Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,400)

Search Parameters:
Keywords = glass-transition temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1816 KiB  
Article
Massive Fluctuations in the Derivatives of Pair Distribution Function Minima and Maxima During the Glass Transition
by Michael I. Ojovan, Anh Khoa Augustin Lu and Dmitri V. Louzguine-Luzgin
Metals 2025, 15(8), 869; https://doi.org/10.3390/met15080869 (registering DOI) - 2 Aug 2025
Abstract
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising [...] Read more.
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising radial and pair distribution functions (RDFs and PDFs) and their evolution with temperature. The Wendt–Abraham empirical criterion of glass transition and its modifications are confirmed in line with previous works, which utilised the kink of the temperature dependences of the minima and maxima of both the PDF and the maxima of the structure factor S(q). Massive fluctuations are, however, identified near the Tg of the derivatives of the minima and maxima of the PDF and maxima of S(q), which adds value to understanding the glass transition in the system as a true second-order-like phase transformation in the non-equilibrium system of atoms. Full article
Show Figures

Figure 1

21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 29
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 59
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

23 pages, 3577 KiB  
Article
Prediction and Interpretability Study of the Glass Transition Temperature of Polyimide Based on Machine Learning and Molecular Dynamics Simulations
by Wenjia Huo, Boyang Liang, Xiang Wu, Zhenchang Zhang, Weichao Zhou, Haihong Wang, Xupeng Ran, Yaoyao Bai and Rongrong Zheng
Polymers 2025, 17(15), 2083; https://doi.org/10.3390/polym17152083 - 30 Jul 2025
Viewed by 192
Abstract
The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performance materials with specific properties to replace traditional engineering materials. The glass transition temperature (Tg) is a crucial characteristic of polyimide (PI). But small datasets can only [...] Read more.
The utilization of machine learning (ML) has brought more opportunities for the discovery of high-performance materials with specific properties to replace traditional engineering materials. The glass transition temperature (Tg) is a crucial characteristic of polyimide (PI). But small datasets can only partially reveal structural information and decrease the ability of the models to learn from the observed data. In this investigation, a dataset comprising 1261 PIs was assembled. A quantitative structure–property relationship targeting Tg was constructed using nine regression algorithms, with the Categorical Boosting demonstrating the highest accuracy, achieving a coefficient of determination of 0.895 for the test set. SHapley Additive exPlanations analysis identified the NumRotatableBonds descriptor had a significantly negative impact on Tg. Finally, all-atom molecular dynamics (MD) simulations calculated eight PI structures to verify the accuracy of the prediction model. The ML prediction was consistent with the MD simulation, with the lowest prediction deviation of approximately 6.75%, but the time and resource consumption were tremendously reduced. These findings emphasize the significance of utilizing extensive datasets for model training. This available and interpretable ML framework provides impressive acceleration over the MD simulation and serves as a reference for the structural design of PI with the desired Tg in the future. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

20 pages, 14936 KiB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Viewed by 342
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

17 pages, 2754 KiB  
Article
The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect
by Lin Yuan, Xurong Teng, Ping Li, Ouyuan Zhang, Fangfang Zhao, Changyuan Tao and Renlong Liu
Materials 2025, 18(15), 3450; https://doi.org/10.3390/ma18153450 - 23 Jul 2025
Viewed by 246
Abstract
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content [...] Read more.
This work systematically altered the molar ratio of CaO and MgO (R = [CaO]/[(CaO + MgO)], mol%) to elucidate the underlying mechanisms driving the observed changes in macroscopic properties. The results indicated that as CaO increasingly replaced MgO, the rise in the content of non-bridging oxygen led to the depolymerization of the glass structure. A quantitative analysis of Qn units in the [SiO4] tetrahedron using 29Si MAS NMR revealed that a non-monotonic variation appeared when the Q4 unit reached a minimum at R = 0.7. Meanwhile, the chemical environment of aluminum also varies with the R, and the presence of high-coordinated aluminum species is observed when Ca2+ and Mg2+ ions coexist. In terms of overall performance, both density and molar volume exhibited a linear trend. However, thermal stability, viscosity, characteristic temperatures (including melting temperature, Littleton softening temperature, working point temperature, and glass transition temperature), and mechanical properties showed deviations from linearity. Additionally, four non-isothermal thermodynamics was employed to quantitatively assess the thermal stability of samples C-0.7 and C-1. The insights gained from this study will aid in the development of advanced glass materials with tailored properties for industrial applications. Full article
Show Figures

