The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect
Abstract
1. Introduction
2. Experimental Procedure
2.1. Glass Sample Preparation
2.2. Structural Characterization
2.3. Differential Scanning Calorimetry (DSC) Measurement
2.4. Temperature Dependence of Viscosity
2.5. Vickers Microhardness and Bending Strength
2.6. Density and Molar Volume
3. Results and Discussion
3.1. Structural Analysis
3.1.1. XRD Analysis
3.1.2. FTIR Spectra Analysis
3.1.3. NMR Analysis
3.2. Thermodynamic Behaviors
3.3. Overall Performance
3.3.1. Density and Molar Volume
3.3.2. Rheological Properties
3.3.3. Vickers Hardness Analysis (HV) and Bending Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, X.; Shan, Z.; Li, Z.; Tao, Y.; Yue, Y.; Tao, H. Toward hard and highly crack resistant magnesium aluminosilicate glasses and transparent glass-ceramics. J. Am. Ceram. Soc. 2020, 103, 3600–3609. [Google Scholar] [CrossRef]
- Rosales-Sosa, G.A.; Masuno, A.; Higo, Y.; Inoue, H. Crack-resistant Al2O3–SiO2 glasses. Sci. Rep. 2016, 6, 23620. [Google Scholar] [CrossRef] [PubMed]
- Korwin-Edson, M.L.; Hofmann, D.A.; McGinnis, P.B. Strength of high performance glass reinforcement fiber. Int. J. Appl. Glass Sci. 2012, 3, 107–121. [Google Scholar] [CrossRef]
- Li, H.; Richards, C.; Watson, J. High-Performance glass fiber development for composite applications. Int. J. Appl. Glass Sci. 2013, 5, 65–81. [Google Scholar] [CrossRef]
- Hou, G.; Zhang, C.; Fu, W.; Li, G.; Xia, J.; Ping, Y. Improvement of mechanical strength in Y3+/La3+ co-doped silicate glasses for display screen. Ceram. Int. 2019, 45, 11850–11855. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.A.; Yin, L.; Kang, J.; Qu, Y.; Liang, X.; Yue, Y. The fiber spinnability and mixed alkaline effect for calcium magnesium aluminosilicate glasses. J. Non-Cryst. Solids 2021, 557, 120643. [Google Scholar] [CrossRef]
- Tsujiguchi, M.; Kobashi, T.; Utsumi, Y.; Kakimori, N.; Nakahira, A. Synthesis of zeolite a from aluminoborosilicate glass used in glass substrates of liquid crystal display panels and evaluation of its cation exchange capacity. J. Am. Ceram. Soc. 2013, 97, 114–119. [Google Scholar] [CrossRef]
- Biswas, P.; Buchi Suresh, M.; Jana, D.C.; Saha, B.P.; Johnson, R. Processing of lithium aluminium silicate glass-ceramics and investigations of fracture behaviour and its correlation with the microstructural features. Ceram. Int. 2024, 50, 4708–4714. [Google Scholar] [CrossRef]
- Liu, J.; Zou, Q.; Zhang, Z.; Zeng, Q.; Peng, H.; Wang, Q.; Chang, Q. Research on mixed alkaline-earth effect in non-alkali glass substrates for TFT-LCDs. J. Non-Cryst. Solids 2022, 579, 121372. [Google Scholar] [CrossRef]
- Sun, S.; Xia, L.; Zhang, T.; Yang, H.; Qin, C.; Zhong, B.; Xiong, L.; Wu, X.; Wen, G. Synthesis and microstructure evolution of β-Sialon fibers/barium aluminosilicate (BAS) glass-ceramic matrix composite with enhanced mechanical properties. J. Am. Ceram. Soc. 2021, 104, 5354–5364. [Google Scholar] [CrossRef]
- Park, K.D.; Gelija, D.; Jeong, B.-Y.; Chung, W.J. Effect of alkali and alkaline-earth metal oxides on the chemical strengthening properties of sodium alumino-silicate glasses. J. Non-Cryst. Solids 2024, 625, 122769. [Google Scholar] [CrossRef]
