The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications
Abstract
1. Introduction
- Low-FODMAP Diet: Specifically indicated for IBS, it reduces the intake of short-chain fermentable carbohydrates, which can lead to intestinal fermentation and symptoms such as bloating, abdominal pain, and altered bowel habits.
- Mediterranean Diet: Rich in antioxidants, fiber, and healthy fats, it may help reduce low-grade inflammation and modulate the composition of the gut microbiota, contributing to symptom control in IBS.
- IgG-Based Elimination Diet: Sometimes used in IBS to identify potential trigger foods, this approach may help alleviate symptoms, although scientific evidence supporting its efficacy remains debated.
- Diets with Soluble or Insoluble Fiber: Soluble fibers (e.g., psyllium) are often effective in improving bowel regularity and reducing pain and bloating in IBS patients. Insoluble fibers should be used with caution, as they may sometimes exacerbate symptoms.
- Lactose-Free Diet: Often beneficial in IBS patients with associated lactose intolerance; eliminating lactose can help reduce gas, cramps, and diarrhea.
- Gluten-Free Diet: Some IBS patients report symptom improvement when eliminating gluten, even in the absence of celiac disease; it may be useful in cases of suspected non-celiac gluten sensitivity.
2. Dietary Approaches and Their Implications for IBS (Table 3)
2.1. The Low-FODMAP Diet
2.2. The Mediterranean Diet
2.3. IgG Antibody-Based Food Elimination Diet
2.4. Diet Based on Soluble and Insoluble Fiber
2.5. The Lactose-Free Diet
2.6. The Gluten-Free Diet
2.7. Influence of Diet on the Gut Microbiome, Metabolome, Neurohormonal Pathways, Clinical Outcomes, and Psychological Health
2.8. Diet and Gut Microbiota
2.9. Effects on the Metabolome
2.10. Neuro-Hormonal Signals and Symptom Perception
2.11. Clinical Response and Symptomatology
2.12. Psychological Impact and the Gut–Brain Axis: Focus on the Relationship Between IBS, the Low-FODMAP Diet, and Eating Disorders
2.13. The Role of Beverages in IBS Management
2.14. Macro and Micronutrients
2.15. Dietary Supplements in IBS: Probiotics
2.16. NICE Recommendations and the Importance of Specialist Involvement in the Management of Patients with IBS
Low-FODMAP Diet | Mediterranean Diet | Gluten-Free Diet | Lactose-Free Diet | High-Fiber Diet | IgG-Guided Diet | |
---|---|---|---|---|---|---|
Goal | Reduce fermentation and FODMAP-related symptoms | Balanced, anti-inflammatory nutrition | Reduce symptoms similar to celiac disease | Reduce symptoms related to lactose intolerance | Increase stool bulk, regulate motility | Eliminate foods with IgG-mediated immune response |
Physiopathological Rationale | Eliminates fermentable carbohydrates | Rich in protective nutrients and natural prebiotics | Some IBS patients show sensitivity to gluten | Lactose intolerance is common in IBS | Fibers improve intestinal function | Based on food-specific IgG immune response |
Effects on IBS | Significant symptom improvement | Benefits on microbiota and inflammation | Reduced symptoms in some patients (mainly IBS-D) | Reduced bloating and diarrhea in intolerant individuals | Particularly useful in IBS-C | Some studies show benefits, but evidence is inconclusive |
Limitations /Criticisms | Restrictive and difficult to maintain | Naturally contains FODMAP (e.g., legumes, fruits) | Effective only in subgroups; possible placebo effect | Only effective in patients with actual intolerance | May worsen symptoms in IBS-D | Limited data; risk of excessive dietary restrictions |
Composition | Temporary exclusion, followed by FODMAP reintroduction | Whole grains, vegetables, fruits, legumes, EVO oil | Excludes all gluten-containing products | Eliminates milk and lactose-containing dairy products | Rich in soluble and insoluble fibers | Personalized exclusion based on IgG tests |
Tolerability | Good in the short term; challenging long-term | Generally good, variable in IBS | Good in those reporting gluten sensitivity | Good in lactose-intolerant individuals | Good in IBS-C; poor in IBS-D | Variable; depends on individual response |
Scientific Support | Solid and supported by international guidelines | Strong in general nutrition; emerging in IBS | Limited; useful in selected non-celiac patients | Limited but recommended when positive for intolerance | Recommended for IBS-C | Controversial; studies have methodological limitations |
Effects on Microbiota | Risk of reduced diversity if not balanced | Positive (prebiotic effect) | Potential reduction in diversity if not well managed | Less impact, but imbalance possible if poorly compensated | Promotes beneficial bacteria if tolerated | Unclear or poorly studied |
3. Discussion
- A patient with IBS should not approach a diet independently, but be guided by a specialist, at least in the initial stages. Without expert guidance, there is a risk of nutritional mistakes or harmful approaches.
