Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = fructans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 452 KB  
Review
Polysaccharide-Enriched Bakery and Pasta Products: Advances, Functional Benefits, and Challenges in Modern Food Innovation
by Jovana Petrović, Jana Zahorec, Dragana Šoronja-Simović, Ivana Lončarević, Ivana Nikolić, Biljana Pajin, Milica Stožinić, Drago Šubarić, Đurđica Ačkar and Antun Jozinović
Appl. Sci. 2025, 15(21), 11839; https://doi.org/10.3390/app152111839 - 6 Nov 2025
Viewed by 385
Abstract
The increasing consumer demand for healthier food choices has stimulated research into functional bakery products enriched with bioactive ingredients. This review summarizes recent developments in the application of key polysaccharides—such as inulin and fructooligosaccharides (FOS), β-glucan, arabinoxylan, pectin, cellulose derivatives, resistant starch, maltodextrins, [...] Read more.
The increasing consumer demand for healthier food choices has stimulated research into functional bakery products enriched with bioactive ingredients. This review summarizes recent developments in the application of key polysaccharides—such as inulin and fructooligosaccharides (FOS), β-glucan, arabinoxylan, pectin, cellulose derivatives, resistant starch, maltodextrins, and dextrins—in bread, pasta, and fine bakery systems. Their incorporation affects dough rheology, fermentation behavior, and gas retention, leading to modifications in texture, volume, and shelf-life stability. Technologically, polysaccharides function as hydrocolloids, fat and sugar replacers, or water-binding agents, influencing gluten network formation and starch gelatinization. Nutritionally, they contribute to higher dietary fiber intake, improved postprandial glycemic response, enhanced satiety, and favorable modulation of gut microbiota. From a sensory perspective, optimized formulations can maintain or even improve product acceptability despite structural changes. However, challenges remain related to dosage optimization, interactions with the gluten–starch matrix, and gastrointestinal tolerance (particularly in FODMAP-sensitive individuals). This review summarizes current knowledge and future opportunities for creating innovative bakery products that unite technological functionality with nutritional and sensory excellence. Full article
(This article belongs to the Section Food Science and Technology)
18 pages, 1902 KB  
Article
Genomic Identification of the Levansucrase Operon in Novel Bacillus velezensis HL25 in Sucrose Utilizing Pathway and Functional Characterization of Its Levansucrase
by Hataikarn Lekakarn, Jiruchaya Chaisuriyaphun, Ruethaikan Junsuk, Putanat Kornpitak, Teeranart Komonmusik, Wuttichai Mhuantong and Benjarat Bunterngsook
Catalysts 2025, 15(11), 1059; https://doi.org/10.3390/catal15111059 - 6 Nov 2025
Viewed by 317
Abstract
Levan and levan-type fructooligosaccharides (L-FOSs) are non-digestible fructans with prebiotic properties that promote gut microbiota growth. This study presents the first genomic analysis of a Bacillus velezensis HL25 strain with high fructan-producing efficiency, revealing genes involved in sucrose utilization and fructan biosynthesis. A [...] Read more.
Levan and levan-type fructooligosaccharides (L-FOSs) are non-digestible fructans with prebiotic properties that promote gut microbiota growth. This study presents the first genomic analysis of a Bacillus velezensis HL25 strain with high fructan-producing efficiency, revealing genes involved in sucrose utilization and fructan biosynthesis. A putative levansucrase operon was identified in the HL25 genome, consisting of the sacB levansucrase gene classified in GH68 subfamily 1 and the following three GH32 genes: endo-levanase (lev), β-fructofuranosidase (ffase), and sucrose-6-phosphate hydrolase (scrB). Remarkably, sugars involved in levan biosynthesis are proposed to be transported through three distinct systems: a multiple-component ABC sugar transporter, a glucose/H+ symporter, and glucose- and fructose-specific phosphotransferase systems (PTS). Subsequently, recombinant HL25SacB levansucrase exhibited optimal activity at 40 °C and pH 5.0 in 50 mM sodium acetate buffer. The enzyme demonstrates high specificity in converting sucrose into a mixture of short-chain FOSs (DP 2–4) and levan, achieving a 62.5% conversion rate at 30 °C with 200 g/L sucrose over 24 h. These findings demonstrate the potential of this B. velezensis HL25 strain as an efficient whole-cell biocatalyst and highlight the applicability of the recombinant HL25SacB enzyme as a promising tool for sustainable production of FOSs and levan. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

