain, and ten household taps. Plastic particles were identified using µFTIR spectroscopy and characterized by polymer type, shape, size, and color. Overall, low concentrations of plastic particles were detected, ranging from 0.3 ± 0.5 particles/L in the accumulation tank to an average of 1.9 ± 1.4 particles/L in household tap water, with no significant increase observed along the supply chain. The entire data set was dominated by cellulose particles (76%), as plastics accounted for only 8%. Microplastics (1 µm–1 mm) were the most commonly detected (90%), while the remaining 10% were large microplastics (1–5 mm). Qualitatively, polyester fibers were the most prevalent particles identified. However, greater variability and higher concentrations were found in private residence samples, suggesting that internal plumbing systems may be a primary source of contamination. Estimated human exposure through this supply system, based on a current theoretical model, was minimal compared to global benchmarks. These findings highlight the necessity of integrating private distribution infrastructure into future regulatory frameworks to assist stakeholders in making informed decisions to mitigate potential plastic contamination. Full article
Show Figures

Graphical abstract

30 pages, 5027 KB  
Article
Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using Entropy-Weighted WQI, Pollution Index, and Multivariate Statistical Analysis in the Maze Zenti Catchment, Southern Ethiopia
by Yonas Oyda, Samuel Dagalo Hatiye and Muralitharan Jothimani
Geosciences 2026, 16(1), 50; https://doi.org/10.3390/geosciences16010050 - 21 Jan 2026
Viewed by 275
Abstract
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water [...] Read more.
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water quality index, entropy weight, pollution index of groundwater, multivariate statistics, Piper, Gibbs, and Wilcox diagrams, ANOVA, and irrigation indices based on WHO standards. The correlation matrix revealed strong associations between Na+-TDS (r = 0.77) and Na+-Ca2+ (r = 0.68), indicating mineral dissolution, ion exchange, and agricultural inputs as key factors. Weak correlations were found for NO3 and F, reflecting localized anthropogenic and geogenic influences. Component analysis identified four components explaining 78.2% (wet season) and 81.2% (dry season) of the variance, highlighting mineralization and anthropogenic inputs. Hydrochemical facies were mainly Ca-Mg-HCO3 with some localized Na-HCO3, suggesting that rock–water interactions are the primary source of geochemical control. Drinking water quality assessment showed that, during the wet season, 52.8% of the catchment had excellent water quality, 45.8% was good, and 1.4% was poor–very poor. In the dry season, 51.6% was excellent, 47.4% was good, 0.8% was poor, and 0.2% was very poor. The results of the entropy-weighted analysis indicated seasonal improvement, with excellent areas increasing from 13.1% to 31.4% and poor zones decreasing from 7.5% to 3.4%. Irrigation indices (Na%, PI, MAR, SAR) and Wilcox analysis (86.4% C2S1) suggested low sodicity and salinity hazards. This study provides the first integrated seasonal mapping of drinking and irrigation water quality, entropy-weighted water quality, and pollution index for the Maze Zenti catchment, establishing a hydrogeochemical baseline. Overall, groundwater in the area is generally suitable for drinking and irrigation. However, localized monitoring and sustainable land-use practices are recommended to mitigate contamination risks. Full article
Show Figures

Figure 1

48 pages, 4602 KB  
Article
Sequential Extraction Evaluation of Rock-Hosted Elements Using a pH Range Relevant to CO2 Geo-Sequestration
by Grant K. W. Dawson, Suzanne D. Golding, Dirk Kirste and Julie K. Pearce
Geosciences 2026, 16(1), 49; https://doi.org/10.3390/geosciences16010049 - 21 Jan 2026
Viewed by 96
Abstract
Detailed geochemical modelling of the potential groundwater impacts of CO2 geo-sequestration requires site-specific knowledge of how mobile elements are hosted within rocks. We present a simple sequential extraction procedure analogous to pH conditions produced by different partial pressures of carbon dioxide (CO [...] Read more.
Detailed geochemical modelling of the potential groundwater impacts of CO2 geo-sequestration requires site-specific knowledge of how mobile elements are hosted within rocks. We present a simple sequential extraction procedure analogous to pH conditions produced by different partial pressures of carbon dioxide (CO2) in contact with water. The procedure consists of three sequential steps: water at pH 7; acetic acid–ammonium acetate at pH 5 and then at pH 3, with the amounts of specific elements extracted by each step considered with respect to the whole rock total element abundance. Our purpose in developing this procedure is three-fold: (1) identify readily mobilized suites of elements for groundwater baseline and monitor bore studies; (2) provide insights regarding the mode/s of occurrence of easily extracted elements within rock samples; and (3) suggest possible mechanisms for the mobilization of rock-sourced elements into groundwater under neutral to moderately acidic pH that can inform the reactive transport modelling of carbon storage sites. In our case study, the second step extracted most of the main mobile elements of interest. Full article
Show Figures