- It is important not to forget the intake of essential micro- and macronutrients. Nutrient deficiencies can compromise overall health and negate the benefits of the diet.
- There is no one-size-fits-all diet, but rather tailor-made diets that must be adapted to each individual patient. Every individual has different needs, so the diet must be personalized.
- A diet should not be static, but flexible and adaptable over time. Nutritional needs evolve, and the diet must adjust accordingly.
- A patient with IBS should not expect an immediate ON/OFF effect from a diet; it is not a temporary or symptomatic treatment, but a long-term approach. Patience is essential for achieving lasting results.
- A diet should not interfere with the patient’s social life; occasional deviations are acceptable if they serve a social or psychological benefit. An overly rigid diet can lead to isolation and frustration.
- A diet should not place an economic burden on the patient. It must be financially sustainable over time.
- A patient with IBS should avoid attributing obsessive empathy and emotions to food. The relationship with food should be healthy and not driven by negative or compulsive emotions.
- A diet should not be subordinated to physical appearance. The primary goal should be well-being, not just aesthetics.
- A diet should not be viewed in isolation as a therapeutic solution, but rather be part of a multimodal therapeutic approach. To be effective, it must be integrated into a broader plan that considers all therapeutic options (e.g., probiotics, neuromodulators).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drossman, D.A. Functional gastrointestinal disorders: History, pathophysiology, clinical features, and Rome IV. Gastroenterology 2016, 150, 1262–1279.e2. [Google Scholar] [CrossRef]
- Shivaji, U.N.; Ford, A.C. Prevalence of functional gastrointestinal disorders among consecutive new patient referrals to a gastroenterology clinic. Front. Gastroenterol. 2014, 5, 266–271. [Google Scholar] [CrossRef]
- Sandler, R.S.; Everhart, J.E.; Donowitz, M.; Adams, E.; Cronin, K.; Goodman, C.; Gemmen, E.; Shah, S.; Avdic, A.; Rubin, R. The burden of selected digestive diseases in the United States. Gastroenterology 2002, 122, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Stanghellini, V.; Mearin, F.; Yiannakou, Y.; Layer, P.; Coffin, B.; Simren, M.; Mackinnon, J.; Wiseman, G.; Marciniak, A. Economic burden of moderate to severe irritable bowel syndrome with constipation in six European countries. BMC Gastroenterol. 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vasant, D.H.; Paine, P.A.; Black, C.J.; Houghton, L.A.; Everitt, H.A.; Corsetti, M.; Agrawal, A.; Aziz, I.; Farmer, A.D.; Eugenicos, M.P.; et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut 2021, 70, 1214–1240. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Dumitrascu, D.; Fukudo, S.; Gerson, C.; Ghoshal, U.C.; Gwee, K.A.; Hungin, A.P.S.; Kang, J.-Y.; Minhu, C.; Schmulson, M.; et al. The global prevalence of IBS in adults remains elusive due to the heterogeneity of studies: A Rome Foundation working team literature review. Gut 2017, 66, 1075–1082. [Google Scholar] [CrossRef]
- Oka, P.; Parr, H.; Barberio, B.; Black, C.J.; Savarino, E.V.; Ford, A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 908–917. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [CrossRef]
