materials-logo

Journal Browser

Journal Browser

New Generation Materials for Advanced Electronic and Biomedical Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Electronic Materials".

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 4476

Special Issue Editors


E-Mail Website
Guest Editor
Physics Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
Interests: chalcogenides; thin films; oxide systems; coatings

E-Mail Website
Guest Editor
Physics Department, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
Interests: oxide systems; glass-ceramics; electrical properties; crystallization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We welcome you to contribute to this Special Issue of Materials entitled “New Generation Materials for Advanced Electronic and Biomedical Applications”.

The design and synthesis of new inorganic and organic materials and composites with predetermined optical, electrical, mechanical and magnetic properties for electronic and biomedical applications is crucial. This Special Issue aims to gather recent research results regarding the appropriate initial composition of a wide variety of organic and inorganic materials, as well as their composites. It will also address the preparation of these composites via a range of experimental techniques. This Special Issue also aims to provide a brief review of the methods most often used to characterize the phase composition, structure and physical properties of the obtained materials, as well as introduce methods that optimize the process of characterizing and manipulating the surface of the synthesized materials. The scope of this Special Issue includes, but is not limited to, the following topics:

  1. Bulk glasses and glass-ceramics for electronic and opto-electronic applications;
  2. Bulk glasses, ceramics and composites for biomedicine;
  3. Surface modification and methods for the characterization of materials.

We look forward to receiving your contributions.

Prof. Dr. Plamen Petkov
Dr. Ruzha Harizanova
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxides
  • chalcogeides
  • metals
  • azopolymers
  • graphene
  • glasses
  • glass-ceramics
  • composites
  • plasma processing
  • optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3229 KB  
Article
Structural and Morphological Characterization of Gd-Doped Ceria (Ce1−xGdxO2−x/2) Synthesized by an Optimized Hydrothermal Method
by Kolyo Kolev, Ognian Dimitrov, Mariela Dimitrova, Maria Shipochka, Daniela Karashanova and Tamara Petkova
Materials 2025, 18(21), 4957; https://doi.org/10.3390/ma18214957 - 30 Oct 2025
Viewed by 505
Abstract
The aim of the presented work is to develop a more energy- and time-saving modification of a well-known hydrothermal synthesis method by reducing the time of the synthesis regime and drying step, as well as the possible removal of the calcination procedure. The [...] Read more.
The aim of the presented work is to develop a more energy- and time-saving modification of a well-known hydrothermal synthesis method by reducing the time of the synthesis regime and drying step, as well as the possible removal of the calcination procedure. The structure and morphology of Gd-doped ceria (Ce1−xGdxO2−x/2, where x = 0, 0.1, 0.2, 0.3, and 0.5), synthesized via the optimized hydrothermal method, were thoroughly investigated. Phase composition was analyzed using X-ray diffraction (XRD), while the structural units of the materials were identified by Fourier-transform infrared spectroscopy (FTIR). Chemical composition was studied using energy-dispersive X-ray spectroscopy (EDS) and further confirmed by energy-dispersive X-ray fluorescence (EDXRF). Transmission electron microscopy (TEM) was employed to analyze the size and shape of the nanoparticles. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ce3+ ions in both doped and undoped CeO2 samples. Full article
Show Figures

Figure 1

18 pages, 16179 KB  
Article
Barium Titanate-Based Glass–Ceramics Crystallized from Multicomponent Oxide Glasses: Phase Composition and Microstructure
by Ruzha Harizanova, Wolfgang Wisniewski, Dragomir M. Tatchev, Georgi Avdeev, Svetlozar Nedev and Christian Rüssel
Materials 2025, 18(16), 3783; https://doi.org/10.3390/ma18163783 - 12 Aug 2025
Viewed by 799
Abstract
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2 [...] Read more.
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2O3/BaO/ZrO2/TiO2/B2O3/SiO2 system prepared by melt-quenching. These glasses were then crystallized to glass–ceramics by a controlled thermal treatment. X-ray diffraction experiments reveal the precipitation of Ba2TiSi2O8 (fresnoite) and BaTiO3, which probably forms a BaZrxTi1−xO3 solid solution. The microstructure is studied by scanning electron microscopy and shows the presence of mulberry-shaped, crystallized structures with a densely-branching morphology. Microcomputed X-ray tomography is used to gather information on the volume fraction and average size of the crystallized volume as an effect of the applied temperature–time schedule. Longer annealing times lead to a higher volume fraction and increasing average size of the crystallization structures obtained. The dielectric properties analyzed by impedance spectroscopy are insulating and show relatively high dielectric constants ≥ 100 and moderate loss tangent values at 10 kHz. Full article
Show Figures