40 pages, 3054 KB  
Review
Techno-Functional Properties and Applications of Inulin in Food Systems
by Elisa Canazza, Miriam Grauso, Dasha Mihaylova and Anna Lante
Gels 2025, 11(10), 829; https://doi.org/10.3390/gels11100829 - 15 Oct 2025
Viewed by 1558
Abstract
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides [...] Read more.
Inulin, a type of fructan primarily extracted from chicory, Jerusalem artichoke, and dahlia, is a prebiotic dietary fiber increasingly valued for its multifunctional roles in food systems. Beyond its well-established nutritional benefits linked to gut microbiota modulation and metabolic health, inulin also provides unique techno-functional properties that make it a versatile structuring ingredient. This review emphasizes inulin’s ability to form gel-like networks and emulsion gels, examining the mechanisms of gelation and the influence of chain length, degree of polymerization, and processing conditions on gel stability and performance. Inulin-based gels act as effective fat replacers, texture modifiers, and carriers of bioactive compounds, supporting the reformulation of foods with reduced fat and sugar while maintaining desirable texture and sensory quality. Applications span a wide range of food systems, including dairy, meat, bakery, confectionery, plant-based, and gluten-free products, where inulin contributes to enhanced structure, stability, and palatability. Furthermore, the potential to obtain inulin from agro-industrial by-products strengthens its role in sustainable food design within a circular economy framework. By integrating nutritional, structural, and technological functionalities, inulin and inulin-based gels emerge as promising tools for the development of innovative and health-oriented food products. Full article
Show Figures

Graphical abstract

15 pages, 1366 KB  
Article
Biostimulants as an Alternative to Synthetic Growth Regulators in the Micropropagation of Hippeastrum
by Przemysław Marciniak and Dariusz Sochacki
Agronomy 2025, 15(9), 2223; https://doi.org/10.3390/agronomy15092223 - 20 Sep 2025
Viewed by 629
Abstract
The genus Hippeastrum (Amaryllidaceae) is very popular worldwide for its attractive, colourful flowers. The aim of the research was to evaluate the possibility of replacing synthetic growth regulators added to the media with biostimulants of natural origin on the micropropagation and [...] Read more.
The genus Hippeastrum (Amaryllidaceae) is very popular worldwide for its attractive, colourful flowers. The aim of the research was to evaluate the possibility of replacing synthetic growth regulators added to the media with biostimulants of natural origin on the micropropagation and acclimatisation efficiency of several Hippeastrum genotypes. The effect of the biostimulants on the starch and fructan content of the bulbils after a 10-week in vitro culture was also investigated. The addition of biostimulant Goteo to the MS medium in vitro resulted in increased plantlet weight, leaf length and root number for most of the genotypes tested. The Folium biostimulant, not previously used in in vitro plant culture media showed positive effects, especially on leaf length. The use of Goteo during plant acclimatisation significantly improved root growth parameters, indicating its potential in minimising stress associated with the change from in vitro to ex vitro conditions. Higher starch content was detected in the bulbils of clone 0017-01 and the highest fructan content in the bulbils of clone 18 H. × chmielii. The use of the Folium biostimulant, consisting mainly of amino acids, reduced sugar accumulation, which may have been due to a shift in carbon allocation from storage processes to photosynthesis. The results confirm that biostimulants based on natural ingredients can be an alternative to synthetic growth regulators in the micropropagation of Hippeastrum and possibly other ornamental plants, what will be an input to further development of sustainable horticulture production. Full article
(This article belongs to the Special Issue Application of In Vitro Culture for Horticultural Crops)
Show Figures

