Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Combination of Date Seed with Starch
2.3. Chemical Analysis
2.4. Hygroscopicity
2.5. Water Absorption and Solubility
2.6. Different Scanning Calorimetry (DSC)
2.7. Fourier-Transform Infrared Spectroscopy (FTIR)
2.8. X-Ray Diffraction (XRD)
2.9. Field Emission Scanning Electron Microscope (FESEM)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Evaluation of Hygroscopicity Properties
3.3. Water Solubility and Swelling Properties
3.4. Surface Morphology
3.5. XRD Analysis
3.6. Thermal Analysis
3.6.1. Starch
3.6.2. Date Seed
3.6.3. Date Seed Powder–Starch Composites
3.7. FTIR Analysis
4. Implications of Findings for Food Packaging and Nutritional Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, J.S.; Hashim, I.B.; Sharif, F.A. Preliminary Analysis and Potential Uses of Date Pits in Foods. Food Chem. 2002, 76, 135–137. [Google Scholar] [CrossRef]
- FAOSTAT Production of Dates. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 8 May 2025).
- Al-Farsi, M.A.; Lee, C.Y. Usage of Date (Phoenix dactylifera L.) Seeds in Human Health and Animal Feed. Nuts Seeds Health Dis. Prev. 2011, 447–452. [Google Scholar] [CrossRef]
- Saeed, S.M.G.; Urooj, S.; Ali, S.A.; Ali, R.; Mobin, L.; Ahmed, R.; Sayeed, S.A. Impact of the Incorporation of Date Pit Flour an Underutilized Biowaste in Dough and Its Functional Role as a Fat Replacer in Biscuits. J. Food Process. Preserv. 2021, 45, e15218. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of Phenolics and Dietary Fibre Extraction from Date Seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef]
- Briones, R.; Serrano, L.; Ben Younes, R.; Mondragon, I.; Labidi, J. Polyol Production by Chemical Modification of Date Seeds. Ind. Crops Prod. 2011, 34, 1035–1040. [Google Scholar] [CrossRef]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A Review of the Chemistry and Pharmacology of the Date Fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Basuny, A.M.M.; AL-Marzooq, M.A.; Basuny, A.M.M.; AL-Marzooq, M.A. Production of Mayonnaise from Date Pit Oil. Food Nutr. Sci. 2011, 2, 938–943. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Al-Habsi, N.; Rahman, M.S. Applications of Date Pits in Foods to Enhance Their Functionality and Quality: A Review. Front. Sustain. Food Syst. 2023, 6, 1101043. [Google Scholar] [CrossRef]
- Nabili, A.; Fattoum, A.; Passas, R.; Elaloui, E. Extraction and Characterization of Cellulose from Date Palm Seeds (Phoenix dactylifera L.). Cellul. Chem. Technol. 2016, 50, 1015–1023. [Google Scholar]
- Bouaziz, M.A.; Abbes, F.; Mokni, A.; Blecker, C.; Attia, H.; Besbes, S. The Addition Effect of Tunisian Date Seed Fibers on the Quality of Chocolate Spreads. J. Texture Stud. 2017, 48, 143–150. [Google Scholar] [CrossRef]
- Gökşen, G.; Durkan, Ö.; Sayar, S.; Ekiz, H.İ. Potential of Date Seeds as a Functional Food Components. J. Food Meas. Charact. 2018, 12, 1904–1909. [Google Scholar] [CrossRef]
- Metoui, M.; Essid, A.; Bouzoumita, A.; Ferchichi, A. Chemical Composition, Antioxidant and Antibacterial Activity of Tunisian Date Palm Seed. Pol. J. Environ. Stud. 2019, 28, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Azodi, R.A.; Hojjatoleslamy, M.; Shariati, M.A. Comparison of Chemical Properties of Kabkab and Shahani Palm Kernel. AJSR 2014, 1, 17–19. [Google Scholar]
- Habib, H.M.; Ibrahim, W.H. Nutritional Quality Evaluation of Eighteen Date Pit Varieties. Int. J. Food Sci. Nutr. 2009, 60, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Ghani, N.R.N.A.; Jami, M.S.; Mirghani, M.E.S.; Salleh, N. Investigation of The Use of Date Seed For Removal of Boron from Seawater. Chem. Nat. Resour. Eng. J. 2020, 3, 55–73. [Google Scholar] [CrossRef]
- Alyileili, S.R.; El-Tarabily, K.A.; Belal, I.E.H.; Ibrahim, W.H.; Sulaiman, M.; Hussein, A.S. Intestinal Development and Histomorphometry of Broiler Chickens Fed Trichoderma Reesei Degraded Date Seed Diets. Front. Vet. Sci. 2020, 7, 540756. [Google Scholar] [CrossRef]
- Almana, H.A.; Mahmoud, R.M. Palm Date Seeds as an Alternative Source of Dietary Fiber in Saudi Bread. Ecol. Food Nutr. 1994, 32, 261–270. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Borroto, B.; Perdomo, U.; Tabares, Y. Elaboracion de Una Bebida En Polvo a Base de Fibra Dietetica: FIBRALAX. Alimentaria 1995, 262, 23–25. [Google Scholar]
- Ghasemi, E.; Loghmanifar, S.; Salar, S. The Effect of Adding Date Kernel Powder on the Qualitative and Sensory Properties of Spongy Cake. J. Nov. Appl. Sci. 2020, 9, 47–55. [Google Scholar]
- Halaby, M.S.; Farag, M.H.; Gerges, A.H. Potential Effect of Date Pits Fortified Bread on Diabetic Rats. Int. J. Nutr. Food Sci. 2014, 3, 49–59. [Google Scholar] [CrossRef]
- Ahmed, A.; Ali, S.W.; Imran, A.; Afzaal, M.; Arshad, M.S.; Nadeem, M.; Mubeen, Z.; Ikram, A. Formulation of Date Pit Oil-Based Edible Wax Coating for Extending the Storage Stability of Guava Fruit. J. Food Process. Preserv. 2020, 44, e14336. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Sharawy, S.; Elbisi, M.K.; Ghosal, K. Eco-Friendly Packaging Composite Fabrics Based on in Situ Synthesized Silver Nanoparticles (AgNPs) & Treatment with Chitosan and/or Date Seed Extract. Nano-Struct. Nano-Objects 2020, 22, 100425. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Wu, H.J.; Wu, M.; Huang, Z.G.; Zhang, M. Effect of Wheat Bran Fiber on the Behaviors of Maize Starch Based Films. Starch-Stärke 2020, 72, 1900319. [Google Scholar] [CrossRef]