Figure 1

15 pages, 3655 KB  
Article
Indium-Doped ZnO Thin Films Obtained Using Spray Pyrolysis for Position-Sensitive Photodetection
by Pavlina Bancheva-Koleva, Veselin Zhelev, Plamen Petkov and Tamara Petkova
Materials 2025, 18(16), 3744; https://doi.org/10.3390/ma18163744 - 11 Aug 2025
Viewed by 779
Abstract
The main goal of this study was to investigate the properties of ZnO thin films, including pure films and those doped with indium (up to 8 mol%) that was deposited using a spray pyrolysis technique on glass and silicon substrates in order to [...] Read more.
The main goal of this study was to investigate the properties of ZnO thin films, including pure films and those doped with indium (up to 8 mol%) that was deposited using a spray pyrolysis technique on glass and silicon substrates in order to prepare the position-sensitive structure, Si-SiO2-ZnO:In. To this aim, the present work is focused on investigating the effect of indium concentration on the morphology, structure, and optical properties of the films. X-ray diffraction (XRD) analysis reveals a wurtzite polycrystalline structure. Scanning electron microscopy (SEM) images display a smooth and uniform surface characterized by closely packed nanocrystalline clusters. As the indium concentration rises to 8 mol%, the number of nuclei grows, resulting in uniformly distributed grains across the entire substrate surface. The estimated root mean square (RMS) roughness values for the thin films undoped and doped with 3 mol%, 5 mol%, and 8 mol% of ZnO measured using AFM are 6.13, 9.64, and 13.76 nm, respectively. The increase in indium concentration leads to a slight decrease in film transmittance. The measured LPV photosensitivity of about 44 mV/mm confirms the potential use of these thin films in practical applications. Full article
Show Figures

Figure 1

11 pages, 3000 KB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 583
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

13 pages, 3594 KB  
Article
The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Dimana Nazarova, Lian Nedelchev, Vladislava Ivanova and Vanya Lilova
Materials 2025, 18(14), 3387; https://doi.org/10.3390/ma18143387 - 18 Jul 2025
Viewed by 608
Abstract
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). [...] Read more.
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) was applied to analyze the surface morphology of the samples. Some thermal characteristics such as the glass transition, crystallization and melting temperature and some physico-chemical properties such as the density, compactness and molar and free volumes were also determined. The XRD patterns show sharp diffraction peaks, indicating that the synthesized new bulk materials are crystalline. The following four crystal phases were determined: Te, Cu, CuTe and Cu2GeTe3. The results from the EDS confirmed the presence of Ge, Te and Cu in the bulk samples in concentrations in good correspondence with those theoretically determined. A layered thin-film material based on Ge14Te81Cu5, which exhibits lower network compactness compared to the other synthesized new chalcogenides, and the azo polymer PAZO was fabricated, and the kinetics of the photoinduced birefringence at 444 nm was measured. The results indicated an increase in the maximal induced birefringence for the layered structure in comparison to the non-doped azo polymer film. Full article
Show Figures

Figure 1

13 pages, 7730 KB  
Article
Study of New Glass–Ceramic and Dense Ceramic Containing Biogenic Hydroxyapatite
by Tina Tasheva, Albena Yoleva, Janna Mateeva and Hristo Georgiev
Materials 2025, 18(13), 3059; https://doi.org/10.3390/ma18133059 - 27 Jun 2025
Viewed by 762
Abstract
A novel bioactive glass–ceramic was developed using biogenic hydroxyapatite (BHA) synthesized from Rapana venosa (Black Sea) shells and monocalcium phosphate monohydrate [Ca(H2PO4)2·H2O] via solid-state synthesis. The prepared batches were obtained by combining BHA with SiO [...] Read more.
A novel bioactive glass–ceramic was developed using biogenic hydroxyapatite (BHA) synthesized from Rapana venosa (Black Sea) shells and monocalcium phosphate monohydrate [Ca(H2PO4)2·H2O] via solid-state synthesis. The prepared batches were obtained by combining BHA with SiO2, B2O3, and Na2O, melted at 1200 °C and melt-quenched in water to form glass–ceramic materials. Dense biogenic hydroxyapatite-based ceramics were successfully sintered at 1200 °C (2 h hold) using a 25 mass % sintering additive composed of 35 mass % B2O3, 45 mass % SiO2, 10 mass % Al2O3, and 10 mass % Na2O. Structural characterization was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The resulting materials consisted of a well-defined crystalline hydroxyapatite phase [Ca10(PO4)6(OH)2] alongside an amorphous phase. In samples with increased SiO2 and reduced B2O3 content (composition 3), a finely dispersed Na3Ca6(PO4)5 crystalline phase appeared, with a reduced presence of hydroxyapatite. Bioactivity was assessed in simulated body fluid (SBF) after 10 and 20 days of immersion, confirming the material’s ability to support apatite layer formation. The main structural units SiO4, PO4, and BO3 are interconnected through Si–O–Si, B–O–B, P–O–P, and mixed Si–O–Al linkages, contributing to both structural stability and bioactivity. Full article
Show Figures

Figure 1

Back to TopTop