Figure 1

17 pages, 2518 KB  
Article
Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici
by Elizabeth Sánchez-Jiménez, Kristel Alejandra Herrejón-López, Mayra Itzcalotzin Montero-Cortés, Julio César López-Velázquez, Soledad García-Morales and Joaquín Alejandro Qui-Zapata
Polysaccharides 2025, 6(3), 72; https://doi.org/10.3390/polysaccharides6030072 - 10 Aug 2025
Viewed by 826
Abstract
In agriculture, the use of fructans has gained relevance due to their ability to improve plant immunity and resistance to pathogens. However, many studies use high-purity fructans, which makes their application more expensive. In this work, the efficacy of two agave fructans, one [...] Read more.
In agriculture, the use of fructans has gained relevance due to their ability to improve plant immunity and resistance to pathogens. However, many studies use high-purity fructans, which makes their application more expensive. In this work, the efficacy of two agave fructans, one food grade from Agave tequilana Weber var. Azul (FT) and the other obtained by semi-craft extraction from A. cupreata (FC) were evaluated in comparison with reagent-grade inulin from dahlia tubers. The effectiveness of their defense response against Phytophthora capsici infection in tomato (Solanum lycopersicum L.) was analyzed by evaluating defense mechanisms, including lignin deposition, hydrogen peroxide (H2O2) accumulation, and β-1,3-glucanase and peroxidase activity. The results indicated that foliar application of both fructans showed protection against infection, reducing disease incidence and severity. FT fructans at lower concentration (0.5 g/L) showed the highest protection, followed by FC, while dahlia inulin showed lower effectiveness. An early and progressive accumulation of H2O2 was observed in fructan-treated plants, in contrast to the late increase in untreated infected plants. Also, peroxidase activity was higher in the fructan treatments, suggesting a more efficient defense response. Although lignin deposition was not directly correlated with protection against P. capsici, fructans showed potential as resistance inducers. Given their low cost, easy extraction, and zero environmental impact, agave fructans represent a viable alternative for crop protection in sustainable agricultural systems. This study opens the door to their validation in the field and their application in other economically important crops, contributing to biological control strategies with less dependence on agrochemicals. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Graphical abstract

31 pages, 4915 KB  
Article
Disaccharides and Fructooligosaccharides (FOS) Production by Wild Yeasts Isolated from Agave
by Yadira Belmonte-Izquierdo, Luis Francisco Salomé-Abarca, Mercedes G. López and Juan Carlos González-Hernández
Foods 2025, 14(15), 2714; https://doi.org/10.3390/foods14152714 - 1 Aug 2025
Cited by 1 | Viewed by 945
Abstract
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic [...] Read more.
Fructooligosaccharides (FOS) are short fructans with different degrees of polymerization (DP) and bonds in their structure, generated by the distinct activities of fructosyltransferase enzymes, which produce distinct types of links. FOS are in high demand on the market, mainly because of their prebiotic effects. In recent years, depending on the link type in the FOS structure, prebiotic activity has been shown to be increased. Studies on β-fructanofuranosidases (Ffasa), enzymes with fructosyltransferase activity in yeasts, have reported the production of 1F-FOS, 6F-FOS, and 6G-FOS. The aims of this investigation were to evaluate the capability of fifteen different yeasts to grow in Agave sp. juices and to determine the potential of these juices as substrates for FOS production. Additionally, the research aimed to corroborate and analyze the fructosyltransferase activity of enzymatic extracts obtained from agave yeasts by distinct induction media and to identify the role and optimal parameters (time and sucrose and glucose concentrations) for FOS and disaccharides production through Box–Behnken designs. To carry out such a task, different techniques were employed: FT-IR, TLC, and HPAEC-PAD. We found two yeasts with fructosyltransferase activity, P. kudriavzevii ITMLB97 and C. lusitaniae ITMLB85. In addition, within the most relevant results, the production of the FOS 1-kestose, 6-kestose, and neokestose, as well as disaccharides inulobiose, levanobiose, and blastose, molecules with potential applications, was determined. Overall, FOS production requires suitable yeast species, which grow in a medium under optimal conditions, from which microbial enzymes with industrial potential can be obtained. Full article
Show Figures