Figure 1

14 pages, 2390 KiB  
Article
Synthesis, Thermal Behavior and Mechanical Property of Fully Biobased Poly(hexamethylene Furandicarboxylate-co-hexamethylene Thiophenedicarboxylate) Copolyesters
by Haidong Yang, Shiwei Feng and Zhaobin Qiu
Polymers 2025, 17(14), 1997; https://doi.org/10.3390/polym17141997 - 21 Jul 2025
Viewed by 250
Abstract
In order to increase the toughness of poly(hexamethylene furandicarboxylate) (PHF) without severely compromising its strength at break, novel biobased poly(hexamethylene furandicarboxylate-co-hexamethylene thiophenedicarboxylate) (PHFTh) copolyesters and their parent homopolyesters, PHF and poly(hexamethylene thiophenedicarboxylate), were successfully synthesized through melt polycondensation in this research. [...] Read more.
In order to increase the toughness of poly(hexamethylene furandicarboxylate) (PHF) without severely compromising its strength at break, novel biobased poly(hexamethylene furandicarboxylate-co-hexamethylene thiophenedicarboxylate) (PHFTh) copolyesters and their parent homopolyesters, PHF and poly(hexamethylene thiophenedicarboxylate), were successfully synthesized through melt polycondensation in this research. Despite the variation in their compositions, all the PHFTh copolyesters exhibited excellent thermal stability. The PHFTh copolyesters were semicrystalline in nature, showing the lowest eutectic melting points and isodimorphism behaviors over the whole composition range. As the hexamethylene thiophenedicarboxylate (HTh) unit content increased, the glass transition temperature of the copolyesters gradually decreased, while the chain mobility was accordingly enhanced. Therefore, the introduction of the HTh unit significantly increased the elongation at break of the PHFTh, achieving a balance between strength and toughness. The biobased PHFTh copolyesters showed tunable thermal behaviors and excellent mechanical properties and may find potential end uses from a practical application viewpoint. Full article
(This article belongs to the Special Issue Biobased Polymers and Their Structure-Property Relationships)
Show Figures

Figure 1

16 pages, 1006 KiB  
Article
Spray Drying of Jackfruit (Artocarpus heterophyllus Lam.) Seeds Protein Concentrate: Physicochemical, Structural, and Thermal Characterization
by Dulce María de Jesús Miss-Zacarías, Montserrat Calderón-Santoyo, Victor Manuel Zamora-Gasga, Gabriel Ascanio and Juan Arturo Ragazzo-Sánchez
Processes 2025, 13(7), 2319; https://doi.org/10.3390/pr13072319 - 21 Jul 2025
Viewed by 354
Abstract
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet [...] Read more.
Jackfruit seeds (Artocarpus heterophyllus Lam.) are a viable option for supporting a sustainable protein supply. The objective was to obtain protein powder from jackfruit seeds protein concentrate (JSPC) by spray drying. A central composite design was used; the independent variables were inlet temperature (110, 115, and 120 °C) and the solids of the JSPC solution (5, 7.5, and 10%). With the desirability function, the optimal drying parameters to maximize the process yield and achieve a low moisture content were 7.5% solids in the JSPC solution and an inlet temperature of 115 °C, resulting in a process yield of 71.51 ± 1.21%. Moisture (5.33 ± 0.11%), water activity (0.15 ± 0.02), bulk density (0.40 ± 0.01 g/mL), and color (L*: 70.56 ± 0.38, a*: 7.80 ± 0.11 and b*: 15.18 ± 0.15) were measured; these parameters are within the allowed ranges for stable food powders. Hydrosolubility (82.46 ± 1.68%), foaming capacity (48.33 ± 1.66%), and emulsifying activity (105.74 ± 10.20 m2/g) were evaluated. Glass transition temperature (129.49 °C) of the JSPC powder enables the establishment of optimal storage and processing conditions for the protein. JSPC powder could be applied to the elaboration of food products with nutritional and functional value. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

