polymers-logo

Journal Browser

Journal Browser

Natural Fiber-Based Green Materials, Second Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Fibers".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1163

Special Issue Editor


E-Mail Website
Guest Editor
Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
Interests: biocomposites; bio-based polymers; natural fiber composites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue intends to provide a platform for discussions about the latest innovations in the use of bio-based materials. Continuous development in the field of bio-based materials has resulted in the use of several natural fibers. Research on green materials is currently widespread, which is evident through numerous research undertakings globally resulting in a large number of original publications. In this Special Issue, researchers from both academia and industry are invited to submit their latest studies on natural fiber-based green materials.

The scope of this Special Issue includes research on natural fibers and the production of natural fiber composites, interfacial studies between natural fibers and polymers, and the characterization of these fibers and their composites (physical, chemical, mechanical, thermal, and morphological properties).

Dr. Sunil Kumar Ramamoorthy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • jute
  • sisal
  • flax
  • hemp
  • kenaf
  • cellulose

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3364 KiB  
Article
Specificity of Thermal Destruction of Nonwoven Mixture Systems Based on Bast and Viscose Fibers
by Altynay S. Kalauova, Ekaterina E. Palchikova, Igor S. Makarov, Georgiy A. Shandryuk, Amangeldi I. Abilkhairov, Danagul Zh. Kalimanova, Meirbek Zh. Naukenov, Gulbarshin K. Shambilova, Egor M. Novikov, Junlong Song and Alexander G. Smyslov
Polymers 2025, 17(9), 1223; https://doi.org/10.3390/polym17091223 - 29 Apr 2025
Viewed by 304
Abstract
The research investigates the thermal behavior of mixed systems based on natural and artificial cellulose fibers used as precursors for carbon nonwoven materials. Flax and hemp fibers were employed as natural components; they were first chemically treated to remove impurities and enriched with [...] Read more.
The research investigates the thermal behavior of mixed systems based on natural and artificial cellulose fibers used as precursors for carbon nonwoven materials. Flax and hemp fibers were employed as natural components; they were first chemically treated to remove impurities and enriched with alpha-cellulose. The structure, chemical composition, and mechanical properties of both natural and viscose fibers were studied. It was shown that fiber properties depend on the fiber production process history; natural fibers are characterized by a high content of impurities and exhibit high strength characteristics, whereas viscose fibers have greater deformation properties. The thermal behavior of blended compositions was investigated using TGA and DSC methods across a wide range of component ratios. Carbon yield values at 1000 °C were found to be lower for blended systems containing 10–40% by weight of bast fibers, with carbon yield increasing as the quantity of natural fibers increased. Thus, the composition of the cellulose composite affects carbon yield and thermal processes in the system. Using the Kissinger method, data were obtained on the value of the activation energy of thermal decomposition for various cellulose and composite systems. It was found that natural fiber systems have three-times higher activation energy than viscose fiber systems, indicating their greater thermal stability. Blends of natural and artificial fibers combine the benefits of both precursors, enabling the deliberate regulation of thermal behavior and carbon material yield. This approach opens up prospects for the creation of functional carbon materials used in various high-tech areas, including thermal insulation. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials, Second Edition)
Show Figures

Graphical abstract

16 pages, 4313 KiB  
Article
Eco-Friendly Biocomposites from Chestnut Waste: Production, Optimization, Characterization, and Application
by Simão B. Silva, Olga M. Freitas, Elsa F. Vieira, Amália Gomes, Ana R. Carreiras, Diogo C. Moreira, Púria Esfandiari, João F. Silva, Cristina Delerue-Matos and Valentina F. Domingues
Polymers 2025, 17(5), 616; https://doi.org/10.3390/polym17050616 - 25 Feb 2025
Viewed by 696
Abstract
This study explores the valorization of non-commercial chestnut waste from the Portuguese chestnut industry to develop biocomposites. The composites were obtained by hot compression molding, and a Box–Behnken Design model was employed to optimize the mechanical, thermal, and water resistance properties of the [...] Read more.
This study explores the valorization of non-commercial chestnut waste from the Portuguese chestnut industry to develop biocomposites. The composites were obtained by hot compression molding, and a Box–Behnken Design model was employed to optimize the mechanical, thermal, and water resistance properties of the chestnut-based composite, using fruit and shell fibers, respectively, as the polymeric matrix and reinforcement agent. The optimal formulation, comprising 70% chestnut, no glycerol, a molding temperature of 120 °C, and applying a pressure of 2.93 MPa for 30 min, achieved a Flexural Strength of 9.00 MPa and a Flexural Modulus of 950 MPa. To enhance water resistance, shellac was added as a natural hydrophobic coating. Water interaction tests indicated that shellac-treated biocomposites exhibited superior water resistance, absorbing approximately two times less water than those containing glycerol or untreated samples. Thermal analysis revealed that glycerol acted as a plasticizer, improving flexibility and reducing the glass transition temperature. Additionally, the chestnut-based biocomposite demonstrated an out-of-plane thermal conductivity of 0.79 W/m·K, categorizing it as a thermal insulator. The final prototype application was a candle holder, showcasing the potential for the practical and sustainable use of chestnut-based composite. This research highlights the potential for chestnut waste to be repurposed into eco-friendly products, offering an alternative to conventional plastics and contributing to a circular economy. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials, Second Edition)
Show Figures

Graphical abstract

Back to TopTop