energies-logo

Journal Browser

Journal Browser

Internal Combustion Engines: Research and Applications—3rd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "I2: Energy and Combustion Science".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 767

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland
Interests: fuels; energy engineering; combustion engines
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, 35-959 Rzeszów, Poland
Interests: energy engineering; tribological; combustion engine
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleague,

The invention of the reciprocating internal combustion engine (ICE) has revolutionized all areas of transportation where such engines, both diesel and gasoline, are the main source of propulsion for almost all vehicles and ships. They are also an indispensable power drive for many engineering machines and energy systems. Thanks to continuous technical development, they have reached a relatively high level of technical sophistication, and their current energy and environment outputs significantly exceed the previous relevant performance. However, internal combustion engines are not deprived of disadvantages. The most important of these is harmful exhaust emissions. This problem is the main focus of attention of scientists and automotive engineers. A constant decrease in exhaust emission limits additionally intensifies their efforts to produce more ecological engines and vehicles. Furthermore, the strong desire to eliminate fossil fuels yields additional challenges to the continued expansion of internal combustion engines. On the other hand, the rapid growth of road transportation and the increase in end-user demands for increasingly comfortable, durable, reliable, and fuel-efficient vehicles continually require improvements in engine design and technology, which will not find other alternatives in many areas of use. Despite many attempts, replacing the internal combustion engine with a different but equally efficient source of propulsion is still not promising. Therefore, extensive work on internal combustion engines must continue, and the results must be made widely available.

This Special Issue aims to present original research papers on the latest technological advances and strategic analyses in relation to internal combustion engines. You are cordially invited to contribute to this work.

Dr. Hubert Kuszewski
Dr. Paweł Woś
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fuel delivery and combustible mixture formation
  • clean and advanced combustion regimes
  • engine design and technology
  • energy efficiency improvements
  • e-fuels and alternative fuels
  • emission and exhaust treatment
  • engine simulation and modelling
  • engine mechatronics and control
  • technical maintenance
  • hybrid systems
  • developments in vehicle powertrains
  • ICE powering transport means
  • predictions and analyses on the future of combustion engines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 3675 KiB  
Article
Balancing Cam Mechanism for Instantaneous Torque and Velocity Stabilization in Internal Combustion Engines: Simulation and Experimental Validation
by Daniel Silva Cardoso, Paulo Oliveira Fael, Pedro Dinis Gaspar and António Espírito-Santo
Energies 2025, 18(13), 3256; https://doi.org/10.3390/en18133256 - 21 Jun 2025
Viewed by 230
Abstract
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed [...] Read more.
Torque and velocity fluctuations in internal combustion engines (ICEs), particularly during idle and low-speed operation, can reduce efficiency, increase vibration, and impose mechanical stress on coupled systems. This work presents the design, simulation, and experimental validation of a passive balancing cam mechanism developed to mitigate fluctuations in single-cylinder internal combustion engines (ICEs). The system consists of a cam and a spring-loaded follower that synchronizes with the engine cycle to store and release energy, generating a compensatory torque that stabilizes rotational speed. The mechanism was implemented on a single-cylinder Honda® engine and evaluated through simulations and laboratory tests under idle conditions. Results demonstrate a reduction in torque ripple amplitude of approximately 54% and standard deviation of 50%, as well as a decrease in angular speed fluctuation amplitude of about 43% and standard deviation of 42%, resulting in significantly smoother engine behavior. These improvements also address longstanding limitations in traditional powertrains, which often rely on heavy flywheels or electronically controlled dampers to manage rotational irregularities. Such solutions increase system complexity, weight, and energy losses. In contrast, the proposed passive mechanism offers a simpler, more efficient alternative, requiring no external control or energy input. Its effectiveness in stabilizing engine output makes it especially suited for integration into hybrid electric systems, where consistent generator performance and low mechanical noise are critical for efficient battery charging and protection of sensitive electronic components. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Comparative Study of the Lubricity of Hydrotreated Vegetable Oil, Diesel, and Their Blends Using Four-Ball Testing: Focus on Scuffing Load
by Hubert Kuszewski, Artur Jaworski and Dariusz Szpica
Energies 2025, 18(12), 3141; https://doi.org/10.3390/en18123141 - 15 Jun 2025
Viewed by 317
Abstract
The search for low-emission fuels has increased interest in hydrotreated vegetable oil (HVO) as a renewable diesel substitute. This study examines the lubricity of HVO, diesel, and their blends using a four-ball tester, with scuffing load as the main evaluation criterion. Five fuel [...] Read more.
The search for low-emission fuels has increased interest in hydrotreated vegetable oil (HVO) as a renewable diesel substitute. This study examines the lubricity of HVO, diesel, and their blends using a four-ball tester, with scuffing load as the main evaluation criterion. Five fuel samples were tested: diesel, neat HVO, and blends containing 25%, 50%, and 75% HVO by volume. The results show that blending HVO with diesel improves lubricity at moderate concentrations, with the 25% HVO blend exhibiting the highest scuffing load. In contrast, neat HVO demonstrated significantly reduced lubricity—its scuffing load was 24% lower than diesel’s—confirming the negative impact of the absence of polar and aromatic compounds. The scuffing load did not decrease linearly with increasing HVO content, suggesting synergistic effects in certain blends. Viscosity increased with HVO content, but it did not directly correlate with improved lubricity. These findings indicate that chemical composition plays a dominant role over viscosity in determining lubricating performance. The study provides new insights into the tribological behavior of HVO–diesel blends and demonstrates that scuffing load testing offers a practical method for preliminary lubricity assessment of renewable fuels. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

Back to TopTop