Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = fuel injection pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5468 KiB  
Article
Simulation Study of Cylinder-to-Cylinder Variation Phenomena and Key Influencing Factors in a Six-Cylinder Natural Gas Engine
by Demin Jia, Qi Cao, Xiaoying Xu, Zhenlin Wang, Dan Wang and Hongqing Wang
Energies 2025, 18(15), 4078; https://doi.org/10.3390/en18154078 (registering DOI) - 1 Aug 2025
Abstract
Cylinder-to-cylinder variation (CTCV) is a prevalent issue for natural gas (NG) premixed engines with port fuel injection (PFI), which significantly impacts the engine’s power performance, fuel economy, and reliability. Focusing on this issue, this study established a three-dimensional simulation platform based on a [...] Read more.
Cylinder-to-cylinder variation (CTCV) is a prevalent issue for natural gas (NG) premixed engines with port fuel injection (PFI), which significantly impacts the engine’s power performance, fuel economy, and reliability. Focusing on this issue, this study established a three-dimensional simulation platform based on a six-cylinder natural gas premixed engine. Quantitative analysis was conducted to discuss the differences in the main boundaries, combustion process, and engine power between cylinders. Additionally, influencing factors of CTCV were explored in terms of mixture uniformity and distribution uniformity. The results indicate that, for the NG premixed engine, many parameters vary significantly between cylinders even under the economical operating condition of 1200 rpm. For example, the difference rate in the peak cylinder pressure and peak phase between cylinder 3 and cylinder 2 can reach 23.5% and 24.3%, respectively. Through the design of simulation cases, it was found that improving the mixture uniformity had a more significant impact on CTCV than improving the distribution uniformity. For example, the relative standard deviation (RSD) of peak pressure decreased by 2.15% through mixture uniformity improvement, while it only decreased by 0.39% through distribution uniformity improvement. At a high speed of 1800 rpm, the influence of distribution uniformity on CTCV increased notably, but the influence of mixture uniformity still remained greater than that of distribution uniformity. Full article
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 271
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

22 pages, 5450 KiB  
Article
Optimization of a Heavy-Duty Hydrogen-Fueled Internal Combustion Engine Injector for Optimum Performance and Emission Level
by Murat Ozkara and Mehmet Zafer Gul
Appl. Sci. 2025, 15(15), 8131; https://doi.org/10.3390/app15158131 - 22 Jul 2025
Viewed by 325
Abstract
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model [...] Read more.
Hydrogen is a promising zero-carbon fuel for internal combustion engines; however, the geometric optimization of injectors for low-pressure direct-injection (LPDI) systems under lean-burn conditions remains underexplored. This study presents a high-fidelity optimization framework that couples a validated computational fluid dynamics (CFD) combustion model with a surrogate-assisted multi-objective genetic algorithm (MOGA). The CFD model was validated using particle image velocimetry (PIV) data from non-reacting flow experiments conducted in an optically accessible research engine developed by Sandia National Laboratories, ensuring accurate prediction of in-cylinder flow structures. The optimization focused on two critical geometric parameters: injector hole count and injection angle. Partial indicated mean effective pressure (pIMEP) and in-cylinder NOx emissions were selected as conflicting objectives to balance performance and emissions. Adaptive mesh refinement (AMR) was employed to resolve transient in-cylinder flow and combustion dynamics with high spatial accuracy. Among 22 evaluated configurations including both capped and uncapped designs, the injector featuring three holes at a 15.24° injection angle outperformed the baseline, delivering improved mixture uniformity, reduced knock tendency, and lower NOx emissions. These results demonstrate the potential of geometry-based optimization for advancing hydrogen-fueled LPDI engines toward cleaner and more efficient combustion strategies. Full article
Show Figures