- Barberio, B.; Houghton, L.A.; Yiannakou, Y.; Savarino, E.V.; Black, C.J.; Ford, A.C. Symptom Stability in Rome IV vs Rome III Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021, 116, 362–371. [Google Scholar] [CrossRef]
- Ford, A.C.; Bercik, P.; Morgan, D.G.; Bolino, C.; Pintos-Sanchez, M.I.; Moayyedi, P. Characteristics of functional bowel disorder patients: A cross-sectional survey using the Rome III criteria. Aliment. Pharmacol. Ther. 2014, 39, 312–321. [Google Scholar] [CrossRef]
- Costantino, A.; Pessarelli, T.; Vecchiato, M.; Vecchi, M.; Basilisco, G.; Ermolao, A. A practical guide to the proper prescription of physical activity in patients with irritable bowel syndrome. Dig. Liver Dis. 2022, 54, 1600–1604. [Google Scholar] [CrossRef]
- Johannesson, E.; Simrén, M.; Strid, H.; Bajor, A.; Sadik, R. Physical activity improves symptoms in irritable bowel syndrome: A randomized controlled trial. Am. J. Gastroenterol. 2011, 106, 915–922. [Google Scholar] [CrossRef]
- Daley, A.; Grimmett, C.; Roberts, L.; Wilson, S.; Fatek, M.; Roalfe, A.; Singh, S. The effects of exercise upon symptoms and quality of life in patients diagnosed with irritable bowel syndrome: A randomised controlled trial. Int. J. Sports Med. 2008, 29, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Fani, M.; Mostamand, J.; Fani, M.; Chitsaz, N.; Feizi, A. The effect of aerobic exercises among women with mild and moderate irritable bowel syndrome: A pilot study. J. Bodyw. Mov. Ther. 2019, 23, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, J.P.; Archila-Godinez, J.C. Social and cultural influences on food choices: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3698–3704. [Google Scholar] [CrossRef] [PubMed]
- Monterrosa, E.C.; Frongillo, E.A.; Drewnowski, A.; De Pee, S.; Vandevijvere, S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food Nutr. Bull. 2020, 41 (Suppl. 2), 59S–73S. [Google Scholar] [CrossRef]
- Derricks, V.; Earl, A.; Carmichael, A.G.; Jayaratne, T.E. Psychological Pathways Through Which Social Norms and Social Identity Influence Eating Behavior: Testing a Conceptual Model. Int. J. Behav. Med. 2023, 30, 7–18. [Google Scholar] [CrossRef]
- Feldmann, C.; Hamm, U. Consumers’ perceptions and preferences for local food: A review. Food Qual. Prefer. 2015, 40, 152–164. [Google Scholar] [CrossRef]
- Higgs, S. Social norms and their influence on eating behaviours. Appetite 2015, 86, 38–44. [Google Scholar] [CrossRef]
- Robinson, E. Perceived social norms and eating behaviour: An evaluation of studies and future directions. Physiol. Behav. 2015, 152, 397–401. [Google Scholar] [CrossRef]
- Liu, J.; Thomas, J.M.; Higgs, S. The relationship between social identity, descriptive social norms and eating intentions and behaviors. J. Exp. Soc. Psychol. 2019, 82, 217–230. [Google Scholar] [CrossRef]
- Chakona, G.; Shackleton, C. Food taboos and cultural beliefs influence food choice and dietary preferences among pregnant women in the Eastern Cape, South Africa. Nutrients 2019, 11, 2668. [Google Scholar] [CrossRef]
- Robinson, E.; Thomas, J.; Aveyard, P.; Higgs, S. What everyone else is eating: A systematic review and meta-analysis of the effect of informational eating norms on eating behavior. J. Acad. Nutr. Diet. 2014, 114, 414–429. [Google Scholar] [CrossRef]