Figure 1

17 pages, 2331 KB  
Review
Pathways for SDG 6 in Japan: Challenges and Policy Directions for a Nature-Positive Water Future
by Qinxue Wang, Tomohiro Okadera, Satoshi Kameyama and Xinyi Huang
Sustainability 2026, 18(2), 994; https://doi.org/10.3390/su18020994 - 19 Jan 2026
Viewed by 446
Abstract
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators [...] Read more.
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators show that coverage of safely managed drinking water and sanitation services is nearly 99%, and domestic statistics report high compliance rates for BOD/COD-based environmental standards in rivers, lakes, and coastal waters. Conversely, the “second half” of SDG 6 reveals persistent gaps: ambient water quality (6.3.2) remains at 57% (2023 data), while water stress (6.4.2) is at approximately 21.6%. Furthermore, SDG 6.6.1 shows that 3% of water basins are experiencing rapid changes in surface water area (2020 data), with ecosystems increasingly threatened by hypoxia in enclosed bays and climate-induced vulnerabilities. Drawing on global comparisons, this review synthesizes Japan’s progress toward SDG 6, elucidates the structural drivers for remaining gaps, and proposes policy pathways for a nature-positive water future. Using national statistics (1970–2023) and the DPSIR framework, our analysis confirms that improvements in BOD/COD compliance plateaued around 2002, reinforcing concerns that point-source measures alone are insufficient to address diffuse pollution, groundwater nitrate contamination, and emerging contaminants like PFAS. We propose six strategic directions: (1) climate-resilient water systems leveraging groundwater; (2) smart infrastructure renewal; (3) advanced treatment for emerging contaminants; (4) basin-scale IWRM enhancing transboundary cooperation; (5) data transparency and citizen engagement; and (6) scaled nature-based solutions (NbS) integrated with green–gray infrastructure. The paper concludes by outlining priorities to close the gaps in SDG 6.3 and 6.6, advancing Japan toward a sustainable, nature-positive water cycle. Full article
Show Figures