Figure 1

17 pages, 3065 KiB  
Article
Soot Mass Concentration Prediction at the GPF Inlet of GDI Engine Based on Machine Learning Methods
by Zhiyuan Hu, Zeyu Liu, Jiayi Shen, Shimao Wang and Piqiang Tan
Energies 2025, 18(14), 3861; https://doi.org/10.3390/en18143861 - 20 Jul 2025
Viewed by 204
Abstract
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using [...] Read more.
To improve the prediction accuracy of soot load in gasoline particulate filters (GPFs) and the control accuracy during GPF regeneration, this study developed a prediction model to predict the soot mass concentration at the GPF inlet of gasoline direct injection (GDI) engines using advanced machine learning methods. Three machine learning approaches, namely, support vector regression (SVR), deep neural network (DNN), and a Stacking integration model of SVR and DNN, were employed, respectively, to predict the soot mass concentration at the GPF inlet. The input data includes engine speed, torque, ignition timing, throttle valve opening angle, fuel injection pressure, and pulse width. Exhaust gas soot mass concentration at the three-way catalyst (TWC) outlet is obtained by an engine bench test. The results show that the correlation coefficients (R2) of SVR, DNN, and Stacking integration model of SVR and DNN are 0.937, 0.984, and 0.992, respectively, and the prediction ranges of soot mass concentration are 0–0.038 mg/s, 0–0.030 mg/s, and 0–0.07 mg/s, respectively. The distribution, median, and data density of prediction results obtained by the three machine learning approaches fit well with the test results. However, the prediction result of the SVR model is poor when the soot mass concentration exceeds 0.038 mg/s. The median of the prediction result obtained by the DNN model is closer to the test result, specifically for data points in the 25–75% range. However, there are a few negative prediction results in the test dataset due to overfitting. Integrating SVR and DNN models through stacked models extends the predictive range of a single SVR or DNN model while mitigating the overfitting of DNN models. The results of the study can serve as a reference for the development of accurate prediction algorithms to estimate soot loads in GPFs, which in turn can provide some basis for the control of the particulate mass and particle number (PN) emitted from GDI engines. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

22 pages, 7206 KiB  
Article
The Impact of Diesel Injection Strategy and In-Cylinder Temperature on the Combustion and Emissions of Ammonia/Diesel Dual-Fuel Marine Engine
by Wei Guan, Songchun Luo, Jie Wu, Hua Lou, Lei Wang, Feng Wu, Li Li, Fuchuan Huang and Haibin He
Energies 2025, 18(14), 3631; https://doi.org/10.3390/en18143631 - 9 Jul 2025
Viewed by 291
Abstract
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant [...] Read more.
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant allows the kinetic energy of diesel to remain at a higher level. This results in an increase in combustion efficiency and indicated the thermal efficiency of the engine, while also reducing CO2 and soot emissions. However, when the ammonia energy ratio increases to more than 50%, the indicated thermal efficiency starts to decrease along with the increase in the emissions of N2O and unburned ammonia. To address these issues, one of the potential means is to improve the in-cylinder combustion environment by increasing the in-cylinder gas temperature. This can enhance combustion efficiency and ultimately optimize the performance and emission characteristics of dual-fuel engines, which results in an increase in the combustion efficiency to 98% and indicated thermal efficiency to 54.47% at a relatively high ammonia energy ratio of 60%. Emission results indicate that N2O emissions decrease from 1099 ppm to 25 ppm, while unburned ammonia emissions drop from 16016 ppm to 100 ppm. Eventually, the greenhouse gas emissions were reduced by about 85.3% in comparison with the baseline case. Full article
Show Figures

Figure 1

26 pages, 2497 KiB  
Article
Analytical Characterization of Thermal Efficiency and Emissions from a Diesel Engine Using Diesel and Biodiesel and Its Significance for Logistics Management
by Saša Milojević, Ondrej Stopka, Nataša Kontrec, Olga Orynycz, Martina Hlatká, Mladen Radojković and Blaža Stojanović
Processes 2025, 13(7), 2124; https://doi.org/10.3390/pr13072124 - 3 Jul 2025
Cited by 1 | Viewed by 500
Abstract
The presented research examined the impact of using biodiesel as a fuel for existing diesel engines during the transition to the broader adoption of electric vehicles powered by renewable energy or through integrated hybrid drive systems. The authors considered previous research on this [...] Read more.
The presented research examined the impact of using biodiesel as a fuel for existing diesel engines during the transition to the broader adoption of electric vehicles powered by renewable energy or through integrated hybrid drive systems. The authors considered previous research on this topic, which is demonstrated by a literature review. This paper will utilize the findings to further explore the potential of optimizing existing engines by using biodiesel and thus propose their continued use in the transition period as one of the clean fuels. This paper outlines the standards that define fuel quality and presents a test bench equipped with an experimental engine and specialized equipment for laboratory examination, enabling the measurement of emissions and the determination of cylinder pressure. To ensure the repeatability of the experimental conditions and facilitate future comparison of the obtained results, the engine examination was conducted according to the standard ESC 13-mode test. The examination process confirmed a significant reduction in particulate matter emissions (on average 40%) but, simultaneously, an increase in nitrogen oxide emissions (on average 25%), whose level, according to data from the literature, depends on the type of raw materials used for biodiesel production. Brake thermal efficiency is higher when operating with biodiesel (on average 1.5%). Still, it was concluded that the use of biodiesel in existing diesel engines is feasible only if the engines are equipped with variable systems for automatically adjusting the compression ratio, fuel injection time, valve timing, and so on. The outcomes from the examination conducted can be further processed by applying statistical methods and represent an essential database for further research in this scientific area. Full article
Show Figures