- Bansal, N.; Khan, S.; Sharma, G.; Rajni; Kumar, D.; Singh, K. Alkali field strength effects on optical, dielectric, and conducting properties of calcium borosilicate glasses. Ceram. Int. 2023, 49, 2998–3006. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, C.; Wang, J.; Ruan, J.; Xie, J.; Han, J.; Deng, Z.; Zhao, X. Effects of alkali oxides and ion-exchange on the structure of zinc-alumino-silicate glasses and glass-ceramics. J. Eur. Ceram. Soc. 2022, 42, 576–588. [Google Scholar] [CrossRef]
- Ke, Z.; Cao, X.; Shan, C.; Shi, L.; Wang, P.; Yang, Y.; Zhao, F.; Cui, J.; Li, J.; Zhou, G.; et al. The effect of alkali metal oxide on the properties of borosilicate fireproof glass: Structure, thermal properties, viscosity, chemical stability. Ceram. Int. 2021, 47, 19605–19613. [Google Scholar] [CrossRef]
- Shan, Z.; Li, C.; Tao, H. Mixed alkaline-earth effect on the mechanical and rheological properties of Ca–Mg silicate glasses. J. Am. Ceram. Soc. 2017, 100, 4570–4580. [Google Scholar] [CrossRef]
- Shan, Z.; Qiao, A.; Liu, S.; Tao, H. Mixed intermediate effect on mechanical and rheological performances in Zn Mg silicate glasses. J. Alloys Compd. 2018, 747, 738–746. [Google Scholar] [CrossRef]
- Hong, M.; Chen, C.; Wang, H.; Lei, R.; Hua, Y.; Wang, Z.; Mo, Z.; Xu, S. Cost-effective way of improving the optical properties of phosphor-in-glass by adjusting the particle size of glass powder. Ceram. Int. 2023, 49, 22547–22554. [Google Scholar] [CrossRef]
- Jha, P.; Singh, K. Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2–K2O–CaO–MgO glasses. Ceram. Int. 2016, 42, 436–444. [Google Scholar] [CrossRef]
- Ren, L.; Luo, X.; Xia, Y.; Hu, Y.; Zhou, H. Optimization of borosilicate glass/CaTiO3-TiO2 composite via altering prefiring temperature and particle size. Int. J. Appl. Ceram. Technol. 2018, 16, 77–87. [Google Scholar] [CrossRef]
- Li, H.; Xing, Z.; Xu, S.; Liu, S.; Mauro, J. 3D Simulation of borosilicate glass all-electric melting furnaces. J. Am. Ceram. Soc. 2013, 97, 141–149. [Google Scholar] [CrossRef]
- Ding, Z.; Wilkinson, C.J.; Zheng, J.; Lin, Y.; Liu, H.; Shen, J.; Kim, S.H.; Yue, Y.; Ren, J.; Mauro, J.C.; et al. Topological understanding of the mixed alkaline earth effect in glass. J. Non-Cryst. Solids 2020, 527, 119696. [Google Scholar] [CrossRef]
- Gu, G.; Liu, X.; Zhang, L.; Wang, X.; Wu, W.; Cao, Y.; Qu, Y.; Chen, X.; Yue, Y.; Kang, J. Mixed alkaline earth effect on the structure and elastic modulus of CaO–MgO–Al2O3–SiO2 glasses: A molecular dynamics simulation. J. Non-Cryst. Solids 2023, 600, 122027. [Google Scholar] [CrossRef]
- Kjeldsen, J.; Smedskjaer, M.M.; Mauro, J.C.; Youngman, R.E.; Huang, L.; Yue, Y. Mixed alkaline earth effect in sodium aluminosilicate glasses. J. Non-Cryst. Solids 2013, 369, 61–68. [Google Scholar] [CrossRef]
- Shan, Z.; Liu, S.; Tao, H.; Yue, Y. Mixed alkaline-earth effects on several mechanical and thermophysical properties of aluminate glasses and melts. J. Am. Ceram. Soc. 2018, 102, 1128–1136. [Google Scholar] [CrossRef]