Figure 1

33 pages, 799 KB  
Review
The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications
by Nicola Siragusa, Gloria Baldassari, Lorenzo Ferrario, Laura Passera, Beatrice Rota, Francesco Pavan, Fabrizio Santagata, Mario Capasso, Claudio Londoni, Guido Manfredi, Danilo Consalvo, Giovanni Lasagni, Luca Pozzi, Vincenza Lombardo, Federica Mascaretti, Alice Scricciolo, Leda Roncoroni, Luca Elli, Maurizio Vecchi and Andrea Costantino
Nutrients 2025, 17(15), 2496; https://doi.org/10.3390/nu17152496 - 30 Jul 2025
Viewed by 5289
Abstract
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This [...] Read more.
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This narrative review critically evaluates current nutritional approaches to IBS. The low-Fermentable Oligo-, Di-, Mono-saccharides and Polyols (FODMAP) diet is the most extensively studied and provides short-term symptom relief, but its long-term effects on microbiota diversity remain concerning. The Mediterranean diet, due to its anti-inflammatory and prebiotic properties, offers a sustainable, microbiota-friendly option; however, it has specific limitations in the context of IBS, particularly due to the adverse effects of certain FODMAP-rich foods. A gluten-free diet may benefit individuals with suspected non-celiac gluten sensitivity, although improvements are often attributed to fructan restriction and placebo and nocebo effects. Lactose-free diets are effective in patients with documented lactose intolerance, while a high-soluble-fiber diet is beneficial for constipation-predominant IBS. IgG-based elimination diets are emerging but remain controversial and require further validation. In this review, we present the 10 dietary commandments for IBS, pragmatic and easily retained recommendations. It advocates a personalized, flexible, and multidisciplinary management approach, avoiding rigidity and standardized protocols, with the aim of optimizing adherence, symptom mitigation, and health-related quality of life. Future research should aim to evaluate, in real-world clinical settings, the impact and applicability of the 10 dietary commandments for IBS in terms of symptom improvement and quality of life Full article
(This article belongs to the Special Issue Dietary Interventions for Functional Gastrointestinal Disorders)
Show Figures

Figure 1

20 pages, 3868 KB  
Article
Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
by Qiang Yang, Jean-Philippe Ral, Qiantao Jiang and Zhongyi Li
Foods 2025, 14(13), 2319; https://doi.org/10.3390/foods14132319 - 30 Jun 2025
Viewed by 827
Abstract
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes [...] Read more.
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes inactivated in the genome-edited offspring of targeted mutagenesis of starch synthetic genes using multiplex genome editing. The grain compositions and starch properties of the ssIIa/ssIIIa/sbeIIa/sbeIIb mutant were analysed and compared with the corresponding parameters of ssIIa, ssIIIa, sbeIIa/sbeIIb, ssIIa/sbeIIa/sbeIIb, and non-genome-edited lines (NE), respectively. ssIIa/ssIIIa/sbeIIa/sbeIIb exhibited the highest contents of β-glucan and amylose content among all mutants and NE, but not the most prominent in resistant starch, fructan, and fibre contents. The loss of SSIIa, SSIIIa, SBEIIa, and SBEIIb genes also resulted in significant changes in starch properties. This study enriched the genotypes of healthy barley and provided a theoretical basis for improving barley quality. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

23 pages, 1078 KB  
Review
Chemical Modification Methods for Inulin- and Agavin-Type Fructans: Synthesis, Characterization, and Biofunctional Activity: A Review
by Dafne I. Díaz-Ramos, Maribel Jiménez-Fernández, Oscar García-Barradas, Rosa Isela Ortiz-Basurto and Benoit Fouconnier
Molecules 2025, 30(13), 2672; https://doi.org/10.3390/molecules30132672 - 20 Jun 2025
Cited by 1 | Viewed by 1707
Abstract
Inulin and agavin fructans have been widely used in the food industry as fat substitutes, wall materials, and prebiotics, among other applications. Chemical modifications offer several advantages, from enhancing functional properties to broadening industrial applications, making them a key area of research in [...] Read more.
Inulin and agavin fructans have been widely used in the food industry as fat substitutes, wall materials, and prebiotics, among other applications. Chemical modifications offer several advantages, from enhancing functional properties to broadening industrial applications, making them a key area of research in biotechnology, nutrition, and food science. This review examines the chemical modifications of fructans, specifically the inulin and agavin types. It describes the most commonly used methods, their characteristics, and their impact on the physicochemical, functional, and prebiotic properties of fructans. Additionally, it explores the interactions underlying these changes. Modifications enhance, extend, or generate new biological properties and activities. While most yield positive outcomes, challenges remain, including a deeper understanding of the structure–bioactivity relationships and further toxicity assessments, particularly in agavins. These insights aim to guide future research and innovation in the field. Full article
(This article belongs to the Special Issue Chemistry of Food: From Molecules to Processing)
Show Figures