Figure 1

20 pages, 3470 KiB  
Article
Hydrogen Supplementation in SI Engines: Enhancing Efficiency and Reducing Emissions with a Focus on Knock Phenomena
by Saugirdas Pukalskas, Alfredas Rimkus, Tadas Vipartas, Saulius Stravinskas, Donatas Kriaučiūnas, Gabrielius Mejeras and Andrius Ušinskas
Machines 2025, 13(7), 571; https://doi.org/10.3390/machines13070571 - 1 Jul 2025
Viewed by 315
Abstract
This study investigates the impact of hydrogen supplementation on the performance, efficiency, and emissions of a spark-ignition internal combustion engine, with a specific focus on knock phenomena. A Nissan HR16DE engine was modified to operate in a dual-fuel mode using gasoline (E95) and [...] Read more.
This study investigates the impact of hydrogen supplementation on the performance, efficiency, and emissions of a spark-ignition internal combustion engine, with a specific focus on knock phenomena. A Nissan HR16DE engine was modified to operate in a dual-fuel mode using gasoline (E95) and high-purity hydrogen. Hydrogen was injected via secondary manifold injectors and managed through a reprogrammable MoTeC ECU, allowing precise control of ignition timing and fuel delivery. Experiments were conducted across various engine speeds and loads, with hydrogen mass fractions ranging from 0% to 30%. Results showed that increasing hydrogen content enhanced combustion intensity, thermal efficiency, and stability. Brake specific fuel consumption decreased by up to 43.4%, while brake thermal efficiency improved by 2–3%. CO, HC, and CO2 emissions were significantly reduced. However, NOx emissions increased with higher hydrogen concentrations due to elevated combustion temperatures. Knock tendency was effectively mitigated by retarding ignition timing, ensuring peak in-cylinder pressure occurred at 14–15° CAD aTDC. These findings demonstrate the potential of hydrogen supplementation to reduce fossil fuel use and greenhouse gas emissions in spark ignition engines, while highlighting the importance of precise combustion control to address challenges such as knock and NOx formation. Full article
(This article belongs to the Special Issue Advanced Engine Energy Saving Technology)
Show Figures