- He, X.; Shen, X.; Huang, Q.; Zhang, J.; He, Y.; Liu, T.; Lu, A. Study on the structure, fining and properties of non-alkali aluminoborosilicate glasses containing SnO2. J. Non-Cryst. Solids 2021, 559, 120670. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Y.; Kang, J.; Qu, Y.; Khater, G.A.; Li, S.; Wang, Y.; Yue, Y. Effect of Y2O3 and La2O3 on structure and dielectric properties of aluminoborosilicate glasses. J. Non-Cryst. Solids 2018, 496, 1–5. [Google Scholar] [CrossRef]
- Yang, T.; Jin, L.; Tian, X.; Li, L.; Wang, J.; Han, J. Mixed-alkaline earth effects on the network structure and properties of alkali-free aluminosilicate glasses. J. Non-Cryst. Solids 2024, 634, 122984. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yang, P.; Han, T.; Shi, X.; He, K.; Zu, C. Effect of Y2O3/La2O3 on structure and mechanical properties of Li2O–Al2O3–SiO2 glass. J. Non-Cryst. Solids 2022, 596, 121847. [Google Scholar] [CrossRef]
- Junfeng, K.; Junzhu, C.; Sheng, L.; Ya, Q.; Yansheng, H.; Khater, G.A.; Yunlong, Y. Structure, dielectric property and viscosity of alkali-free boroaluminosilicate glasses with the substitution of Al2O3 for SiO2. J. Non-Cryst. Solids 2020, 537, 120022. [Google Scholar] [CrossRef]
- Shelby, J.E. Formation and properties of calcium aluminosilicate glasses. J. Am. Ceram. Soc. 1985, 68, 155–158. [Google Scholar] [CrossRef]
- Neuville, D.R.; Cormier, L.; Massiot, D. Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem. Geol. 2006, 229, 173–185. [Google Scholar] [CrossRef]
- Neuville, D.R.; Cormier, L.; Massiot, D. Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim. Cosmochim. Acta 2004, 68, 5071–5079. [Google Scholar] [CrossRef]
- Tang, X.; You, J.; Wang, J.; Zhang, F.; Gong, X.; Xie, Y.; Canizarès, A.; Bessada, C.; Tang, K.; Lu, L. Quantitative studies on the microstructure of ternary CaO–Al2O3–SiO2 glasses by Raman spectroscopy, 27Al MAS NMR and quantum chemistry ab initio calculation. Ceram. Int. 2023, 49, 34397–34408. [Google Scholar] [CrossRef]
- Yue, Y.-Z. Characteristic temperatures of enthalpy relaxation in glass. J. Non-Cryst. Solids 2008, 354, 1112–1118. [Google Scholar] [CrossRef]
- Hermansen, C.; Guo, X.; Youngman, R.E.; Mauro, J.C.; Smedskjaer, M.M.; Yue, Y. Structure-topology-property correlations of sodium phosphosilicate glasses. J. Chem. Phys. 2015, 143, 064510. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Lu, Z.P.; Liu, C.T. Identify the best glass forming ability criterion. Intermetallics 2010, 18, 883–888. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, M.; Wang, X.; Gai, J.; Shu, C.-M.; Roy, N.; Liu, Y. Thermal runaway incidents-a serious cause of concern: An analysis of runaway incidents in China. Process Saf. Environ. Prot. 2021, 155, 277–286. [Google Scholar] [CrossRef]
- Wu, S.-H. Thermal hazard investigation of cumene hydroperoxide in the first oxidation tower. J. Therm. Anal. Calorim. 2011, 109, 921–926. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Wu, Y.; Tang, Y.; Jiang, J.-C.; Huang, A.-C. Evaluation of composite flame-retardant electrolyte additives improvement on the safety performance of lithium-ion batteries. Process Saf. Environ. Prot. 2023, 169, 285–292. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Xie, L.-J.; Sun, H.-Q.; Wang, X.; Zhou, H.-L.; Tang, Y.; Jiang, J.-C.; Huang, A.-C. 4,5-Difluoro-1,3-dioxolan-2-one as a film-forming additive improves the cycling and thermal stability of SiO/C anode Li-ion batteries. Process Saf. Environ. Prot. 2024, 183, 496–504. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Wang, X.; Gao, P.; Jiang, J.-C.; Huang, A.-C. Novel composite electrolyte additive for enhancing the thermal and cycling stability of SiO/C anode Li-ion battery. Process Saf. Environ. Prot. 2024, 189, 756–767. [Google Scholar] [CrossRef]