- de Carvalho, G.R.; Marques, G.S.; de Matos Jorge, L.M.; Jorge, R.M.M. Effect of the Addition of Cassava Fibers on the Properties of Cassava Starch Composite Films. Braz. J. Chem. Eng. 2021, 38, 341–349. [Google Scholar] [CrossRef]
- Hazrol, M.D.; Sapuan, S.M.; Zainudin, E.S.; Wahab, N.I.A.; Ilyas, R.A. Effect of Kenaf Fibre as Reinforcing Fillers in Corn Starch-Based Biocomposite Film. Polymers 2022, 14, 1590. [Google Scholar] [CrossRef] [PubMed]
- Thakwani, Y.; Karwa, A.; BG, P.K.; Purkait, M.K.; Changmai, M. A Composite Starch-Date Seeds Extract Based Biodegradable Film for Food Packaging Application. Food Biosci. 2023, 54, 102818. [Google Scholar] [CrossRef]
- Mrabet, A.; Jiménez-Araujo, A.; Guillén-Bejarano, R.; Rodríguez-Arcos, R.; Sindic, M. Date Seeds: A Promising Source of Oil with Functional Properties. Foods 2020, 9, 787. [Google Scholar] [CrossRef]
- Afrazeh, M.; Tadayoni, M.; Abbasi, H.; Sheikhi, A. Extraction of Dietary Fibers from Bagasse and Date Seed, and Evaluation of Their Technological Properties and Antioxidant and Prebiotic Activity. J. Food Meas. Charact. 2021, 15, 1949–1959. [Google Scholar] [CrossRef]
- Al Ghezi, N.A.S.; Al-Mossawi, A.E.-B.H.J.; Al-Rikabi, A.K.J. Antioxidants Activity of Date Seed Extraction of Some Date Varieties. Med.-Leg. Update 2020, 20, 923. [Google Scholar]
- Al-Khalili, M.; Rahman, S.; Al-Habsi, N. Date Seed–Added Biodegradable Films and Coatings for Active Food Packaging Applications: A Review. Packag. Technol. Sci. 2025, 38, 445–472. [Google Scholar] [CrossRef]
- Al Otaibi, N.; Aly, M.; Moawad, T. Developing New Natural Surfactant from Date Seeds for Different Field Applications. In Proceedings of the Materials Science Forum; Trans Tech Publications: Bäch, Switzerland, 2024; Volume 1125, pp. 53–63. [Google Scholar]
- Zarie, A.A.; Hassan, A.B.; Alshammari, G.M.; Yahya, M.A.; Osman, M.A. Date Industry By-Product: Date Seeds (Phoenix dactylifera L.) as Potential Natural Sources of Bioactive and Antioxidant Compounds. Appl. Sci. 2023, 13, 11922. [Google Scholar] [CrossRef]
- Aamir, M.; Ovissipour, M.; Sablani, S.S.; Rasco, B. Predicting the Quality of Pasteurized Vegetables Using Kinetic Models: A Review. Int. J. Food Sci. 2013, 2013, 29. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, M.L.; Huck, J.R.; Sonnen, M.; Barbano, D.M.; Boor, K.J. High Temperature, Short Time Pasteurization Temperatures Inversely Affect Bacterial Numbers during Refrigerated Storage of Pasteurized Fluid Milk. J. Dairy. Sci. 2009, 92, 4823–4832. [Google Scholar] [CrossRef] [PubMed]
- Donald, A.M. Understanding Starch Structure and Functionality. In Starch in Food: Structure, Function and Applications; Elsevier: Amsterdam, The Netherlands, 2004; pp. 156–184. [Google Scholar]
- Ahammad, M.; Nguyen, T.T.M. Influence of the Presence of Chemical Additives on the Thermal Properties of Starch. Food Nutr. Sci. 2016, 07, 782–796. [Google Scholar] [CrossRef]
- Behera, L.; Mohanta, M.; Thirugnanam, A. Intensification of Yam-Starch Based Biodegradable Bioplastic Film with Bentonite for Food Packaging Application. Environ. Technol. Innov. 2022, 25, 102180. [Google Scholar] [CrossRef]
- Ang, C.L.; Tha Goh, K.K.; Lim, K.; Matia-Merino, L. Rheological Characterization of a Physically-Modified Waxy Potato Starch: Investigation of Its Shear-Thickening Mechanism. Food Hydrocoll. 2021, 120, 106908. [Google Scholar] [CrossRef]
- Totosaus, A. The Use of Potato Starch in Meat Products. Food 2009, 3, 102–108. [Google Scholar]
- Cai, X.; Du, X.; Zhu, G.; Cai, Z.; Cao, C. The Use of Potato Starch/Xanthan Gum Combinations as a Thickening Agent in the Formulation of Tomato Ketchup. CYTA-J. Food 2020, 18, 401–408. [Google Scholar] [CrossRef]
- Mubaiwa, J.; Linnemann, A.R.; Maqsood, S. New Insights into the Influence of the Characteristic “Stone” Feature of the Date Palm (Phoenix dactylifera L.) Seeds on Its Sustainable Processing Approaches—A Review. Food Bioprocess Technol. 2025, 18, 150–182. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Rilwan, A.; Nouruddeen, Z.B.; Ejiohuo, O.; Al-Habsi, N. Enhancing the Sensory Quality, Stability, and Shelf Life of Baobab Fruit Pulp Drinks: The Role of Hydrocolloids. Polymers 2025, 17, 1396. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Al-Habsi, N.; Al-Alawi, A.; Al-Subhi, L.; Zar Myint, M.T.; Al-Abri, M.; Waly, M.I.; Al-Harthi, S.; Al-Mamun, A.; Rahman, M.S. Structural Characteristics of Alkaline Treated Fibers from Date-Pits: Residual and Precipitated Fibers at Different PH. Bioact. Carbohydr. Diet. Fibre 2021, 25, 100251. [Google Scholar] [CrossRef]
- Alfredo, V.O.; Gabriel, R.R.; Luis, C.G.; David, B.A. Physicochemical Properties of a Fibrous Fraction from Chia (Salvia Hispanica L.). LWT—Food Sci. Technol. 2009, 42, 168–173. [Google Scholar] [CrossRef]
- Chen, J.Y.; Piva, M.; Labuza, T.P. Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. J. Food Sci. 1984, 49, 59–63. [Google Scholar] [CrossRef]
- Jacobs, P.J.; Hemdane, S.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Study of Hydration Properties of Wheat Bran as a Function of Particle Size. Food Chem. 2015, 179, 296–304. [Google Scholar] [CrossRef]
- Guizani, N.; Suresh, S.; Rahman, M.S. Polyphenol Contents and Thermal Characteristics of Freeze-Dried Date-Pits Powder. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014. [Google Scholar]
- Cassel, R.B. High Heating Rate DSC, TA 297; TA Instruments Technical Publication: New Castle, DE, USA, 2002. [Google Scholar]