Figure 1

15 pages, 4286 KiB  
Article
Numerical Modeling and Thermovision Camera Measurement of Blast Furnace Raceway Dynamics
by Sailesh Kesavan, Joakim Eck, Lars-Erik From, Maria Lundgren, Lena Sundqvist Öqvist and Martin Kjellberg
Materials 2025, 18(13), 3061; https://doi.org/10.3390/ma18133061 - 27 Jun 2025
Viewed by 337
Abstract
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. [...] Read more.
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. With global pressure to reduce CO2 emissions, optimization of BF operation is crucial, which is possible through optimizing fuel consumption, and improving process stability. Understanding the complex combustion and flow dynamics in the raceway region is essential for enhancing reducing agent utilization. Modeling plays a key role in predicting these behaviors and providing insights into the process; however, validation of these models is crucial for their reliability but difficult in the complex and hostile BF raceway region. In this study, a validated raceway model developed at Swerim was used to evaluate four different cases, namely R1 (Reference), R2 (Low oxygen to blast), R3 (High blast moisture), and R4 (High PC) using an injection coal from SSAB Oxelösund. During actual experiments, the temperature distribution in the raceway was measured using a thermovision camera (TVC) to validate the CFD simulation results. The combined use aims to cross-validate the results simultaneously to establish a reliable framework for future parametric studies of raceway behavior under varying operational conditions using CFD simulations The results indicated that it is possible to measure the temperature within the raceway region using TVC at depths indicated to be 0.5–0.7 m, when not obscured by the coal plume, or <0.5 m, when obscured. TVC measurements are clearly quantitatively affected when obscured, indicated by considerably lower temperatures in the order of 200 °C between similar process conditions. A decrease of O2 injection results in an extended raceway region as the conditions become less chemically favorable for combustion due to a lower reactant content offsetting the ignition point and reducing the reaction rate in the raceway. An increased moisture content in the blast results in a reduced size of the race-way region as energy is consumed as latent energy and cracks water. An increase in PC rate results in a larger/wider raceway region, as more PC is devolatilized and combusted early on, resulting in larger gas volumes expanding the raceway region outwards, perpendicular to the injection. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
Combustion Analysis of the Renewable Fuel HVO and RME with Hydrogen Addition in a Reciprocating Internal Combustion Engine
by Stanislaw Szwaja, Saugirdas Pukalskas, Romualdas Juknelevicius and Alfredas Rimkus
Energies 2025, 18(13), 3381; https://doi.org/10.3390/en18133381 - 27 Jun 2025
Viewed by 326
Abstract
In the era of depletion of fossil fuels, there is an intensive search for renewable fuels for the internal combustion engine, which is the most efficient thermal machine in the power range of several kW to several MW. Hence, this article discusses the [...] Read more.
In the era of depletion of fossil fuels, there is an intensive search for renewable fuels for the internal combustion engine, which is the most efficient thermal machine in the power range of several kW to several MW. Hence, this article discusses the results of research on the combustion of renewable fuels such as hydrotreated vegetable oil (HVO) and the rapeseed methyl ester (RME) with the addition of hydrogen, injected in its gaseous form into the intake manifold. The thermodynamic analysis presented in the article discusses progress in the combustion process of these fuels depending on the hydrogen content. The parameters for diesel fuel combustion are given as a reference point. Based on the obtained results, one can conclude that adding hydrogen increases the maximum combustion pressure in the cylinder and significantly accelerates the combustion process in the premixed combustion phase, thus reducing the share of the diffusion combustion phase. This significantly affects exhaust toxic emissions. In connection with this, a shortening of the flame kernels development phase was observed, calculated as the time expressed by the crank angle, to release heat of 10%, and a slight extension of the main combustion phase, managed as the period of the heat released from 10 to 90% was observed as well. Full article
Show Figures

Figure 1

18 pages, 3971 KiB  
Article
Impact of Ammonia Energy Ratio on the Performance of an Ammonia/Diesel Dual-Fuel Direct Injection Engine Across Different Combustion Modes
by Cheng Li, Sheng Yang and Yuqiang Li
Processes 2025, 13(7), 1953; https://doi.org/10.3390/pr13071953 - 20 Jun 2025
Viewed by 339
Abstract
The ammonia energy ratio (AER) is a critical parameter influencing the performance of ammonia/diesel dual-fuel engines. In this study, a numerical simulation was conducted based on a high-pressure dual-fuel (HPDF) direct injection ammonia/diesel engine to investigate the impact of the AER on combustion [...] Read more.
The ammonia energy ratio (AER) is a critical parameter influencing the performance of ammonia/diesel dual-fuel engines. In this study, a numerical simulation was conducted based on a high-pressure dual-fuel (HPDF) direct injection ammonia/diesel engine to investigate the impact of the AER on combustion and emissions under two distinct combustion modes. By adjusting the ammonia start of injection timing (ASOI), the combustion mode was transitioned from diffusion combustion (HPDF1) to partially premixed combustion (HPDF2). The results show that under the HPDF1 mode, a three-stage heat release pattern is observed, and the evolution curves of NO and NO2 exhibit fluctuations similar to the heat release process. As the AER increases, the second heat release stage is suppressed, the high-temperature region narrows, the ignition delay is extended, and the CA10–CA50 interval shortens, leading to a higher maximum pressure rise rate (MPRR) at a high AER. Conversely, in the HPDF2 mode, the combustion process is characterized by a two-stage heat release. With an increasing AER, the high-temperature region expands, the ignition delay and CA10–CA50 interval are prolonged, while the CA50–CA90 interval shortens, and the MPRR becomes the lowest at a high AER. For both combustion modes, total greenhouse gas (GHG) emissions decrease with an increasing AER. However, in the HPDF2 mode with an AER = 95%, N2O accounts for up to 78% of the total GHG emissions. Additionally, a trade-off relationship exists between NOx emissions and indicated thermal efficiency (ITE). When the ASOI is set to −8°CA ATDC, the engine operates in a transitional combustion mode between HPDF1 and HPDF2. At this point, setting the AER to 95% effectively mitigates the trade-off, achieving an ITE of 53.56% with NOx emissions as low as 578 ppm. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 718
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