22 pages, 1375 KiB  
Review
Polymorphic Transformations of Pharmaceutical Materials Induced by Mechanical Milling: A Review
by Mathieu Guerain and Jean-François Willart
Pharmaceutics 2025, 17(7), 946; https://doi.org/10.3390/pharmaceutics17070946 - 21 Jul 2025
Viewed by 345
Abstract
A review of the literature on polymorphic transformations by milling on pharmaceutical materials was carried out. The available information on 18 pharmaceutical materials was compiled. In particular, when data are available, the starting and final crystalline forms, their enantiotropic or monotropic relationship, the [...] Read more.
A review of the literature on polymorphic transformations by milling on pharmaceutical materials was carried out. The available information on 18 pharmaceutical materials was compiled. In particular, when data are available, the starting and final crystalline forms, their enantiotropic or monotropic relationship, the glass transition temperature of the compound and its melting temperature, the experimental observation of a transient or partial amorphization of compounds, and the transformation kinetics make it possible to suggest a two-step transformation mechanism. First, an amorphization occurs under milling of the starting polymorphic form. Secondly, a recrystallization of the amorphous form occurs towards the final form. The observed transformation kinetics are due to the fact that the recrystallization of the amorphous material towards the final form depends on the accidental formation of a cluster of this form during milling. Moreover, the observation of the transient amorphous form depends on the relative position of the glass transition temperature of the material with respect to the milling temperature. This mechanism seems to be independent of the enantiotropic or monotropic character of the polymorphic forms involved in the transformation. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Figure 1

33 pages, 4464 KiB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 502
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 3594 KiB  
Article
The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Dimana Nazarova, Lian Nedelchev, Vladislava Ivanova and Vanya Lilova
Materials 2025, 18(14), 3387; https://doi.org/10.3390/ma18143387 - 18 Jul 2025
Viewed by 278
Abstract
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). [...] Read more.
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) was applied to analyze the surface morphology of the samples. Some thermal characteristics such as the glass transition, crystallization and melting temperature and some physico-chemical properties such as the density, compactness and molar and free volumes were also determined. The XRD patterns show sharp diffraction peaks, indicating that the synthesized new bulk materials are crystalline. The following four crystal phases were determined: Te, Cu, CuTe and Cu2GeTe3. The results from the EDS confirmed the presence of Ge, Te and Cu in the bulk samples in concentrations in good correspondence with those theoretically determined. A layered thin-film material based on Ge14Te81Cu5, which exhibits lower network compactness compared to the other synthesized new chalcogenides, and the azo polymer PAZO was fabricated, and the kinetics of the photoinduced birefringence at 444 nm was measured. The results indicated an increase in the maximal induced birefringence for the layered structure in comparison to the non-doped azo polymer film. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 313
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

15 pages, 7412 KiB  
Article
Effect of Sequence-Based Incorporation of Fillers, Kenaf Fiber and Graphene Nanoplate, on Polypropylene Composites via a Physicochemical Compounding Method
by Soohyung Lee, Kihyeon Ahn, Su Jung Hong and Young-Teck Kim
Polymers 2025, 17(14), 1955; https://doi.org/10.3390/polym17141955 - 17 Jul 2025
Viewed by 303
Abstract
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) [...] Read more.
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) and kenaf fiber (KF). Two filler incorporation sequences were evaluated: GnP/KF/PP (GnP initially mixed with KF before PP addition) and GnP/PP/KF (KF added after mixing GnP with PP). The GnP/KF/PP composite exhibited superior mechanical properties, with tensile strength and flexural strength increasing by up to 25% compared to the control, while GnP/PP/KF showed a 13% improvement. SEM analyses revealed that initial mixing of GnP with KF significantly improved filler dispersion and interfacial bonding, enhancing stress transfer within the composite. XRD and DSC analyses showed reduced crystallinity and lower crystallization temperatures in the addition of KF due to restricted polymer chain mobility. Thermal stability assessed by TGA indicated minimal differences between the composites regardless of filler sequence. DMA results demonstrated a significantly higher storage modulus and enhanced elastic response in the addition of KF, alongside a slight decrease in glass transition temperature (Tg). The results emphasize the importance of optimizing filler addition sequences to enhance mechanical performance, confirming the potential of these composites in sustainable packaging and structural automotive applications. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials, Second Edition)
Show Figures