- Al-Mamari, A.; Al-Habsi, N.; Al-Khalili, M.; Rahman, M.S. Extraction and Characterization of Residue Fibers from Defatted Date-Pits after Alkaline-Acid Digestion: Effects of Different Pretreatments. J. Therm. Anal. Calorim. 2022, 147, 9405–9416. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Bchir, B.; Ben Salah, T.; Mokni, A.; Ben Hlima, H.; Smaoui, S.; Attia, H.; Besbes, S. Use of Endemic Date Palm (Phoenix dactylifera L.) Seeds as an Insoluble Dietary Fiber: Effect on Turkey Meat Quality. J. Food Qual. 2020, 2020, 8889272. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kasapis, S.; Al-Kharusi, N.S.Z.; Al-Marhubi, I.M.; Khan, A.J. Composition Characterisation and Thermal Transition of Date Pits Powders. J. Food Eng. 2007, 80, 1–10. [Google Scholar] [CrossRef]
- Aldhaheri, A.; Alhadrami, G.; Aboalnaga, N.; Wasfi, I.; Elridi, M. Chemical Composition of Date Pits and Reproductive Hormonal Status of Rats Fed Date Pits. Food Chem. 2004, 86, 93–97. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and Functional Characteristics of Dates, Syrups, and Their by-Products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Larotonda, F.D.S.; Matsui, K.N.; Sobral, P.J.A.; Laurindo, J.B. Hygroscopicity and Water Vapor Permeability of Kraft Paper Impregnated with Starch Acetate. J. Food Eng. 2005, 71, 394–402. [Google Scholar] [CrossRef]
- Leach, H.W. Gelatinization of Starch. Starch Chem. Technol. 1965, 1, 289–307. [Google Scholar]
- Gonçalves, P.M.; Noreña, C.P.Z.; da Silveira, N.P.; Brandelli, A. Characterization of Starch Nanoparticles Obtained from Araucaria Angustifolia Seeds by Acid Hydrolysis and Ultrasound. LWT—Food Sci. Technol. 2014, 58, 21–27. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Al-Habsi, N.; Al-Kindi, M.; Rahman, M.S. Characteristics of Crystalline and Amorphous Fractions of Date-Pits as Treated by Alcohol-Water Pressure Cooking. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100331. [Google Scholar] [CrossRef]
- Al-Khalili, M.; Al-Habsi, N.; Rahman, M. Moisture Sorption Isotherms of Whole and Fractionated Date-Pits: Measurement and Theoretical Modelling. Arab. J. Chem. 2023, 16, 104678. [Google Scholar] [CrossRef]
- Ma, J.J.; Mao, X.Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S.W.; Li, Y.H. Effect of Spray Drying and Freeze Drying on the Immunomodulatory Activity, Bitter Taste and Hygroscopicity of Hydrolysate Derived from Whey Protein Concentrate. LWT—Food Sci. Technol. 2014, 56, 296–302. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Santana, A.S.; Monterrey-Quintero, E.S.; Trindade, M.A.; Netto, F.M. The Use of Spray Drying Technology to Reduce Bitter Taste of Casein Hydrolysate. Food Hydrocoll. 2010, 24, 336–340. [Google Scholar] [CrossRef]
- Lawal, K.G.; Riaz, A.; Mostafa, H.; Stathopoulos, C.; Manikas, I.; Maqsood, S. Development of Carboxymethylcellulose Based Active and Edible Food Packaging Films Using Date Seed Components as Reinforcing Agent: Physical, Biological, and Mechanical Properties. Food Biophys. 2023, 18, 497–509. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared Spectroscopy as a Tool to Characterise Starch Ordered Structure—A Joint FTIR–ATR, NMR, XRD and DSC Study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Ma, C.; Ma, B.; He, J.; Hao, Q.; Lu, X.; Wang, L. Regulation of Carotenoid Content in Tomato by Silencing of Lycopene β/ε-Cyclase Genes. Plant Mol. Biol. Report. 2011, 29, 117–124. [Google Scholar] [CrossRef]
- Gerçekaslan, K.E. Hydration Level Significantly Impacts the Freezable—And Unfreezable -Water Contents of Native and Modified Starches. Food Sci. Technol. 2020, 41, 426–431. [Google Scholar] [CrossRef]
- Berti, S.; Jagus, R.J.; Flores, S.K. Effect of Rice Bran Addition on Physical Properties of Antimicrobial Biocomposite Films Based on Starch. Food Bioprocess Technol. 2021, 14, 1700–1711. [Google Scholar] [CrossRef]
- Edhirej, A.; Sapuan, S.M.; Jawaid, M.; Zahari, N.I. Cassava/Sugar Palm Fiber Reinforced Cassava Starch Hybrid Composites: Physical, Thermal and Structural Properties. Int. J. Biol. Macromol. 2017, 101, 75–83. [Google Scholar] [CrossRef]
- Sujka, M.; Jamroz, J. Ultrasound-Treated Starch: SEM and TEM Imaging, and Functional Behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Suresh, S.; Guizani, N.; Al-Ruzeiki, M.; Al-Hadhrami, A.; Al-Dohani, H.; Al-Kindi, I.; Rahman, M.S. Thermal Characteristics, Chemical Composition and Polyphenol Contents of Date-Pits Powder. J. Food Eng. 2013, 119, 668–679. [Google Scholar] [CrossRef]
- Castillo, L.A.; López, O.V.; García, M.A.; Barbosa, S.E.; Villar, M.A. Crystalline Morphology of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon 2019, 5, E01877. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, N.; Alnemr, T.; Ali, S. Development of Low-Cost Biodegradable Films from Corn Starch and Date Palm Pits (Phoenix dactylifera). Food Biosci. 2021, 42, 101199. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of Antioxidant Edible Films Based on Mung Bean Protein Enriched with Pomegranate Peel. Food Hydrocoll. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the Structural Order of Native Starch Granules Using Combined FTIR and XRD Analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Wang, L.J.; Li, D.; Zhou, Y.G.; Adhikari, B. The Effect of Partial Gelatinization of Corn Starch on Its Retrogradation. Carbohydr. Polym. 2013, 97, 512–517. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Govindaraju, I.; Chakraborty, I.; Baruah, V.J.; Sarmah, B.; Mahato, K.K.; Mazumder, N. Structure and Morphological Properties of Starch Macromolecule Using Biophysical Techniques. Starch-Stärke 2021, 73, 2000030. [Google Scholar] [CrossRef]