Figure 1

25 pages, 14882 KB  
Article
Tracing the Origin of Groundwater Salinization in Multilayered Coastal Aquifers Using Geochemical Tracers
by Mariana La Pasta Cordeiro, Johanna Wallström and Maria Teresa Condesso de Melo
Water 2026, 18(2), 252; https://doi.org/10.3390/w18020252 - 17 Jan 2026
Viewed by 171
Abstract
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced [...] Read more.
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced by Na-Cl hydrochemical facies, high electrical conductivity, and Na+/Cl, Cl/Br and SO42−/Cl molar ratios consistent with marine signatures. In areas affected by diapiric dissolution, besides elevated electrical conductivity, groundwater is enriched in SO42− and Ca2+ and in minor elements like K+, Li+, B3+, Ba2+ and Sr2+, and high SO42−/Cl and Ca2+/HCO3 molar ratios, indicative of gypsum/anhydrite dissolution. The relationship between δ18O and electrical conductivity further supports the identification of distinct salinity sources. This study integrates hydrogeochemical tracers to investigate hydrochemical evolution in the aquifer with increasing residence time and influence of water–rock interaction, as well as the accurate characterization of salinization mechanisms in multilayer aquifers. A comprehensive understanding of these processes is essential for identifying vulnerable zones and developing effective management strategies to ensure the protection and sustainable use of groundwater resources. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 3500 KB  
Article
Hydrogeochemical Characteristics and Formation Mechanism of Metasilicic Acid Mineral Water at Taoping Water Source Area
by Dian Liu, Ximin Bai, Xuegang Wang, Shengpin Yu, Tian Li and Fei Deng
Water 2026, 18(2), 249; https://doi.org/10.3390/w18020249 - 17 Jan 2026
Viewed by 183
Abstract
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. [...] Read more.
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. Taking the Taoping water source area in northwestern Jiangxi as a case study, 11 sets of groundwater and surface water samples were systematically collected. By comprehensively applying mathematical statistics, ionic ratios, and isotopic analyses, the hydrogeochemical characteristics and formation processes of metasilicic acid-type mineral water were examined. The results indicate that: (1) The mineral waters in the area are weakly alkaline and belong to the metasilicic acid type, with concentrations ranging from 22.0 to 67.0 mg/L, of which 75% exceed 30 mg/L. (2) The primary hydrochemical types are HCO3–Ca·Na, HCO3–Ca·Mg, and HCO3–Ca. Analysis of stable isotopes (δ18O and δ2H) and tritium (3H) indicates that metasilicic acid mineral water is primarily recharged by atmospheric precipitation, with an apparent groundwater age of approximately 60 years. (3) The enrichment of metasilicic acid primarily results from the weathering and leaching of silicate minerals, coupled with cation exchange. K+ and Na+ are mainly derived from silicate minerals such as feldspars and halite, whereas Ca2+ and Mg2+ originate primarily from carbonate minerals like calcite and dolomite. During recharge, atmospheric precipitation infiltrates the aquifer, dissolving aluminosilicate and siliceous minerals in the surrounding rocks, thereby releasing metasilicic acid into the groundwater and ultimately forming the metasilicic acid-type mineral water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 3382 KB  
Article
Heterogeneous Spatiotemporal Graph Attention Network for Karst Spring Discharge Prediction: Advancing Sustainable Groundwater Management Under Climate Change
by Chunmei Ma, Ke Xu, Ying Li, Yonghong Hao, Huazhi Sun, Shuai Gao, Xiangfeng Fan and Xueting Wang
Sustainability 2026, 18(2), 933; https://doi.org/10.3390/su18020933 - 16 Jan 2026
Viewed by 98
Abstract
Reliable forecasting of karst spring discharge is critical for sustainable groundwater resource management under the dual pressures of climate change and intensified anthropogenic activities. This study proposes a Heterogeneous Spatiotemporal Graph Attention Network (H-STGAT) to predict spring discharge dynamics at Shentou Spring, Shanxi [...] Read more.
Reliable forecasting of karst spring discharge is critical for sustainable groundwater resource management under the dual pressures of climate change and intensified anthropogenic activities. This study proposes a Heterogeneous Spatiotemporal Graph Attention Network (H-STGAT) to predict spring discharge dynamics at Shentou Spring, Shanxi Province, China. Unlike conventional spatiotemporal networks that treat all relationships uniformly, our model derives its heterogeneity from a graph structure that explicitly categorizes spatial, temporal, and periodic dependencies as unique edge classes. Specifically, a dual-layer attention mechanism is designed to independently extract hydrological features within each relational channel while dynamically assigning importance weights to fuse these multi-source dependencies. This architecture enables the adaptive capture of spatial heterogeneity, temporal dependencies, and multi-year periodic patterns in karst hydrological processes. Results demonstrate that H-STGAT outperforms both traditional statistical and deep learning models in predictive accuracy, achieving an RMSE of 0.22 m3/s and an NSE of 0.77. The model reveals a long-distance recharge pattern dominated by high-altitude regions, a finding validated by independent isotopic evidence, and accurately identifies an approximately 4–6 month lag between precipitation and spring discharge, which is consistent with the characteristic hydrological lag identified through statistical cross-covariance analysis. This research enhances the understanding of complex mechanisms in karst hydrological systems and provides a robust predictive tool for sustainable groundwater management and ecological conservation, while offering a generalizable methodological framework for similar complex karst hydrological systems. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