16 pages, 2185 KiB  
Article
Maximizing Energy Recovery from Waste Tires Through Cement Production Optimization in Togo—A Case Study
by Mona-Maria Narra, Essossinam Beguedou, Satyanarayana Narra and Michael Nelles
Waste 2025, 3(2), 19; https://doi.org/10.3390/waste3020019 - 8 Jun 2025
Viewed by 704
Abstract
The cement industry faces increasing energy costs and environmental pressures, driving the adoption of alternative fuels derived from waste materials. In Togo, approximately 350,000 t of end-of-life tires (ELT) are generated annually, creating significant environmental and health hazards through uncontrolled disposal and burning [...] Read more.
The cement industry faces increasing energy costs and environmental pressures, driving the adoption of alternative fuels derived from waste materials. In Togo, approximately 350,000 t of end-of-life tires (ELT) are generated annually, creating significant environmental and health hazards through uncontrolled disposal and burning practices. This study investigated the technical feasibility and economic viability of incorporating waste tires as an alternative fuel in cement manufacturing. Tire-derived fuel (TDF) performance was evaluated by comparing pre-processed industrial tires with unprocessed ones, focusing on clinker production loss, elemental composition, heating values, and bulk density. The results demonstrate that TDF exhibits superior performance characteristics, with the highest heating values, and meets all the required specifications for cement production. In contrast, whole tire incineration fails to satisfy the recommended criteria, necessitating blending with conventional fuels to maintain clinker quality and combustion efficiency. The investigation revealed no significant adverse effects on production processes or clinker quality while achieving substantial reductions in nitrogen and sulfur oxide emissions. The experimental results were compared with the theoretical burnout times to optimize the shredding operations and injection methods. However, several challenges remain unaddressed, including the absence of streamlined handling processes, limited understanding of long-term ecological and health impacts, and insufficient techno-economic assessments. Future research should prioritize identifying critical aging points, investigating self-rejuvenating behaviors, and quantifying long-term environmental implications. These findings provide a foundation for developing computational models to optimize the mixing ratios of alternative and fossil fuels in cement manufacturing, offering significant environmental, economic, and societal benefits for the cement industry. Full article
Show Figures

Figure 1

16 pages, 2333 KiB  
Article
Potential of DMC and PODE as Fuel Additives for Industrial Diesel Engines
by Nicholas O’Connell, Dominik Stümpfl, Rudolf Höß and Raphael Lechner
Fuels 2025, 6(2), 44; https://doi.org/10.3390/fuels6020044 - 4 Jun 2025
Viewed by 582
Abstract
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In [...] Read more.
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In this study both DMC and PODE were investigated as drop-in diesel fuel additives regarding material compatibility, injection behavior, as well as particle and exhaust emissions. Both DMC and PODE are known to be incompatible with certain materials used as seals in the fuel injection system. Therefore, the material compatibility of both neat DMC and PODE as well as blends with B0 was investigated, with both PFTE and FFKM showing good compatibility. The hydraulic injection behavior of DMC–diesel and PODE–diesel blends was investigated experimentally, showing the need for compensating injection quantities for DMC and PODE blends to match neat diesel power output due to their lower calorific values. Energetic compensation can be achieved by higher injection pressures or longer injection durations. Engine tests have been conducted with both DMC–diesel and PODE–diesel blends, demonstrating the potential to mitigate the particle–NOX trade-off. Full article
Show Figures