- Kruer-Zerhusen, N.; Cantero-Tubilla, B.; Wilson, D.B. Characterization of Cellulose Crystallinity after Enzymatic Treatment Using Fourier Transform Infrared Spectroscopy (FTIR). Cellulose 2018, 25, 37–48. [Google Scholar] [CrossRef]
- Ek, P.; Gu, B.J.; Saunders, S.R.; Huber, K.; Ganjyal, G.M. Exploration of Physicochemical Properties and Molecular Interactions between Cellulose and High-Amylose Cornstarch during Extrusion Processing. Curr. Res. Food Sci. 2021, 4, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Jumaidin, R.; Gazari, A.S.; Kamaruddin, Z.H.; Kamaruddin, Z.H.; Zakaria, N.H.; Abdul Kudus, S.I.; Yob, M.S.; Munir, F.A.; Keshavarz, M. Mechanical Properties of Thermoplastic Cassava Starch/Coconut Fibre Composites: Effect of Fibre Size. Pertanika J. Sci. Technol. 2024, 32, 91–113. [Google Scholar] [CrossRef]
- da Silva Moura, A.; Demori, R.; Leão, R.M.; Frankenberg, C.L.C.; Santana, R.M.C. The Influence of the Coconut Fiber Treated as Reinforcement in PHB (Polyhydroxybutyrate) Composites. Mater. Today Commun. 2019, 18, 191–198. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Z.; Liao, L.; Xiong, J. Effect of Sisal Fiber on Retrogradation and Structural Characteristics of Thermoplastic Cassava Starch. Polym. Polym. Compos. 2022, 30. [Google Scholar] [CrossRef]
- Mittal, V.; Chaudhry, A.U.; Matsko, N.B. “True” Biocomposites with Biopolyesters and Date Seed Powder: Mechanical, Thermal, and Degradation Properties. J. Appl. Polym. Sci. 2014, 30, 1–12. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M. Utilization of Linseed Cake as a Postagricultural Functional Filler for Poly (Lactic Acid) Green Composites. J. Appl. Polym. Sci. 2019, 136, 47152. [Google Scholar] [CrossRef]
- Nessi, V.; Falourd, X.; Maigret, J.E.; Cahier, K.; D’Orlando, A.; Descamps, N.; Gaucher, V.; Chevigny, C.; Lourdin, D. Cellulose Nanocrystals-Starch Nanocomposites Produced by Extrusion: Structure and Behavior in Physiological Conditions. Carbohydr. Polym. 2019, 225, 115123. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Wu, D.; Pan, K.; Qian, A.; Sha, Y.; Wang, L.; Tong, W. Insights into the Nucleation Role of Cellulose Crystals during Crystallization of Poly(β-Hydroxybutyrate). Carbohydr. Polym. 2015, 134, 508–515. [Google Scholar] [CrossRef]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef]
- Lipson, J.E.G.; Milner, S.T. Multiple Glass Transitions and Local Composition Effects on Polymer Solvent Mixtures. J. Polym. Sci. B Polym. Phys. 2006, 44, 3528–3545. [Google Scholar] [CrossRef]
- Masavang, S.; Roudaut, G.; Champion, D. Identification of Complex Glass Transition Phenomena by DSC in Expanded Cereal-Based Food Extrudates: Impact of Plasticization by Water and Sucrose. J. Food Eng. 2019, 245, 43–52. [Google Scholar] [CrossRef]
- Al-Khusaibi, M.; Al-Habsi, N.; Shafiur Rahman, M. Traditional Foods; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 3030246205. [Google Scholar]
- Homer, S.; Kelly, M.; Day, L. Determination of the Thermo-Mechanical Properties in Starch and Starch/Gluten Systems at Low Moisture Content—A Comparison of DSC and TMA. Carbohydr. Polym. 2014, 108, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Forssell, P.M.; Hulleman, S.H.D.; Myllärinen, P.J.; Moates, G.K.; Parker, R. Ageing of Rubbery Thermoplastic Barley and Oat Starches. Carbohydr. Polym. 1999, 39, 43–51. [Google Scholar] [CrossRef]
- Liu, P.; Yu, L.; Wang, X.; Li, D.; Chen, L.; Li, X. Glass Transition Temperature of Starches with Different Amylose/Amylopectin Ratios. J. Cereal Sci. 2010, 51, 388–391. [Google Scholar] [CrossRef]
- Assoumani, N.; El Marouani, M.; El Hamdaoui, L.; Trif, L.; Kifani-Sahban, F.; Simo-Tagne, M. Extraction, characterization and kinetics of thermal decomposition of lignin from date seeds using model-free and fitting approaches. Cell. Chem. Technol. 2023, 57, 775–787. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Laurindo, J.B.; Yamashita, F. Effect of Cellulose Fibers on the Crystallinity and Mechanical Properties of Starch-Based Films at Different Relative Humidity Values. Carbohydr. Polym. 2009, 77, 293–299. [Google Scholar] [CrossRef]
- Santos, E.; Rosell, C.M.; Collar, C. Gelatinization and Retrogradation Kinetics of High-Fiber Wheat Flour Blends: A Calorimetric Approach. Cereal Chem. 2008, 85, 455–463. [Google Scholar] [CrossRef]
- Wootton, M.; Bamunuarachchi, A. Application of Differential Scanning Calorimetry to Starch Gelatinization. I. Commercial Native and Modified Starches. Starch-Stärke 1979, 31, 201–204. [Google Scholar] [CrossRef]
- Guizani, N. Date Palm Fruits as Functional Foods. Int. J. Nutr. Pharmacol. Neurol. Dis. 2013, 3, 161. [Google Scholar] [CrossRef]
- Al-Mawali, M.; Al-Habsi, N.; Rahman, M.S. Thermal Characteristics and Proton Mobility of Date-Pits and Their Alkaline Treated Fibers. Food Eng. Rev. 2021, 13, 236–246. [Google Scholar] [CrossRef]
- Pandey, A.; Toda, A.; Rastogi, S. Influence of Amorphous Component on Melting of Semicrystalline Polymers. Macromolecules 2011, 44, 8042–8055. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Ramakrishnan, S.; Pasupathy, K.; Sanjayan, J. Synthesis and Performance of Intumescent Alkali-Activated Rice Husk Ash for Fire-Resistant Applications. J. Build. Eng. 2022, 51, 104281. [Google Scholar] [CrossRef]
- Zheng, D.; Ding, R.-Y.; Lei, Z.; Xingqun, Z.; Chong-Wen, Y. Thermal Properties of Flax Fiber Scoured by Different Methods. Therm. Sci. 2015, 19, 939–945. [Google Scholar] [CrossRef]