- Kadhim, N.; Amiot, C.E.; Zhou, M. Investigating the impact of eating norms and collective autonomy support vs. collective control on unhealthy eating and its internalization. PLoS ONE 2022, 17, e0276162. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, K.M.; Linenberg, I.; Polidori, L.; Asnicar, F.; Arrè, A.; Wolf, J.; Badri, F.; Bernard, H.; Capdevila, J.; Bulsiewicz, W.J.; et al. Effects of a personalized nutrition program on cardiometabolic health: A randomized controlled trial. Nat. Med. 2024, 30, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- de Hoogh, I.M.; Reinders, M.J.; Doets, E.L.; Hoevenaars, F.P.M.; Top, J.L. Design Issues in Personalized Nutrition Advice Systems. J. Med. Internet Res. 2023, 25, e37667. [Google Scholar] [CrossRef] [PubMed]
- Samieri, C.; Yassine, H.N.; van Lent, D.M.; Lefèvre-Arbogast, S.; van de Rest, O.; Bowman, G.L.; Scarmeas, N. Personalized nutrition for dementia prevention. Alzheimer’s Dement. 2022, 18, 1424–1437. [Google Scholar] [CrossRef]
- Tigue, E.M.; Earnesty, D.S.; Gibbs, R.L., Jr.; Sieloff, B.I. Lessons Learned from Implementing Culturally Sensitive Adaptations to a Nutrition Education Program in Four Anishinaabe Communities. Curr. Dev. Nutr. 2024, in press, 104496. [Google Scholar] [CrossRef]
- Böhn, L.; Störsrud, S.; Törnblom, H.; Bengtsson, U.; Simrén, M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 2013, 108, 634–641. [Google Scholar] [CrossRef]
- Lackner, J.M.; Gudleski, G.D.; Thakur, E.R.; Stewart, T.J.; Iacobucci, G.J.; Spiegel, B.M. The impact of physical complaints, social environment, and psychological functioning on IBS patients’ health perceptions: Looking beyond GI symptom severity. Am. J. Gastroenterol. 2014, 109, 224–233. [Google Scholar] [CrossRef]
- Rajilić–Stojanović, M.; Biagi, E.; Heilig, H.G.; Kajander, K.; Kekkonen, R.A.; Tims, S.; de Vos, W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C.E. Review article: The aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment. Pharmacol. Ther. 2015, 41, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Vervier, K.; Moss, S.; Kumar, N.; Adoum, A.; Barne, M.; Browne, H.; Kaser, A.; Kiely, C.J.; Neville, B.A.; Powell, N.; et al. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut 2022, 71, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; et al. Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychother. Psychosom. 2016, 86, 31–46. [Google Scholar] [CrossRef]
- de Arce, E.P.; Quera, R.; Beltrán, C.J.; Madrid, A.M.; Nos, P. Irritable bowel syndrome in inflammatory bowel disease. Synergy in alterations of the gut-brain axis? Gastroenterol. Hepatología 2022, 45, 66–76. [Google Scholar] [CrossRef]
- Chey, W.D.; Hashash, J.G.; Manning, L.; Chang, L. AGA Clinical Practice Update on the Role of Diet in Irritable Bowel Syndrome: Expert Review. Gastroenterology 2022, 162, 1737–1745.e5. [Google Scholar] [CrossRef]
- Chu, P.; He, Y.; Hu, F.; Wang, X. The effects of low FODMAP diet on gut microbiota regulation: A systematic review and meta-analysis. J. Food Sci. 2025, 90, e70072. [Google Scholar] [CrossRef]
- Alrasheedi, A.A.; Jahlan, E.A.; Bakarman, M.A. The effect of low-FODMAP diet on patients with irritable bowel syndrome. Sci. Rep. 2025, 15, 16382. [Google Scholar] [CrossRef]
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The low FODMAP diet in the management of irritable bowel syndrome: An evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef]
- van Lanen, A.-S.; de Bree, A.; Greyling, A. Efficacy of a low-FODMAP diet in adult irritable bowel syndrome: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 3505–3522. [Google Scholar] [CrossRef]