Graphical abstract

22 pages, 874 KB  
Article
Functional Fruit Snacks Enriched with Natural Sources of Fructooligosaccharides: Composition, Bioactive Compounds, Biological Activity, and Consumer Acceptance
by Paulina Nowicka, Michalina Marcińczak, Martyna Szydłowska and Aneta Wojdyło
Molecules 2025, 30(12), 2507; https://doi.org/10.3390/molecules30122507 - 7 Jun 2025
Cited by 1 | Viewed by 1203
Abstract
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including [...] Read more.
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including pear, red currant, peach, and haskap berry) and 10% FOS powders. It was shown that the addition of FOS reduced acidity and total sugar content while increasing fiber content—especially fructans—and selected minerals (K, Mg, Zn). The addition of FOS also modulated the profile of polyphenolic compounds, whereas fruit leather without FOS was characterized by a higher concentration of these compounds. It was shown that the addition of chicory significantly modulates the ability to inhibit α-glucosidase. At the same time, in the case of the Jerusalem artichoke, the inhibition efficiency depends on the type of fruit matrix. Sensory-wise, the highest scores were given to recipes without FOS additives, with Jerusalem artichoke being better accepted than chicory. The results indicate the potential of using FOS as a functional additive, but their effects on taste and texture require further optimization. Full article
(This article belongs to the Special Issue Functional Foods Enriched with Natural Bioactive Compounds)
Show Figures

Figure 1

24 pages, 2809 KB  
Article
Physicochemical, Functional, and Antibacterial Properties of Inulin-Type Fructans Isolated from Dandelion (Taraxacum officinale) Roots by “Green” Extraction Techniques
by Nadezhda Petkova, Ivanka Hambarliyska, Ivan Ivanov, Manol Ognyanov, Krastena Nikolova, Sevginar Ibryamova and Tsveteslava Ignatova-Ivanova
Appl. Sci. 2025, 15(8), 4091; https://doi.org/10.3390/app15084091 - 8 Apr 2025
Cited by 2 | Viewed by 3435
Abstract
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well [...] Read more.
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well as by FTIR and NMR spectroscopies. The color characteristics, water- and oil-holding capacity, solubility, swelling properties, wettability, angle of repose, flowability, and cohesiveness of dandelion inulin were evaluated. Moreover, the antioxidant and antibacterial potential of dandelion inulin were revealed. The results were compared with the conventional extraction and inulin from chicory. Dandelion inulin was evaluated as a powder substance with a degree of polymerization (DP) of 17–24. The highest yield (20%) was obtained by classical extraction; however, UAE and MAE demonstrated the highest purity. FT-IR and NMR spectra revealed that dandelion inulin is glucofructan with a molecular weight of 2.7–3.2 kDa that consists mainly of fructosyl units β-(2→1) linked to one α-D-glucose unit UAE was evaluated as the most perspective technique for the simultaneous extraction of inulin from dandelion roots, with the highest average DP 24 and high purity (82%), molecular mass, total fructose content, swelling index, and oil-holding capacity. Dandelion inulin exhibited intermediate cohesiveness, fair flowability, and moderate antimicrobial activity against Listeria monocytogenes 863 and Bacillus subtilis 6633. The physicochemical and functional properties of dandelion inulin reveal its future potential as an additive in food, cosmetic, and pharmaceutics formulations as a texture modifier, a fat replacer, and a drug carrier. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