- Silva, M.F.; Pineda, E.A.G.; Hechenleitner, A.A.W.; Fernandes, D.M.; Lima, M.K.; Bittencourt, P.R.S. Characterization of Poly(Vinyl Acetate)/Sugar Cane Bagasse Lignin Blends and Their Photochemical Degradation. J. Therm. Anal. Calorim. 2011, 106, 407–413. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Abir, N.; Anannya, F.R.; Nabi Khan, A.; Rahman, A.N.M.M.; Jamine, N. Coir Fiber as Thermal Insulator and Its Performance as Reinforcing Material in Biocomposite Production. Heliyon 2023, 9, e15597. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Wang, S.; Wang, J. Effect of Alkali Treated Walnut Shell (Juglans Regia) on High Performance Thermosets. Study of Curing Behavior, Thermal and Thermomechanical Properties. Dig. J. Nanomater. Biostructures 2018, 13, 857–873. [Google Scholar]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Thermoplastic Starch Foamed Composites Reinforced with Cellulose Nanofibers: Thermal and Mechanical Properties. Carbohydr. Polym. 2018, 197, 305–311. [Google Scholar] [CrossRef]
- Bahlouli, S.; Belaadi, A.; Makhlouf, A.; Alshahrani, H.; Khan, M.K.A.; Jawaid, M. Effect of Fiber Loading on Thermal Properties of Cellulosic Washingtonia Reinforced HDPE Biocomposites. Polymers 2023, 15, 2910. [Google Scholar] [CrossRef]
- Zidan, N.; albalawi, M.A.; Alalawy, A.I.; Al-Duais, M.A.; Alzahrani, S.; Kasem, M.; Tayel, A.A.; Nagib, R.M. Active and Smart Antimicrobial Food Packaging Film Composed of Date Palm Kernels Extract Loaded Carboxymethyl Chitosan and Carboxymethyl Starch Composite for Prohibiting Foodborne Pathogens during Fruits Preservation. Eur. Polym. J. 2023, 197, 112353. [Google Scholar] [CrossRef]
- Alammar, A.; Hardian, R.; Szekely, G. Upcycling Agricultural Waste into Membranes: From Date Seed Biomass to Oil and Solvent-Resistant Nanofiltration. Green Chem. 2022, 24, 365–374. [Google Scholar] [CrossRef]
- Jumaidin, R.; Shafie, S.; Ilyas, R.A. Effect of Coconut Fiber Loading on the Morphological, Thermal, and Mechanical Properties of Coconut Fiber Reinforced Thermoplastic Starch/Beeswax Composites. Pertanika J. Sci. Technol. 2023, 31, 157. [Google Scholar] [CrossRef]
- Zeng, K.; Gu, J.; Cao, C. Facile Approach for Ecofriendly, Low-Cost, and Water-Resistant Paper Coatings via Palm Kernel Oil. ACS Appl. Mater. Interfaces 2020, 12, 18987–18996. [Google Scholar] [CrossRef]
- Al-Hasni, M.; Waly, M.; Al-Habsi, N.; Al-Khalili, M.; Rahman, M.S. Functional Characterization of Alkaline Digested Date-Pits: Residue and Supernatant Fibers. Waste Biomass Valorization 2023, 14, 1057–1068. [Google Scholar] [CrossRef]
- Hittini, W.; Abu-Jdayil, B.; Mourad, A.H. Development of Date Pit–Polystyrene Thermoplastic Heat Insulator Material: Mechanical Properties. J. Thermoplast. Compos. Mater. 2021, 34, 472–489. [Google Scholar] [CrossRef]
- Kong, L.; Lee, C.; Kim, S.H.; Ziegler, G.R. Characterization of Starch Polymorphic Structures Using Vibrational Sum Frequency Generation Spectroscopy. J. Phys. Chem. B 2014, 118, 1775–1783. [Google Scholar] [CrossRef]
- Khwaldia, K.; M’Rabet, Y.; Boulila, A. Active Food Packaging Films from Alginate and Date Palm Pit Extract: Physicochemical Properties, Antioxidant Capacity, and Stability. Food Sci. Nutr. 2023, 11, 555–568. [Google Scholar] [CrossRef]
- Aloui, H.; El Ouazari, K.; Khwaldia, K. Functional Property Optimization of Sodium Caseinate-Based Films Incorporating Functional Compounds from Date Seed Co-Products Using Response Surface Methodology. RSC Adv. 2022, 12, 15822–15833. [Google Scholar] [CrossRef]
- Shen, M.; Weihao, W.; Cao, L. Soluble Dietary Fibers from Black Soybean Hulls: Physical and Enzymatic Modification, Structure, Physical Properties, and Cholesterol Binding Capacity. J. Food Sci. 2020, 85, 1668–1674. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.; Passos, T.M.; Quilty, B.; Thiré, R.M.M.; McGuinness, G.B. FTIR Analysis and Quantification of Phenols and Flavonoids of Five Commercially Available Plants Extracts Used in Wound Healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Jumaah, F.N.; Mobarak, N.N.; Ahmad, A.; Ghani, M.A.; Rahman, M.Y.A. Derivative of Iota-Carrageenan as Solid Polymer Electrolyte. Ionics 2015, 21, 1311–1320. [Google Scholar] [CrossRef]
- Bouaziz, F.; Ben Abdeddayem, A.; Koubaa, M.; Ghorbel, R.E.; Chaabouni, S.E. Date Seeds as a Natural Source of Dietary Fibers to Improve Texture and Sensory Properties of Wheat Bread. Foods 2020, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Alfheeaid, H.A. Date Palm Fruit (Phoenix dactylifera) and Its Promising Potential in Developing Functional Energy Bars: Review of Chemical, Nutritional, Functional, and Sensory Attributes. Nutrients 2023, 15, 2134. [Google Scholar] [CrossRef] [PubMed]
- Mohajan, S.; Orchy, T.N.; Farzana, T. Effect of Incorporation of Soy Flour on Functional, Nutritional, and Sensory Properties of Mushroom–Moringa-supplemented Healthy Soup. Food Sci. Nutr. 2018, 6, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Badrie, N.; Deisingh, A.K.; Kowalski, S. Sauces and Dressings: A Review of Properties and Applications. Crit. Rev. Food Sci. Nutr. 2008, 48, 50–77. [Google Scholar] [CrossRef]
- Göksel Saraç, M.; Dogan, M. Incorporation of Dietary Fiber Concentrates from Fruit and Vegetable Wastes in Butter: Effects on Physicochemical, Textural, and Sensory Properties. Eur. Food Res. Technol. 2016, 242, 1331–1342. [Google Scholar] [CrossRef]
- Mimouni, A.; Deeth, H.C.; Whittaker, A.K.; Gidley, M.J.; Bhandari, B.R. Rehydration of High-Protein-Containing Dairy Powder: Slow- and Fast-Dissolving Components and Storage Effects. Dairy Sci. Technol. 2010, 90, 335–344. [Google Scholar] [CrossRef]