- Paduano, D.; Cingolani, A.; Tanda, E.; Usai, P. Effect of three diets (low-FODMAP, gluten-free and balanced) on irritable bowel syndrome symptoms and health-related quality of life. Nutrients 2019, 11, 1566. [Google Scholar] [CrossRef]
- Asghar, W.; Khalid, N. Low FODMAP diets—Boon or bane for individuals with GI disorders. Nutr. Health 2024, 30, 639–640. [Google Scholar] [CrossRef]
- Psichas, A.; Reimann, F.; Gribble, F.M. Gut chemosensing mechanisms. J. Clin. Investig. 2015, 125, 908–917. [Google Scholar] [CrossRef]
- Roncoroni, L.; Gori, R.; Elli, L.; Tontini, G.E.; Doneda, L.; Norsa, L.; Cuomo, M.; Lombardo, V.; Scricciolo, A.; Caprioli, F.; et al. Nutrition in Patients with Inflammatory Bowel Diseases: A Narrative Review. Nutrients 2022, 14, 751. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Martini, D.; Angelino, D.; Cairella, G.; Campanozzi, A.; Danesi, F.; Dinu, M.; Erba, D.; Iacoviello, L.; Pellegrini, N.; et al. Mediterranean diet: Why a new pyramid? An updated representation of the traditional Mediterranean diet by the Italian Society of Human Nutrition (SINU). Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103919. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Mahurkar-Joshi, S.; Liu, C.; Jaffe, N.; Labus, J.S.; Dong, T.S.; Gupta, A.; Patel, S.; Mayer, E.A.; Chang, L. The Association Between a Mediterranean Diet and Symptoms of Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2024, 22, 164–172.e6. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Mahoney, S.; Canale, K.; Opie, R.S.; Loughman, A.; So, D.; Beswick, L.; Hair, C.; Jacka, F.N. Clinical trial: A Mediterranean diet is feasible and improves gastrointestinal and psychological symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2024, 59, 492–503. [Google Scholar] [CrossRef]
- El-Salhy, M.; Ystad, S.O.; Mazzawi, T.; Gundersen, D. Dietary fiber in irritable bowel syndrome (Review). Int. J. Mol. Med. 2017, 40, 607–613. [Google Scholar] [CrossRef]
- Pasta, A.; Formisano, E.; Calabrese, F.; Torres, M.C.P.; Bodini, G.; Marabotto, E.; Pisciotta, L.; Giannini, E.G.; Furnari, M. Food Intolerances, Food Allergies and IBS: Lights and Shadows. Nutrients 2024, 16, 265. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C.; Ly, E.; Bogatyrev, A.; Costetsou, I.; Gibson, P.; Barrett, J.; Muir, J. Fermentable short chain carbohydrate (FODMAP) content of common plant-based foods and processed foods suitable for vegetarian- and vegan-based eating patterns. J. Hum. Nutr. Diet. 2018, 31, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, M.; Karunanayake, V.; Mohtashim, A.; Caldera, D.; Mendis, P.; Prathiraja, O.; Rashidi, F.; Damianos, J.A. The Role of Diet in the Management of Irritable Bowel Syndrome: A Comprehensive Review. Cureus 2024, 16, e54244. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef]
- Kasti, A.; Petsis, K.; Lambrinou, S.; Katsas, K.; Nikolaki, M.; Papanikolaou, I.S.; Hatziagelaki, E.; Triantafyllou, K. A Combination of Mediterranean and Low-FODMAP Diets for Managing IBS Symptoms? Ask Your Gut! Microorganisms 2022, 10, 751. [Google Scholar] [CrossRef]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean diet among adults in Mediterranean countries: A systematic literature review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef]