19 pages, 5857 KB  
Article
Swine Gut Lactic Acid Bacteria and Their Exopolysaccharides Differentially Modulate Toll-like Receptor Signaling Depending on the Agave Fructans Used as a Carbon Source
by Enrique A. Sanhueza-Carrera, Cynthia Fernández-Lainez, César Castro-De la Mora, Daniel Ortega-Álvarez, Claudia Mendoza-Camacho, Jesús Manuel Cortéz-Sánchez, Beatriz Pérez-Guillé, Paul de Vos and Gabriel López-Velázquez
Animals 2025, 15(7), 1047; https://doi.org/10.3390/ani15071047 - 4 Apr 2025
Cited by 1 | Viewed by 1197
Abstract
Exopolysaccharides (EPSs) produced by probiotic bacteria have garnered attention due to their effects on the gut health of humans and animals. The nutrients that probiotics access during their growth are essential for producing beneficial effects on host health. Direct immunomodulatory effects of graminan-type [...] Read more.
Exopolysaccharides (EPSs) produced by probiotic bacteria have garnered attention due to their effects on the gut health of humans and animals. The nutrients that probiotics access during their growth are essential for producing beneficial effects on host health. Direct immunomodulatory effects of graminan-type fructans (GTFs) from Agave tequilana through toll-like receptors (TLRs) have been demonstrated. However, the immunomodulatory effects of these fructans, mediated through the EPSs produced by the probiotics cultivated with them, remain unexplored. We explored the immunomodulatory effects of lactic acid bacteria (LAB) strains isolated from swine and their EPSs, based on the GTFs used as carbon sources during their growth. While the LAB strains activated the NF-κB pathway independently of the GTF source, their EPSs activated it in a GTF source-dependent manner. LAB activation through TLR2 showed a GTF source dependency, whereas their EPSs activated TLR2 independently of the GTF source. The LAB and their EPSs activated TLR4 in a GTF source-dependent manner. Both the LAB and their EPSs inhibited the activation of TLR2 and TLR4 agonists, which exhibited a strong dependence on the GTF source. The strength of GTF C’s immunomodulatory effects on LAB illustrates its specificity, its impact on the EPS structure, and its biological effects. Our results support the promising health benefits of this synbiotic model for swine health and lowering inflammation. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

28 pages, 868 KB  
Review
Fructooligosaccharides (FOSs): A Condensed Overview
by Pedro Fernandes
Compounds 2025, 5(2), 8; https://doi.org/10.3390/compounds5020008 - 26 Mar 2025
Cited by 2 | Viewed by 7724
Abstract
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in [...] Read more.
FOSs are short-chain fructose-based oligosaccharides with notable functional and health benefits. Naturally present in various fruits and vegetables, FOSs are primarily produced enzymatically or microbially from sucrose or long-chain fructans, namely, inulin. Enzymes such as fructosyltransferase, β-fructofuranosidase, and endoinulinase are typically involved in its production. The chemical structure of FOSs consists of an assembly of fructose residues combined with a glucose unit. The increasing consumer demand for healthy foods has driven the widespread use of FOSs in the functional food industry. Thus, FOSs have been incorporated into dairy products, beverages, snacks, and pet foods. Beyond food and feed applications, FOSs serve as a low-calorie sweetener for and are used in dietary supplements and pharmaceuticals. As a prebiotic, they enhance gut health by promoting the growth of beneficial bacteria, aid digestion, improve mineral absorption, and help regulate cholesterol and triglyceride levels. Generally recognized as safe (GRAS) and approved by global regulatory agencies, FOSs are a valuable ingredient for both food and health applications. This review provides an updated perspective on the natural sources and occurrence of FOSs, their structures, and physicochemical and physiological features, with some focus on and a critical assessment of their potential health benefits. Moreover, FOS production methods are concisely addressed, and forthcoming developments involving FOSs are suggested. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