Figure 1

20 pages, 12845 KiB  
Article
Study on Swirling Flow and Spray Characteristics of Central Stage Direct Injection Combustor
by Wenjie Jiang, Ziyu Qi, Jinhu Yang, Deqing Mei, Kaixing Wang, Yushuai Liu, Shaolin Wang, Fuqiang Liu, Yong Mu, Cunxi Liu and Gang Xu
Energies 2025, 18(11), 2926; https://doi.org/10.3390/en18112926 - 3 Jun 2025
Viewed by 590
Abstract
To investigate the physical phenomena interactions between airstream and liquid injection or droplets within a complex multi-stage swirl flow field, this study investigated the flow field and spray characteristics in a central stage direct injection combustor with a variety of optical diagnostic techniques, [...] Read more.
To investigate the physical phenomena interactions between airstream and liquid injection or droplets within a complex multi-stage swirl flow field, this study investigated the flow field and spray characteristics in a central stage direct injection combustor with a variety of optical diagnostic techniques, including using time-resolved particle image velocimetry (PIV) to measure the swirl flow field, using time-resolved planar Mie scattering (PMie) to measure the spray pattern, and using a laser particle size analyzer (LPSA) to measure the spray droplet size and its distribution. The results indicate that the lip recirculation zone (LRZ) and the swirl jet zone (SJZ) significantly influence droplet spatial and size distribution characteristics, such as spray penetration, cone angle, and droplet size. Due to the unique characteristics of the dual-stage swirl atomizer, the spray cone angle and penetration do not increase monotonically with the gas Weber number (Weg). For the pilot stage, at a constant Weg, both the spray cone angle and penetration increase with higher fuel injection velocity. At different fuel injection velocities, the spray penetration increases with rising Weg. When the fuel injection velocity is low, the cone angle initially increases and then decreases as Weg grows. The results about the effect of Weg on droplet size distribution further support this conclusion. The Sauter mean diameter (SMD) of the main and pilot stage decreases with increasing relative pressure drop of air until reaching a stable state. The aerodynamic shear of the swirling airstream is sufficient to promote thorough fuel atomization, ensuring that the SMD remains low at the whole operating condition. Therefore, for the dual-stage swirl atomizer investigated in this study, good atomization can be achieved under low operating conditions, which provides a theoretical foundation and data support for the improvement and design of a low-emission, high-performance atomizer. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

25 pages, 16616 KiB  
Article
Analysis of Vorticity and Velocity Fields of Jets from Gas Injector Using PIV
by Giovanni Cecere, Mats Andersson, Simona Silvia Merola, Adrian Irimescu and Bianca Maria Vaglieco
Appl. Sci. 2025, 15(11), 6180; https://doi.org/10.3390/app15116180 - 30 May 2025
Viewed by 455
Abstract
The present article offers a detailed analysis of helium jet velocity and vorticity intensity distribution using the particle image velocimetry (PIV) technique. A gaseous fuel injector featuring an interchangeable tip was implemented. The test campaign involved the use of three nozzle patterns characterized [...] Read more.
The present article offers a detailed analysis of helium jet velocity and vorticity intensity distribution using the particle image velocimetry (PIV) technique. A gaseous fuel injector featuring an interchangeable tip was implemented. The test campaign involved the use of three nozzle patterns characterized by different orifices shape and orientations. The helium was injected into a constant volume chamber (CVC) and the delivery pressure varied, as well as that inside the chamber, in order to obtain pressure ratios (PRs) ranging from 2 to 20. The synchronization system was set to record two consecutive frames at different time-instants after the start of energizing (aSOE). Green light from a dual cavity Nd:YAG laser was used for illumination and a 4-megapixel PIV-camera for image capture. Vegetable oil particles were seeded into the chamber to trace the helium jet structure and cross-correlation methodology employed to measure their instantaneous displacements. The role of orifices size and orientations has been deeply scrutinized and related to the morphological outcomes. The least-oriented nozzle (first) exhibited the highest values of jet penetration and well-defined vortex structures. In contrast, the more the orifices are oriented, the wider the regions interacting with surrounding environment. Specifically, geometry with smaller orifice sizes (third) returned an overall absence of localized significant vortex structures. This deficiency is counterbalanced by a large distribution of small vortices that were observed to replace the main rings for each condition examined. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

Back to TopTop