- Pulido, O.M.; Rousseaux, C.G.; Cole, P.I. Food and Toxicologic Pathology. Haschek and Rousseaux’s Handbook of Toxicologic Pathology; Volume 3: Environmental Toxicologic Pathology and Major Toxicant Classes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 33–103. [Google Scholar] [CrossRef]
- Marczak, A.; Mendes, A.C. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods 2024, 13, 1952. [Google Scholar] [CrossRef]
- Masli, M.D.P.; Rasco, B.A.; Ganjyal, G.M. Composition and Physicochemical Characterization of Fiber-rich Food Processing Byproducts. J. Food Sci. 2018, 83, 956–965. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Rafiq, S.; Rashid, R. Fortification of Dietary Fiber Ingriedents in Meat Application: A Review. Int. J. Biochem. Res. Rev. 2017, 19, 1–14. [Google Scholar] [CrossRef]
- Johnson, J. Physical and Chemical Effects of Carrot Fiber as a Binder in Cooked Sausage. Master’s Thesis, Tarleton State University, Stephenville, TX, USA, 2022. [Google Scholar]
- Zhang, Q.; Wu, K.; Qian, H.; Ramachandran, B.; Jiang, F. The Advances of Characterization and Evaluation Methods for the Compatibility and Assembly Structure Stability of Food Soft Matter. Trends Food Sci. Technol. 2021, 112, 753–763. [Google Scholar] [CrossRef]
- Liu, S.; Bettelli, M.A.; Wei, X.; Capezza, A.J.; Sochor, B.; Nilsson, F.; Olsson, R.T.; Johansson, E.; Roth, S.V.; Hedenqvist, M.S. Design of Hygroscopic Bioplastic Products Stable in Varying Humidities. Macromol. Mater. Eng. 2023, 308, 2200630. [Google Scholar] [CrossRef]
- Chen, L.; Dai, R.; Shan, Z.; Chen, H. Fabrication and Characterization of One High-Hygroscopicity Liquid Starch-Based Mulching Materials for Facilitating the Growth of Plant. Carbohydr. Polym. 2020, 230, 115582. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M. Impact of Metal Nanoparticles on the Mechanical, Barrier, Optical and Thermal Properties of Biodegradable Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2021, 61, 2640–2658. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Jin, Z.; Jiao, A. Research Progress of Starch-Based Biodegradable Materials: A Review. J. Mater. Sci. 2021, 56, 11187–11208. [Google Scholar] [CrossRef]
- Lawal, U.; Robert, V.; Gopi, A.; Loganathan, S.; Valapa, R.B. Fabrication and Characterization of Poly (Lactic Acid)/Propylparaben Composite for Active Food Packaging Application. J. Polym. Environ. 2024, 32, 3298–3312. [Google Scholar] [CrossRef]
Composition | g/100 g of Date Seeds |
---|---|
Moisture | 1.54 ± 0.01 |
Fat | 8.91 ± 0.05 |
Ash | 0.98 ± 0.14 |
Protein | 4.48 ± 0.05 |
Total Carbohydrate | 84.17 ± 0.16 |
Sample | Hygroscopicity (g/100 g Sample) | Solubility (g/L) | Absorption (g/L) |
---|---|---|---|
SC | 13.4 ± 0.1 b | 1.6 ± 0.3 a | 88.3 ± 0.2 e |
DC | 9.9 ± 0.3 a | 17.8 ± 1.3 e | 75.7 ± 1.5 a |
M1 | 19.1 ± 0.1 f | 0.9 ± 0.1 a | 80.4 ± 0.8 cd |
M2 | 18.9 ± 0.3 ef | 1.1 ± 0.1 a | 83.0 ± 0.3 d |
M3 | 18.4 ± 0.2 e | 3.1 ± 0.1 b | 81.3 ± 0.1 cd |
M4 | 17.8 ± 0.6 d | 5.4 ± 0.1 c | 77.8 ± 0.7 bc |
M5 | 16.8 ± 0.1 c | 8.9 ± 0.2 d | 77.0 ± 0.2 ab |
Sample | Hygroscopicity (g/100 g Sample) | Solubility (g/L) | Absorption (g/L) |
---|---|---|---|
SC | 13.4 ± 0.1 b | 1.6 ± 0.3 a | 88.3 ± 2.0 c |
DC | 9.9 ± 0.3 a | 17.8 ± 1.3 f | 75.8 ± 2.0 a |
N1 | 19.0 ± 0.1 d | 5.7 ± 0.1 c | 87.9 ± 0.1 c |
N2 | 18.7 ± 0.6 d | 4.8 ± 0.1 b | 90.3 ± 0.1 d |
N3 | 18.1 ± 0.1 d | 8.9 ± 0.1 d | 86.6 ± 1.0 bc |
N4 | 16.9 ± 0.9 c | 10.3 ± 0.3 d | 86.7 ± 0.7 bc |
N5 | 16.0 ± 0.2 c | 13.7 ± 0.4 e | 85.2 ± 0.3 b |
Sample | Peak No. | 2θ (°) | D-Spacing (Å) | Peak Height (cps) | Crystallite Size (Å) |
---|---|---|---|---|---|
SC | 1 | 16.95 | 5.22 | 351.42 | 66.52 |
2 | 23.56 | 3.77 | 231.05 | 10.69 | |
3 | 34.12 | 2.62 | 62.76 | 41.54 | |
DC | 1 | 15.93 | 5.55 | 232.66 | 115.71 |
2 | 20.17 | 4.39 | 341.53 | 16.86 | |
3 | 23.58 | 3.76 | 274.24 | 36.9 | |
4 | 25.06 | 3.54 | 180.11 | 35.72 | |
5 | 38.91 | 2.31 | 40.81 | 28.96 | |
M1 | 1 | 13.93 | 6.35 | 70.13 | 71.20 |
2 | 17.01 | 5.20 | 457.34 | 120.05 | |
3 | 23.91 | 3.71 | 279.39 | 16.74 | |
4 | 30.58 | 2.92 | 44.09 | 43.97 | |
5 | 34.07 | 2.62 | 74.25 | 45.95 | |
6 | 38.19 | 2.35 | 31.30 | 54.87 | |
7 | 48.38 | 1.87 | 24.85 | 20.50 | |
M2 | 1 | 14.66 | 6.03 | 186.41 | 15.83 |
2 | 17.17 | 5.15 | 338.54 | 113.02 | |
3 | 23.93 | 3.71 | 285.9 | 64.75 | |
4 | 31.16 | 2.86 | 29.10 | 73.42 | |
5 | 34.35 | 2.60 | 61.77 | 63.52 | |
6 | 38.29 | 2.34 | 16.51 | 75.42 | |
7 | 48.73 | 1.86 | 16.20 | 25.26 | |
M3 | 1 | 16.97 | 5.21 | 325.99 | 77.41 |
2 | 23.36 | 3.80 | 246.18 | 13.64 | |
3 | 30.34 | 2.94 | 30.93 | 20.84 | |
4 | 34.14 | 2.62 | 65.73 | 52.26 | |
5 | 38.29 | 2.34 | 33.56 | 67.47 | |
6 | 48.38 | 1.87 | 15.68 | 44.03 | |
M4 | 1 | 17.07 | 5.18 | 275.88 | 68.06 |
2 | 23.61 | 3.76 | 279.28 | 11.80 | |
3 | 33.70 | 2.65 | 40.24 | 54.27 | |
4 | 38.29 | 2.34 | 27.14 | 64.51 | |
M5 | 1 | 15.97 | 5.54 | 261.79 | 175.83 |
2 | 17.71 | 5.00 | 278.05 | 16.92 | |
3 | 19.99 | 4.43 | 348.17 | 17.88 | |
4 | 23.72 | 3.74 | 247.19 | 76.86 | |
5 | 24.98 | 3.56 | 185.18 | 38.91 |
Sample | Peak No. | 2θ (°) | D-Spacing (Å) | Peak Height (cps) | Crystallite Size (Å) |
---|---|---|---|---|---|
SC | 1 | 16.95 | 5.22 | 351.42 | 66.52 |
2 | 23.56 | 3.77 | 231.05 | 10.69 | |
3 | 34.12 | 2.62 | 62.76 | 41.54 | |
DC | 1 | 15.93 | 5.55 | 232.66 | 115.71 |
2 | 20.17 | 4.39 | 341.53 | 16.86 | |
3 | 23.58 | 3.76 | 274.24 | 36.9 | |
4 | 25.06 | 3.549 | 180.11 | 35.72 | |
5 | 38.91 | 2.312 | 40.81 | 28.96 | |
N1 | 1 | 14.26 | 6.20 | 61.68 | 63.36 |
2 | 16.76 | 5.28 | 285.71 | 72.85 | |
3 | 23.58 | 3.76 | 214.54 | 10.32 | |
4 | 30.37 | 2.93 | 31.05 | 69.78 | |
5 | 33.75 | 2.65 | 64.88 | 49.23 | |
6 | 48.44 | 1.87 | 20.09 | 21.44 | |