- Bonaccio, M.; Bes-Rastrollo, M.; de Gaetano, G.; Iacoviello, L. Challenges to the Mediterranean diet at a time of economic crisis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1057–1063. [Google Scholar] [CrossRef]
- Biggi, C.; Biasini, B.; Ogrinc, N.; Strojnik, L.; Endrizzi, I.; Menghi, L.; Khémiri, I.; Mankai, A.; Ben Slama, F.; Jamoussi, H.; et al. Drivers and Barriers Influencing Adherence to the Mediterranean Diet: A Comparative Study across Five Countries. Nutrients 2024, 16, 2405. [Google Scholar] [CrossRef]
- Kasti, A.N.; Katsas, K.; Petsis, K.; Lambrinou, S.; Synodinou, K.D.; Kapetani, A.; Smart, K.L.; Nikolaki, M.D.; Halvatsiotis, P.; Triantafyllou, K.; et al. Is the Mediterranean Low Fodmap Diet Effective in Managing Irritable Bowel Syndrome Symptoms and Gut Microbiota? An Innovative Research Protocol. Nutrients 2024, 16, 1592. [Google Scholar] [CrossRef]
- Atkinson, W.; Sheldon, T.A.; Shaath, N.; Whorwell, P.J. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut 2004, 53, 1459–1464. [Google Scholar] [CrossRef]
- Wu, M.; Wang, X.; Sun, L.; Chen, Z. Associations between food-specific IgG and health outcomes in an asymptomatic physical examination cohort. Nutr. Metab. 2022, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, L.; Wasiluk, D.; Lieners, C.F.J.; Gałęcka, M.; Bartnicka, A.; Tveiten, D. Igg food antibody guided elimination-rotation diet was more effective than FODMAP diet and control diet in the treatment of women with mixed IBS—Results from an open label study. J. Clin. Med. 2021, 10, 4317. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, G.; Xu, Y.; He, B.; Wang, Y.; Ma, R.; Chang, Y.; He, D.; Xu, C.; Xiao, Z. Effects of Diet Based on IgG Elimination Combined with Probiotics on Migraine Plus Irritable Bowel Syndrome. Pain Res. Manag. 2019, 2019, 7890461. [Google Scholar] [CrossRef]
- Singh, P.; Chey, W.D.; Takakura, W.; Cash, B.D.; Lacy, B.E.; Quigley, E.M.; Randall, C.W.; Lembo, A. A Novel, IBS-Specific IgG ELISA-Based Elimination Diet in Irritable Bowel Syndrome: A Randomized, Sham-Controlled Trial. Gastroenterology 2025, 168, 1128–1136.e4. [Google Scholar] [CrossRef]
- Wilders-Truschnig, M.; Mangge, H.; Lieners, C.; Gruber, H.J.; Mayer, C.; März, W. IgG antibodies against food antigens are correlated with inflammation and intima media thickness in obese juveniles. Exp. Clin. Endocrinol. Diabetes 2008, 116, 241–245. [Google Scholar] [CrossRef]
- Zuo, X.L.; Li, Y.Q.; Li, W.J.; Guo, Y.T.; Lu, X.F.; Li, J.M.; Desmond, P.V. Alterations of food antigen-specific serum immunoglobulins G and E antibodies in patients with irritable bowel syndrome and functional dyspepsia. Clin. Exp. Allergy 2007, 37, 823–830. [Google Scholar] [CrossRef]
- Ford, A.C.; Staudacher, H.M.; Talley, N.J. Postprandial symptoms in disorders of gut-brain interaction and their potential as a treatment target. Gut 2024, 73, 1199–1211. [Google Scholar] [CrossRef]
- Eswaran, S.; Muir, J.; Chey, W.D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013, 108, 718–727. [Google Scholar] [CrossRef]
- Zuckerman, M.J. The role of fiber in the treatment of irritable bowel syndrome: Therapeutic recommendations. J. Clin. Gastroenterol. 2006, 40, 104–108. [Google Scholar] [CrossRef]
- Vanhoutvin, S.A.; Troost, F.J.; Kilkens, T.O.; Lindsey, P.J.; Hamer, H.M.; Jonkers, D.M.; Venema, K.; Brummer, R.J. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol. Motil. 2009, 21, 952-e76. [Google Scholar] [CrossRef]