- Wang, H.; Hou, X.; Zhang, Y.; Zhao, D.; Li, S.; Huang, W.; Zhou, Y. The influence of the mixed alkaline earth effect on the structure and properties of (Ca, Mg)–Si–Al–O–N glasses. Ceram. Int. 2021, 47, 12276–12283. [Google Scholar] [CrossRef]
- Solvang, M.; Yue, Y.; Jensen, S.L. The effects of Mg–Ca and Fe–Mg substitution on rheological and thermodynamic properties of aluminosilicate melts. J. Non-Cryst. Solids 2004, 345–346, 782–786. [Google Scholar] [CrossRef]
- Hrma, P. Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor. J. Non-Cryst. Solids 2008, 354, 1962–1968. [Google Scholar] [CrossRef]
- Bennett, T.D.; Tan, J.-C.; Yue, Y.; Baxter, E.; Ducati, C.; Terrill, N.J.; Yeung, H.H.M.; Zhou, Z.; Chen, W.; Henke, S.; et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 2015, 6, 8079. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Mauro, J.C.; Youngman, R.E.; Hogue, C.L.; Potuzak, M.; Yue, Y. Topological principles of borosilicate glass chemistry. J. Phys. Chem. B 2011, 115, 12930–12946. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Mauro, J.C.; Yue, Y. Prediction of glass hardness using temperature-dependent constraint theory. Phys. Rev. Lett. 2010, 105, 115503. [Google Scholar] [CrossRef]
Glass ID | SiO2 | Al2O3 | MgO | CaO | [CaO]/[(CaO + MgO)] = R |
---|---|---|---|---|---|
C-0 | 59.48 | 19.81 | 20.27 | 0.44 | 0 |
C-0.2 | 59.11 | 19.94 | 16.28 | 4.67 | 0.2 |
C-0.4 | 59.47 | 20.02 | 12.36 | 8.15 | 0.4 |
C-0.5 | 59.58 | 19.87 | 10.32 | 10.23 | 0.5 |
C-0.6 | 59.76 | 19.91 | 8.42 | 11.90 | 0.6 |
C-0.7 | 59.73 | 19.87 | 6.47 | 13.93 | 0.7 |
C-0.8 | 59.87 | 20.01 | 4.45 | 15.66 | 0.8 |
C-1 | 59.03 | 20.05 | 1.06 | 19.87 | 1 |
Glass ID | C-0 | C-0.2 | C-0.4 | C-0.5 | C-0.6 | C-0.7 | C-0.8 | C-1 |
---|---|---|---|---|---|---|---|---|
V1/cm−1 | 932 | 934 | 937 | 939 | 943 | 946 | 948 | 949 |
V2/cm−1 | 980 | 983 | 994 | 1000 | 1003 | 1006 | 1011 | 1014 |
V3/cm−1 | 1070 | 1071 | 1077 | 1080 | 1083 | 1087 | 1093 | 1098 |
V4/cm−1 | 1140 | 1143 | 1145 | 1148 | 1150 | 1153 | 1154 | 1154 |
A1/% | 4.36 | 7.56 | 9.66 | 11.47 | 12.88 | 14.04 | 11.21 | 8.57 |
A2/% | 15.24 | 19.49 | 21.83 | 23.93 | 24.95 | 26.04 | 22.36 | 19.35 |
A3/% | 60.81 | 55.49 | 53.95 | 51.23 | 50.57 | 49.51 | 52.87 | 54.84 |
A4/% | 19.59 | 17.46 | 14.56 | 13.37 | 11.60 | 10.41 | 13.56 | 17.24 |
Glass ID | C-0 | C-0.2 | C-0.4 | C-0.5 | C-0.6 | C-0.7 | C-0.8 | C-1 |
---|---|---|---|---|---|---|---|---|
Tc/K | 1398 | 1380 | 1380 | 1375 | 1360 | 1375 | 1378 | 1372 |
Tx/K | 1306 | 1291 | 1295 | 1300 | 1285 | 1320 | 1301 | 1277 |
Tg/K | 1049 | 1035 | 1031 | 1029 | 1027 | 1023 | 1037 | 1045 |
Ksp/K | 22.54 | 22.01 | 21.77 | 19.75 | 18.84 | 15.97 | 19.60 | 20.76 |
α | Ozawa | Vyazovkin | KAS | |||
---|---|---|---|---|---|---|
Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | |
0.05 | 369.6421 | 0.9984 | 374.8650 | 0.9983 | 367.4868 | 0.9983 |
0.10 | 347.7730 | 0.9989 | 351.7931 | 0.9989 | 344.3253 | 0.9988 |
0.20 | 325.4120 | 0.9990 | 328.1821 | 0.9989 | 320.5989 | 0.9988 |
0.30 | 310.4874 | 0.9986 | 312.4150 | 0.9985 | 304.7454 | 0.9984 |
0.40 | 297.8705 | 0.9981 | 299.0807 | 0.9979 | 291.3322 | 0.9978 |
0.50 | 286.1455 | 0.9968 | 286.6881 | 0.9965 | 278.8653 | 0.9963 |
0.60 | 275.9938 | 0.9941 | 275.9485 | 0.9935 | 268.0499 | 0.9932 |
0.70 | 267.1689 | 0.9902 | 266.5996 | 0.9892 | 258.6202 | 0.9886 |
0.80 | 260.2941 | 0.9816 | 259.2983 | 0.9796 | 251.2344 | 0.9784 |
0.90 | 256.8398 | 0.9574 | 255.5797 | 0.9528 | 247.4150 | 0.9500 |
0.95 | 255.5037 | 0.9322 | 254.1167 | 0.9250 | 245.8842 | 0.9205 |
0.99 | 257.5316 | 0.8938 | 256.1650 | 0.8829 | 247.8344 | 0.8765 |
Average | 292.5552 | 0.9783 | 293.3943 | 0.9760 | 285.5327 | 0.9746 |
α | Ozawa | Vyazovkin | KAS | |||
---|---|---|---|---|---|---|
Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | |
0.05 | 489.9266 | 0.9988 | 500.8239 | 0.9987 | 492.8134 | 0.9986 |
0.10 | 460.7073 | 0.9994 | 470.0441 | 0.9993 | 461.9714 | 0.9993 |
0.20 | 427.9000 | 0.9975 | 435.4660 | 0.9973 | 427.3017 | 0.9972 |
0.30 | 403.6348 | 0.9964 | 409.8850 | 0.9961 | 401.6461 | 0.9960 |
0.40 | 382.7767 | 0.9962 | 387.8940 | 0.9959 | 379.5888 | 0.9960 |
0.50 | 364.6916 | 0.9957 | 368.8233 | 0.9954 | 360.4570 | 0.9952 |
0.60 | 349.0043 | 0.9953 | 352.2743 | 0.9949 | 343.8471 | 0.9947 |
0.70 | 332.8259 | 0.9952 | 335.2083 | 0.9948 | 326.7199 | 0.9945 |
0.80 | 317.3123 | 0.9947 | 318.8352 | 0.9942 | 310.2784 | 0.9939 |
0.90 | 302.8900 | 0.9949 | 303.6022 | 0.9944 | 294.9686 | 0.9941 |
0.95 | 295.3999 | 0.9950 | 295.6843 | 0.9946 | 287.0030 | 0.9943 |
0.99 | 287.5848 | 0.9944 | 287.4148 | 0.938 | 278.6746 | 0.9934 |
Average | 367.8879 | 0.9961 | 372.1692 | 0.9958 | 363.7725 | 0.9956 |
C-0.7 | C-1 | |||||
---|---|---|---|---|---|---|
Ea (kJ/mol) | R2 | Ea (kJ/mol) | R2 | |||
Kissinger | 291.3660 | 0.9942 | 368.8147 | 0.9806 | ||
Ozawa | 292.5552 | 0.9783 | 367.8879 | 0.9961 | ||
Vyazovkin | 293.3943 | 0.9760 | 372.1629 | 0.9958 | ||
KAS | 285.5327 | 0.9746 | 363.7725 | 0.9956 | ||
Aaverage | 283.2120 | 0.9808 | 368.1595 | 0.9920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Teng, X.; Li, P.; Zhang, O.; Zhao, F.; Tao, C.; Liu, R. The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect. Materials 2025, 18, 3450. https://doi.org/10.3390/ma18153450
Yuan L, Teng X, Li P, Zhang O, Zhao F, Tao C, Liu R. The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect. Materials. 2025; 18(15):3450. https://doi.org/10.3390/ma18153450
Chicago/Turabian StyleYuan, Lin, Xurong Teng, Ping Li, Ouyuan Zhang, Fangfang Zhao, Changyuan Tao, and Renlong Liu. 2025. "The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect" Materials 18, no. 15: 3450. https://doi.org/10.3390/ma18153450
APA StyleYuan, L., Teng, X., Li, P., Zhang, O., Zhao, F., Tao, C., & Liu, R. (2025). The Regulation of Thermodynamic Behavior and Structure of Aluminosilicate Glasses via the Mixed Alkaline Earth Effect. Materials, 18(15), 3450. https://doi.org/10.3390/ma18153450