N2 | 1 | 17.13 | 5.17 | 319.29 | 37.29 |
2 | 23.63 | 3.76 | 299.67 | 13.87 | |
3 | 33.99 | 2.63 | 43.3 | 52.99 | |
4 | 38.36 | 2.34 | 30.71 | 50.75 | |
N3 | 1 | 16.05 | 5.51 | 187.86 | 22.16 |
2 | 23.59 | 3.76 | 192.46 | 8.85 | |
3 | 33.88 | 2.64 | 26.46 | 58.84 | |
N4 | 1 | 16.38 | 5.40 | 166.74 | 37.08 |
2 | 23.31 | 3.81 | 257.61 | 9.01 | |
3 | 33.83 | 2.64 | 7.64 | 77.21 | |
4 | 38.42 | 2.34 | 31.47 | 22.53 | |
N5 | 1 | 15.97 | 5.54 | 228.95 | 111.38 |
2 | 20.03 | 4.42 | 161.91 | 19.12 | |
3 | 23.29 | 3.81 | 313.96 | 11.7 | |
4 | 38.42 | 2.34 | 18.53 | 28.35 | |
5 | 15.97 | 5.54 | 228.95 | 111.38 |
40 °C Treatment | 70 °C Treatment | ||||
---|---|---|---|---|---|
Sample | Crystallinity (%) | Amorphous (%) | Sample | Crystallinity (%) | Amorphous (%) |
SC | 40.7 ± 0.8 b | 59.3 ± 0.8 a | SC | 40.7 ± 0.8 d | 59.3 ± 0.8 a |
DC | 17.2 ± 3.2 a | 82.8 ± 3.2 b | DC | 17.2 ± 3.2 b | 82.8 ± 3.2 c |
M1 | 41.6 ± 2.2 b | 58.4 ± 2.2 a | N1 | 24.0 ± 1.8 c | 75.9 ± 1.8 b |
M2 | 38.0 ± 4.5 b | 62.0 ± 4.5 a | N2 | 19.5 ± 0.3 b | 80.5 ± 0.3 c |
M3 | 42.2 ± 0.1 b | 57.8 ± 0.1 a | N3 | 12.9 ± 0.2 a | 87.1 ± 0.2 d |
M4 | 35.1 ± 2.5 b | 64.9 ± 2.5 a | N4 | 11.5 ± 1.3 a | 88.5 ± 1.3 d |
M5 | 12.8 ± 2.4 a | 87.1 ± 2.5 b | N5 | 11.3 ± 0.8 a | 88.7 ± 0.8 d |
Sample | First Glass Transition | Second Glass Transition | ||||||
---|---|---|---|---|---|---|---|---|
Tgi (°C) | Tgp (°C) | Tge (°C) | ΔCp (J/kg K) | Tgi (°C) | Tgp (°C) | Tge (°C) | ΔCp (J/kg K) | |
SC | 128.5 ± 1.7 b | 128.7 ± 1.6 b | 128.9 ± 1.5 b | 328 ± 6 e | 145.5 ± 1.0 ab | 145.6 ± 0.8 ab | 147.9 ± 2.2 abc | 1093 ± 2 e |
DC | 90.3 ± 0.1 a | 92.0 ± 0.3 a | 94.0 ± 0.9 a | 147 ± 8 a | 156.2 ± 1.9 c | 156.6 ± 1.8 c | 157.1 ± 2.0 c | 524 ± 6 b |
M1 | 132.0 ± 3.8 bc | 132.1 ± 3.8 bc | 132.2 ± 3.9 bc | 264 ± 7 d | 146.3 ± 4.8 abc | 146.4 ± 4.8 ab | 146.4 ± 4.8 ab | 741 ± 1 d |
M2 | 131.9 ± 0.7 bc | 131.7 ± 0.2 b | 131.7 ± 0.0 bc | 256 ± 8 cd | 137.4 ± 1.9 a | 139.1 ± 0.6 a | 139.4 ± 0.6 a | 756 ± 9 d |
M3 | 134.1 ± 1.4 bc | 134.2 ± 1.4 bc | 137.4 ± 1.4 e | 211 ± 8 bc | 149.9 ± 2.3 bc | 151.2 ± 4.4 bc | 151.7 ± 4.1 bc | 637 ± 12 c |
M4 | 132.5 ± 1.2 bc | 132.3 ± 1.5 bc | 132.6 ± 1.5 bc | 188 ± 4 ab | 150.3 ± 3.4 bc | 150.4 ± 2.2 bc | 150.4 ± 2.3 bc | 581 ± 10 bc |
M5 | 138.3 ± 0.3 c | 138.6 ± 0.3 c | 138.8 ± 0.6 c | 165 ± 6 ab | 154.9 ± 3.1 bc | 154.8 ± 3.0 bc | 154.9 ± 3.0 bc | 429 ± 8 a |
Sample | First Glass Transition | Second Glass Transition | ||||||
---|---|---|---|---|---|---|---|---|
Tgi (°C) | Tgp (°C) | Tge (°C) | ΔCp (J/kg K) | Tgi (°C) | Tgp (°C) | Tge (°C) | ΔCp (J/kg K) | |
SC | 128.5 ± 1.7 b | 128.7 ± 1.6 b | 128.9 ± 1.5 b | 328 ± 6 d | 145.5 ± 1.0 a | 145.6 ± 0.8 a | 147.9 ± 2.2 ab | 1093 ± 2 e |
DC | 90.3 ± 0.1 a | 92.0 ± 0.3 a | 94.0 ± 0.9 a | 147 ± 8 a | 156.2 ± 1.9 c | 156.5 ± 1.8 d | 156.9 ± 1.7 c | 524 ± 6 b |
N1 | 133.9 ± 2.2 cd | 134.2 ± 2.1 bc | 134.2 ± 2.2 bcd | 269 ± 6 c | 147.0 ± 1.7 ab | 146.8 ± 2.1 ab | 146.9 ± 2.0 ab | 822 ± 9 d |
N2 | 135.6 ± 5.3 de | 130.9 ± 5.3 b | 131.2 ± 6.2 cd | 215 ± 9 b | 147.9 ± 1.8 ab | 148.2 ± 1.5 abc | 148.3 ± 1.4 ab | 785 ± 1 d |
N3 | 135.9 ± 0.4 de | 136.0 ± 0.6 cd | 136.2 ± 0.5 de | 156 ± 3 e | 150.7 ± 0.6 b | 150.8 ± 0.7 c | 150.9 ± 0.7 b | 700 ± 6 c |
N4 | 129.3 ± 1.5 bc | 129.5 ± 1.7 b | 129.7 ± 1.7 bc | 144 ± 3 a | 144.6 ± 3.5 a | 146.6 ± 1.0 ab | 147.4 ± 0.1 a | 506 ± 9 b |
N5 | 140.4 ± 0.1 e | 140.5 ± 0.1 d | 140.6 ± 0.1 e | 118 ± 3 a | 149.6 ± 1.9 ab | 149.6 ± 1.9 bc | 149.8 ± 1.2 ab | 382 ± 4 a |
Sample | Solids Melting | Sample | Solids Melting | ||||||
---|---|---|---|---|---|---|---|---|---|
Tmi (°C) | Tmp (°C) | Tme (°C) | ΔHm (kJ/kg) | Tmi (°C) | Tmp (°C) | Tme (°C) | ΔHm (kJ/kg) | ||
SC | 186 ± 5 ab | 186 ± 5 ab | 197 ± 5 a | 140 ± 6 e | SC | 186 ± 5 ab | 186 ± 5 ab | 197 ± 5 ab | 140 ± 6 c |
DC | 195 ± 2 b | 196 ± 2 c | 215 ± 2 b | 69 ± 6 a | DC | 195 ± 2 b | 196 ± 2 b | 215 ± 2 c | 69 ± 6 a |
M1 | 182 ± 3 a | 182 ± 3 a | 202 ± 3 a | 163 ± 7 f | N1 | 184 ± 8 ab | 184 ± 8 ab | 194 ± 8 ab | 130 ± 1 c |
M2 | 182 ± 1 a | 183 ± 1 a | 199 ± 2 a | 121 ± 3 d | N2 | 179 ± 5 a | 179 ± 5 a | 192 ± 4 ab | 152 ± 3 d |
M3 | 193 ± 2 b | 195 ± 3 bc | 208 ± 7 bc | 106 ± 4 c | N3 | 183 ± 4 ab | 185 ± 4 ab | 201 ± 2 b | 155 ± 2 d |
M4 | 193 ± 1 b | 195 ± 1 bc | 217 ± 6 b | 102 ± 2 c | N4 | 175 ± 1 a | 174 ± 1 a | 186 ± 1 a | 159 ± 4 d |
M5 | 194 ± 3 b | 194 ± 3 bc | 205 ± 3 bc | 88 ± 1 b | N5 | 188 ± 2 ab | 188 ± 3 ab | 198 ± 3 ab | 100 ± 6 b |
Peaks | Wave Number (cm−1) | SC | DC | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|---|---|---|
1 | 3421 | 0.840 ± 0.019 d | 0.592 ± 0.003 c | 0.442 ± 0.003 a | 0.459 ± 0.003 a | 0.458 ± 0.003 b | 0.459 ± 0.003 a | 0.448 ± 0.002 a |
2 | 2931 | 0.324 ± 0.002 e | 0.460 ± 0.000 f | 0.255 ± 0.002 b | 0.226 ± 0.003 a | 0.276 ± 0.004 c | 0.281 ± 0.001 c | 0.307 ± 0.004 d |
3 | 2853 | - | 0.300 ± 0.000 d | - | - | - | 0.178 ± 0.009 b | 0.201 ± 0.003 c |
4 | 1798 | - | 0.036 ± 0.001 b | - | - | - | 0.038 ± 0.005 b | 0.040 ± 0.002 b |
5 | 1740 | 0.084 ± 0.003 ab | 0.278 ± 0.002 e | 0.073 ± 0.002 a | 0.109 ± 0.004 b | 0.152 ± 0.005 c | 0.150 ± 0.030 c | 0.212 ± 0.020 d |
6 | 1650 | 0.260 ± 0.003 b | - | 0.260 ± 0.002 b | 0.270 ± 0.002 bc | 0.314 ± 0.005 d | 0.265 ± 0.012 b | 0.291 ± 0.020 cd |
7 | 1621 | - | 0.397 ± 0.002 b | - | - | - | - | - |
8 | 1515 | - | 0.267 ± 0.002 d | - | 0.197 ± 0.006 b | 0.238 ± 0.01 c | 0.190 ± 0.020 b | 0.226 ± 0.012 c |
9 | 1460 | - | 0.343 ± 0.002 c | - | - | - | 0.258 ± 0.010 b | 0.258 ± 0.01 b |
10 | 1423 | 0.286 ± 0.003 d | - | 0.272 ± 0.00 c | 0.263 ± 0.002 b | 0.273 ± 0.01 c | - | - |