18 pages, 3174 KB  
Article
Viral-Based Gene Editing System for Nutritional Improvement of Fructan Content in Lettuce
by Yarin Livneh, Dor Agmon, Ehud Leor-Librach and Alexander Vainstein
Int. J. Mol. Sci. 2025, 26(6), 2594; https://doi.org/10.3390/ijms26062594 - 13 Mar 2025
Viewed by 1435
Abstract
Lettuce is a globally cultivated and consumed leafy crop. Here we developed an efficient tobacco rattle virus (TRV)-based guide RNA (gRNA) delivery system for CRISPR/Cas editing in the commercial lettuce cultivar ‘Noga’. Plants stably expressing Cas9 were inoculated with TRV vectors carrying gRNAs [...] Read more.
Lettuce is a globally cultivated and consumed leafy crop. Here we developed an efficient tobacco rattle virus (TRV)-based guide RNA (gRNA) delivery system for CRISPR/Cas editing in the commercial lettuce cultivar ‘Noga’. Plants stably expressing Cas9 were inoculated with TRV vectors carrying gRNAs targeting five nutrient-associated genes. The system achieved an average editing efficiency of 48.7%, with up to 78.9% of regenerated plantlets showing independent mutations. This approach eliminates the need for antibiotic selection, simplifying tissue culture processes. The system supports diverse applications, including Cas12a editing and large-fragment deletions using dual gRNA sets. Targeting the fructan 1-exohydrolase 2 (1-FEH2) gene produced knockout lines with significant increases in prebiotic dietary fibre fructan content, up to 5.2-fold, and an average rise in the degree of polymerisation by 2.15 units compared with controls. Combining 1-FEH1 and 1-FEH2 knockouts did not further increase fructan levels, revealing 1-FEH2 as the predominant isozyme in lettuce. RT-qPCR analysis showed reduced expression of the upstream biosynthetic enzyme sucrose:sucrose 1-fructosyl transferase (1-SST), suggesting potential feedback inhibition in fructan metabolism. This TRV-based gene editing approach, utilised here to increase fructan content, could be applied to improve other valuable traits in lettuce, and may inspire similar systems to enhance nutritional content of crops. Full article
(This article belongs to the Special Issue Crop Genome Editing : 2nd Edition)
Show Figures

Figure 1

20 pages, 2269 KB  
Article
Scald Fermentation Time as a Factor Determining the Nutritional and Sensory Quality of Rye Bread
by Ruta Murniece, Sanita Reidzane, Vitalijs Radenkovs, Evita Straumite, Anete Keke, Eeva-Gerda Kobrin and Dace Klava
Foods 2025, 14(6), 979; https://doi.org/10.3390/foods14060979 - 13 Mar 2025
Cited by 2 | Viewed by 2929
Abstract
This study investigates the effect of extended rye scald fermentation times (12–48 h) on its biochemical properties and rye bread’s nutritional and sensory qualities. Traditional rye bread production in Latvia involves prolonged fermentation with lactic acid bacteria (LAB), a process that influences the [...] Read more.
This study investigates the effect of extended rye scald fermentation times (12–48 h) on its biochemical properties and rye bread’s nutritional and sensory qualities. Traditional rye bread production in Latvia involves prolonged fermentation with lactic acid bacteria (LAB), a process that influences the bread’s acidity, sugar content, and concentrations of organic acids, fructans, and phytates. Scald fermentation was analyzed at intervals of 0, 12, 24, 36, and 48 h to monitor microbial activity, particularly LAB population dynamics. Organic acids and sugar profiles were analyzed using HPLC, while phytic acid and fructan concentrations were determined using the Phytic Acid Assay Kit (K-PHYT) and Fructan Assay Kit (K-FRUC). Sensory evaluation assessed attributes including aroma, sour and sweet taste, stickiness, and floury aftertaste. A rapid pH decrease and increased total titratable acidity (TTA) after 12 h confirmed scald’s suitability as a substrate for Lactobacillus delbrueckii metabolism. Lactic acid content increased 13.8-fold after 48 h. Combined scald and dough sourdough fermentation reduced phytic acid by 20% and fructans by 49%, improving mineral bioavailability. Extending fermentation beyond 24 h showed no significant differences in physicochemical parameters, although it improved sensory quality, reduced stickiness, balanced sweet–sour flavors, enhanced aroma, and minimized floury aftertaste. Full article
Show Figures

Figure 1

Back to TopTop