- Oskouie, F.H.; Vahedi, H.; Shahrbaf, M.A.; Sadeghi, A.; Rashidkhani, B.; Hekmatdoost, A. Dietary fiber and risk of irritable bowel syndrome: A case-control study. Gastroenterol. Hepatol. Bed Bench 2018, 11, S20–S24. [Google Scholar]
- Roudi, F.; Khayyatzadeh, S.S.; Ghazizadeh, H.; Ferns, G.A.; Bahrami-Taghanaki, H.; Mohammad-Zadeh, M.; Ghayour-Mobarhan, M. The relationship between dietary intakes and prevalence of irritable bowel syndrome in adolescent girls: A cross-sectional study. Indian J. Gastroenterol. 2021, 40, 220–226. [Google Scholar] [CrossRef]
- Nagarajan, N.; Morden, A.; Bischof, D.; King, E.A.; Kosztowski, M.; Wick, E.C.; Stein, E.M. The role of fiber supplementation in the treatment of irritable bowel syndrome: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1002–1010. [Google Scholar] [CrossRef]
- Bijkerk, C.J.; de Wit, N.J.; Muris, J.W.M.; Whorwell, P.J.; Knottnerus, J.A.; Hoes, A.W. Soluble or insoluble fibre in irritable bowel syndrome in primary care? Randomised placebo controlled trial. BMJ 2009, 339, b3154. [Google Scholar] [CrossRef]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed]
- Currò, D. Current evidence on the therapeutic use of fiber in irritable bowel syndrome. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 425–436. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Yao, C.K.; Ardalan, Z.S.; Thwaites, P.A.; Kalantar-Zadeh, K.; Gibson, P.R.; Muir, J.G. Supplementing Dietary Fibers with a Low FODMAP Diet in Irritable Bowel Syndrome: A Randomized Controlled Crossover Trial. Clin. Gastroenterol. Hepatol. 2022, 20, 2112–2120.e7. [Google Scholar] [CrossRef] [PubMed]
- Atzler, J.J.; Crofton, E.C.; Sahin, A.W.; Ispiryan, L.; Gallagher, E.; Zannini, E.; Arendt, E.K. Effect of fibre fortification of low FODMAP pasta. Int. J. Food Sci. Nutr. 2024, 75, 293–305. [Google Scholar] [CrossRef]
- Cancarevic, I.; Rehman, M.; Iskander, B.; Lalani, S.; Malik, B.H. Is There a Correlation Between Irritable Bowel Syndrome and Lactose Intolerance? Cureus 2020, 12, e6710. [Google Scholar] [CrossRef]
- Vesa, T.H.; Seppo, L.M.; Marteau, P.R.; Sahi, T.; Korpela, R. Role of irritable bowel syndrome in subjective lactose intolerance. Am. J. Clin. Nutr. 1998, 67, 710–715. [Google Scholar] [CrossRef]
- Dainese, R.; Casellas, F.; Mariné–Barjoan, E.; Vivinus-Nébot, M.; Schneider, S.M.; Hébuterne, X.; Piche, T. Perception of lactose intolerance in irritable bowel syndrome patients. Eur. J. Gastroenterol. Hepatol. 2014, 26, 1167–1175. [Google Scholar] [CrossRef]
- Varjú, P.; Gede, N.; Szakács, Z.; Hegyi, P.; Cazacu, I.M.; Pécsi, D.; Fábián, A.; Szepes, Z.; Vincze, Á.; Tenk, J.; et al. Lactose intolerance but not lactose maldigestion is more frequent in patients with irritable bowel syndrome than in healthy controls: A meta-analysis. Neurogastroenterol. Motil. 2019, 31, e13527. [Google Scholar] [CrossRef]
- Gupta, D.; Ghoshal, U.C.; Misra, A.; Misra, A.; Choudhuri, G.; Singh, K. Lactose intolerance in patients with irritable bowel syndrome from northern India: A case–control study. J. Gastroenterol. Hepatol. 2007, 22, 2261–2265. [Google Scholar] [CrossRef]
- Campbell, A.; Matthews, S.; Vassel, N.; Cox, C.; Naseem, R.; Chaichi, J.; Holland, I.; Green, J.; Wann, K. Bacterial metabolic ‘toxins’: A new mechanism for lactose and food intolerance, and irritable bowel syndrome. Toxicology 2010, 278, 268–276. [Google Scholar] [CrossRef]