11 | 1371 | - | 0.298 ± 0.002 c | - | - | - | 0.226 ± 0.003 b | 0.223 ± 0.012 b |
12 | 1244 | 0.235 ± 0.000 b | 0.333 ± 0.002 c | 0.222 ± 0.001 ab | 0.234 ± 0.001 b | 0.215 ± 0.01 a | 0.209 ± 0.010 a | 0.226 ± 0.012 ab |
13 | 1159 | 0.540 ± 0.002 e | 0.364 ± 0.002 b | 0.447 ± 0.002 d | 0.429 ± 0.001 cd | 0.420 ± 0.01 c | 0.346 ± 0.021 b | 0.295 ± 0.002 a |
14 | 1102 | - | 0.459 ± 0.002 b | - | - | - | - | - |
15 | 1085 | 0.578 ± 0.002 e | - | 0.467 ± 0.002 d | 0.444 ± 0.002 c | 0.440 ± 0.01 c | 0.382 ± 0.010 b | - |
16 | 1058 | - | 0.485 ± 0.002 c | - | - | - | - | 0.362 ± 0.001 b |
17 | 1023 | 0.725 ± 0.002 d | - | 0.543 ± 0.002 c | 0.557 ± 0.003 c | 0.536 ± 0.010 c | 0.423 ± 0.040 b | - |
18 | 933 | 0.187 ± 0.002 d | 0.090 ± 0.002 a | 0.188 ± 0.001 d | 0.153 ± 0.003 c | 0.152 ± 0.010 c | 0.104 ± 0.003 b | 0.084 ± 0.001 a |
19 | 870 | - | 0.058 ± 0.002 c | - | - | - | - | 0.038 ± 0.001 b |
20 | 859 | 0.069 ± 0.002 de | - | 0.079 ± 0.001 e | 0.065 ± 0.001 d | 0.048 ± 0.004 c | 0.029 ± 0.01 b | - |
21 | 811 | - | 0.100 ± 0.002 c | - | - | - | - | 0.050 ± 0.001 b |
22 | 767 | 0.091 ± 0.002 e | 0.045 ± 0.002 b | 0.091 ± 0.001 e | 0.075 ± 0.001 d | 0.064 ± 0.002 c | 0.036 ± 0.004 a | 0.032 ± 0.001 a |
23 | 714 | 0.083 ± 0.002 f | - | 0.075 ± 0.00 e | 0.059 ± 0.001 d | 0.048 ± 0.002 c | 0.024 ± 0.006 b | - |
24 | 671 | - | 0.061 ± 0.002 cd | 0.069 ± 0.002 e | 0.059 ± 0.001 cd | 0.062 ± 0.002 d | 0.049 ± 0.004 b | 0.057 ± 0.001 c |
25 | 608 | - | 0.046 ± 0.002 c | - | - | - | - | 0.035 ± 0.002 b |
26 | 578 | 0.094 ± 0.002 e | - | 0.069 ± 0.002 d | 0.069 ± 0.001 d | 0.061 ± 0.002 c | 0.038 ± 0.01 b | - |
Peaks | Wave Number (cm−1) | SC | DC | N1 | N2 | N3 | N4 | N5 |
---|---|---|---|---|---|---|---|---|
1 | 3421 | 0.840 ± 0.019 e | 0.592 ± 0.003 d | 0.291 ± 0.027 a | 0.359 ± 0.002 b | 0.492 ± 0.004 c | 0.362 ± 0.006 b | 0.464 ± 0.005 c |
2 | 2931 | 0.324 ± 0.002 e | 0.460 ± 0.000 f | 0.140 ± 0.010 a | 0.185 ± 0.001 b | 0.275 ± 0.005 d | 0.219 ± 0.001 c | 0.334 ± 0.003 e |
3 | 2853 | - | 0.300 ± 0.000 d | - | - | - | 0.134 ± 0.001 b | 0.218 ± 0.003 c |
4 | 1798 | - | 0.036 ± 0.001 b | - | - | 0.050 ± 0.004 c | 0.058 ± 0.001 d | 0.059 ± 0.001 d |
5 | 1740 | 0.084 ± 0.003 a | 0.278 ± 0.002 g | 0.096 ± 0.004 b | 0.120 ± 0.003 c | 0.156 ± 0.004 d | 0.179 ± 0.002 e | 0.265 ± 0.002 f |
6 | 1650 | 0.260 ± 0.003 d | - | 0.214 ± 0.006 c | 0.265 ± 0.002 d | 0.316 ± 0.01 e | 0.274 ± 0.009 d | 0.033 ± 0.002 b |
7 | 1621 | - | 0.397 ± 0.002 c | - | - | - | - | 0.307 ± 0.002 b |
8 | 1515 | - | 0.267 ± 0.002 d | - | 0.215 ± 0.003 b | 0.239 ± 0.08 c | 0.232 ± 0.000 c | 0.276 ± 0.002 d |
9 | 1460 | - | 0.343 ± 0.002 e | 0.189 ± 0.005 b | 0.240 ± 0.002 c | 0.304 ± 0.01 d | 0.251 ± 0.003 c | 0.305 ± 0.002 d |
10 | 1423 | 0.286 ± 0.003 d | - | 0.177 ± 0.007 b | 0.222 ± 0.009 c | 0.275 ± 0.009 d | 0.201 ± 0.019 c | - |
11 | 1371 | - | 0.298 ± 0.002 F | 0.162 ± 0.009 b | 0.204 ± 0.002 c | 0.262 ± 0.007 e | 0.197 ± 0.003 c | 0.2454 ± 0.002 d |
12 | 1244 | 0.235 ± 0.001 d | 0.333 ± 0.002 e | 0.119 ± 0.005 a | 0.155 ± 0.002 b | 0.215 ± 0.01 c | 0.156 ± 0.003 b | 0.230 ± 0.002 d |
13 | 1159 | 0.540 ± 0.002 f | 0.364 ± 0.002 d | 0.244 ± 0.016 a | 0.316 ± 0.002 b | 0.423 ± 0.01 e | 0.298 ± 0.004 b | 0.342 ± 0.002 c |
14 | 1102 | - | 0.459 ± 0.002 c | - | - | - | - | 0.347 ± 0.002 c |
15 | 1085 | 0.578 ± 0.002 g | - | 0.256 ± 0.02 b | 0.341 ± 0.002 d | 0.446 ± 0.001 f | 0.309 ± 0.006 c | 0.380 ± 0.002 e |
16 | 1058 | - | 0.485 ± 0.002 b | - | - | - | - | - |
17 | 1023 | 0.725 ± 0.002 f | - | 0.314 ± 0.023 b | 0.403 ± 0.002 c | 0.535 ± 0.01 e | 0.380 ± 0.006 c | 0.437 ± 0.002 d |
18 | 933 | 0.187 ± 0.002 e | 0.090 ± 0.002 ab | 0.095 ± 0.006 ab | 0.123 ± 0.001 c | 0.148 ± 0.006 d | 0.098 ± 0.001 b | 0.088 ± 0.002 a |
19 | 870 | - | 0.058 ± 0.002 c | - | - | - | - | 0.038 ± 0.002 b |
20 | 859 | 0.069 ± 0.002 e | - | 0.034 ± 0.003 c | 0.0471 ± 0.001 d | 0.049 ± 0.003 d | 0.028 ± 0.001 b | - |
21 | 811 | - | 0.100 ± 0.002 c | - | - | - a | - | 0.047 ± 0.002 b |
22 | 767 | 0.091 ± 0.002 d | 0.045 ± 0.002 b | 0.045 ± 0.003 b | 0.061 ± 0.001 c | 0.062 ± 0.003 c | 0.033 ± 0.001 a | 0.032 ± 0.002 a |
23 | 714 | 0.083 ± 0.002 f | - | 0.039 ± 0.003 c | 0.054 ± 0.000 e | 0.048 ± 0.003 d | 0.029 ± 0.001 b | - |
24 | 671 | - | 0.061 ± 0.002 c | 0.053 ± 0.002 b | 0.071 ± 0.001 d | 0.062 ± 0.003 c | 0.054 ± 0.001 b | 0.064 ± 0.002 c |
25 | 608 | - | 0.046 ± 0.002 d | 0.028 ± 0.003 b | 0.044 ± 0.001 cd | 0.042 ± 0.003 cd | 0.031 ± 0.001 b | 0.0402 ± 0.002 c |
26 | 578 | 0.094 ± 0.002 d | - | 0.038 ± 0.003 b | 0.062 ± 0.0004 c | 0.059 ± 0.003 c | 0.039 ± 0.001 b | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mawali, M.; Al-Khalili, M.; Al-Khusaibi, M.; Myint, M.T.Z.; Kyaw, H.H.; Rahman, M.S.; Muhammad, A.I.; Al-Habsi, N. Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures. Polymers 2025, 17, 1993. https://doi.org/10.3390/polym17141993
Al-Mawali M, Al-Khalili M, Al-Khusaibi M, Myint MTZ, Kyaw HH, Rahman MS, Muhammad AI, Al-Habsi N. Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures. Polymers. 2025; 17(14):1993. https://doi.org/10.3390/polym17141993
Chicago/Turabian StyleAl-Mawali, Muna, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad, and Nasser Al-Habsi. 2025. "Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures" Polymers 17, no. 14: 1993. https://doi.org/10.3390/polym17141993
APA StyleAl-Mawali, M., Al-Khalili, M., Al-Khusaibi, M., Myint, M. T. Z., Kyaw, H. H., Rahman, M. S., Muhammad, A. I., & Al-Habsi, N. (2025). Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures. Polymers, 17(14), 1993. https://doi.org/10.3390/polym17141993