27 pages, 1630 KB  
Article
Sectoral Patterns of Arsenic, Boron, and Salinity Indicators in Groundwater from the La Yarada Los Palos Coastal Aquifer, Peru
by Luis Johnson Paúl Mori Sosa, Dante Ulises Morales Cabrera, Walter Dimas Florez Ponce De León, Hernán Rolando Salinas Palza and Edith Eva Cruz Pérez
Sustainability 2026, 18(2), 830; https://doi.org/10.3390/su18020830 - 14 Jan 2026
Viewed by 135
Abstract
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. [...] Read more.
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. Arsenic and boron were selected as target contaminants because of their naturally elevated concentrations associated with coastal and volcanic hydrogeological settings, and their well-documented implications for human health and irrigation suitability. This study reports a 12-month monitoring program (September 2024–August 2025) in three irrigated sectors, in which wells were sampled monthly and analyzed by inductively coupled plasma–mass spectrometry (ICP-MS) for total arsenic, boron, lithium and sodium, along with electrical conductivity, pH, temperature and total dissolved solids. The sector–month total arsenic means ranged from 0.0089 to 0.0143 mg L−1, with 33 of 36 exceeding the 0.010 mg L−1 drinking water benchmark recommended by the World Health Organization (WHO). Total boron ranged from 1.11 to 2.76 mg L−1, meaning that all observations were above the 0.5 mg L−1 irrigation guideline for agricultural use proposed by the United Nations Food and Agriculture Organization (FAO). A marked salinity gradient was observed from the inland Sector 1-BH (median Na ≈ 77 mg L−1; EC ≈ 1.2 mS cm−1) to the coastal Sector 3-LC (median Na ≈ 251 mg L−1; EC ≈ 3.3 mS cm−1), with Sector 2-FS showing intermediate salinity but the highest median boron and lithium levels. Spearman rank correlations indicate that sodium, electrical conductivity and total dissolved solids define the main salinity axis, whereas arsenic is only moderately associated with boron and lithium and is not a simple function of bulk salinity. Taken together, these results show that groundwater from the monitored wells is not safe for drinking without treatment and is subject to at least moderate boron-related irrigation restrictions. The sector-resolved dataset provides a quantitative baseline for La Yarada Los Palos and a foundation for future work integrating expanded monitoring, health-risk metrics and management scenarios for arsenic, boron and salinity in hyper-arid coastal aquifers. Full article
Show Figures

Figure 1

28 pages, 9478 KB  
Article
Integrating Agro-Hydrological Modeling with Index-Based Vulnerability Assessment for Nitrate-Contaminated Groundwater
by Dawid Potrykus, Adam Szymkiewicz, Beata Jaworska-Szulc, Gianluigi Busico, Anna Gumuła-Kawęcka, Wioletta Gorczewska-Langner and Micol Mastrocicco
Sustainability 2026, 18(2), 729; https://doi.org/10.3390/su18020729 - 10 Jan 2026
Viewed by 264
Abstract
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices [...] Read more.
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices in the context of groundwater vulnerability to contamination. In this study we present a method to assess groundwater vulnerability to nitrate pollution based on a combination of the SWAT agro-hydrological model and the DRASTIC index method. SWAT modeling was applied to assess different scenarios of agricultural practices and identify solutions for sustainable management of soil and groundwater and reduction of nitrate pollution. The developed method was implemented for groundwater resources in a study area (Puck Bay region, southern Baltic coast), which represented a complex multi-aquifer system formed in Quaternary fluvioglacial deposits (sand and gravel) separated by moraine tills. In order to investigate the effects of different agricultural practices, 12 scenarios have been defined, which were grouped into four classes: crop type, fertilizer management, tillage, and grazing. An overlay index structure was applied, and ratings and weights to several factors were assigned. All analyses were processed using GIS tools, and the results are presented in the form of maps, which categorize groundwater vulnerability to nitrate pollution into five classes, ranging from very low to very high. The results reveal significant variability in groundwater vulnerability to nitrate pollution in the study area. Agricultural practices have a very strong influence on groundwater vulnerability by controlling both recharge rates and nitrogen losses from the soil profile. The most pronounced increases in vulnerability were associated with scenarios involving excessive fertilization and intensive grazing. Among crop types, potato cultivation appears to pose the greatest risk to groundwater quality. Full article
Show Figures

Figure 1

Back to TopTop