Figure 1

20 pages, 3914 KiB  
Article
Simulation and Experimental Analysis of Shelf Temperature Effects on the Primary Drying Stage of Cordyceps militaris Freeze-Drying
by Phuc Nguyen Van and An Nguyen Nguyen
Processes 2025, 13(7), 2269; https://doi.org/10.3390/pr13072269 - 16 Jul 2025
Viewed by 275
Abstract
This study employs advanced numerical simulation to investigate the influence of shelf temperature on the freeze-drying kinetics and product quality of Cordyceps militaris. Emphasis is placed on the glass transition and structural collapse mechanisms during the primary drying stage. A detailed computational [...] Read more.
This study employs advanced numerical simulation to investigate the influence of shelf temperature on the freeze-drying kinetics and product quality of Cordyceps militaris. Emphasis is placed on the glass transition and structural collapse mechanisms during the primary drying stage. A detailed computational model was developed to predict temperature profiles, glass transition temperature, collapse temperature, and moisture distribution under varying process conditions. Simulation results indicate that maintaining the shelf temperature below 10 °C minimizes the risk of structural collapse and volume shrinkage while improving drying efficiency and product stability. Based on the model, an optimal freeze-drying protocol is proposed: shelf heating at 0 °C, condenser plate at −32 °C, and chamber pressure at 35 Pa. Experimental validation confirmed the feasibility of this regime, yielding a shrinkage of 9.52%, a color difference (ΔE) of 4.86, water activity of 0.364 ± 0.018, and a rehydration ratio of 55.14 ± 0.789%. Key bioactive compounds, including adenosine and cordycepin, were well preserved. These findings underscore the critical role of simulation in process design and optimization, contributing to the development of efficient and high-quality freeze-dried functional food products. Full article
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Epoxy Resin/Ionic Liquid Composite as a New Promising Coating Material with Improved Toughness and Antibiofilm Activity
by Sergiy Rogalsky, Olena Moshynets, Oleg Dzhuzha, Yevheniia Lobko, Anastasiia Hubina, Alina Madalina Darabut, Yaroslav Romanenko, Oksana Tarasyuk and Geert Potters
Coatings 2025, 15(7), 821; https://doi.org/10.3390/coatings15070821 - 14 Jul 2025
Viewed by 720
Abstract
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and [...] Read more.
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and 30 wt% of this IL was prepared by dissolution of C12C1IM-DBS in commercial DER 331 epoxy resin, followed by a curing phase with diethylenetriamine. Infrared analysis revealed physicochemical interactions between the hydroxyl groups of the resin and the IL. Spectrophotometric studies showed no release of C12C1IM-DBS after 30 days of exposure of the modified coatings to water. The plasticizing effect of the IL on the epoxy resin was established by differential scanning calorimetry analysis. The introduction of 10 and 20% C12C1IM-DBS into DER 331 reduced its glass transition temperature from 122.8 °C to 109.3 and 91.5 °C, respectively. The hardness of epoxy resin decreased by approximately 26% after the introduction of the IL. Moreover, DER 331/C12C1IM-DBS coatings on steel substrates showed significantly improved impact resistance compared to neat resin. The antibiofilm efficiency of DER 331/C12C1IM-DBS coatings was evaluated by assessing the capability of two biofilm-forming model strains, Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface. The IL effectively inhibited S. aureus surface-associated biofilm development even at the lowest content of 10%. On the contrary, an approximately 50% inhibition of biofilm metabolic activity was detected for DER 331/C12C1IM-DBS coatings containing 20% and 30% of the IL. Overall, the results of this study indicate that the hydrophobic IL C12C1IM-DBS is an efficient modifying additive for epoxy resins, which can significantly improve their operational properties for various industrial applications. Full article
Show Figures

Figure 1

Back to TopTop