- Misselwitz, B.; Pohl, D.; Frühauf, H.; Fried, M.; Vavricka, S.R.; Fox, M. Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment. United Eur. Gastroenterol. J. 2013, 1, 151–159. [Google Scholar] [CrossRef]
- Sharp, E.; D’CUnha, N.M.; Ranadheera, C.S.; Vasiljevic, T.; Panagiotakos, D.B.; Naumovski, N. Effects of lactose-free and low-lactose dairy on symptoms of gastrointestinal health: A systematic review. Int. Dairy J. 2021, 114, 104936. [Google Scholar] [CrossRef]
- Deng, Y.; Misselwitz, B.; Dai, N.; Fox, M. Lactose intolerance in adults: Biological mechanism and dietary management. Nutrients 2015, 7, 8020–8035. [Google Scholar] [CrossRef] [PubMed]
- Schöfl, R.; Ferenci, P.; Vogelsang, H.; Gangl, A. Effect of a lactose-free diet on irritable bowel syndrome. Wien. Klin. Wochenschr. 1993, 105, 342–345. [Google Scholar] [PubMed]
- Vernia, P.; Ricciardi, M.R.; Frandina, C.; Bilotta, T.; Frieri, G. Lactose malabsorption and irritable bowel syndrome. Effect of a long-term lactose-free diet. Ital. J. Gastroenterol. 1995, 27, 117–121. [Google Scholar]
- McKenzie, Y.A.; Bowyer, R.K.; Leach, H.; Gulia, P.; Horobin, J.; O’SUllivan, N.A.; Pettitt, C.; Reeves, L.B.; Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 549–575. [Google Scholar] [CrossRef]
- Catanzaro, R.; Sciuto, M.; Singh, B.; Pathak, S.; Marotta, F. Irritable bowel syndrome and lactose intolerance: The importance of differential diagnosis. A monocentric study. Minerva Gastroenterol. 2021, 67, 72–78. [Google Scholar] [CrossRef]
- Bibbò, S.; Pes, G.M.; Dore, M.P. Coeliac disease from pathogenesis to clinical practice: Current concepts. Recent. Prog. Med. 2020, 111, 2. [Google Scholar] [CrossRef]
- Auricchio, R.; Troncone, R. Can Celiac Disease Be Prevented? Front. Immunol. 2021, 12, 672148. [Google Scholar] [CrossRef] [PubMed]
- Bascuñán, K.A.; Vespa, M.C.; Araya, M. Celiac disease: Understanding the gluten-free diet. Eur. J. Nutr. 2017, 56, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef]
- Borghini, R.; Spagnuolo, A.; Donato, G.; Borghini, G. Gluten-Free Diet for Fashion or Necessity? Review with New Speculations on Irritable Bowel Syndrome-like Disorders. Nutrients 2024, 16, 4236. [Google Scholar] [CrossRef]
- Bascuñán, K.A.; Araya, M.; Roncoroni, L.; Doneda, L.; Elli, L. Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Adv. Nutr. Int. Rev. J. 2020, 11, 160–174. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef]
- Makharia, A.; Catassi, C.; Makharia, G.K. The overlap between irritable bowel syndrome and non-celiac gluten sensitivity: A clinical dilemma. Nutrients 2015, 7, 10417–10426. [Google Scholar] [CrossRef]
- Lacy, B.E.; Pimentel, M.; Brenner, D.M.; Chey, W.D.; Keefer, L.A.; Long, M.D.; Moshiree, B. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021, 116, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Pessarelli, T.; Sorge, A.; Elli, L.; Costantino, A. The low-FODMAP diet and the gluten-free diet in the management of functional abdominal bloating and distension. Front. Nutr. 2022, 9, 1007716. [Google Scholar] [CrossRef] [PubMed]
- Aljada, B.; Zohni, A.; El-Matary, W. The gluten-free diet for celiac disease and beyond. Nutrients 2021, 13, 3993. [Google Scholar] [CrossRef] [PubMed]
- Rostami, K.; Bold, J.; Parr, A.; Johnson, M.W. Gluten-free diet indications, safety, quality, labels, and challenges. Nutrients 2017, 9, 846. [Google Scholar] [CrossRef]
- Dionne, J.; Ford, A.C.; Yuan, Y.; Chey, W.D.; Lacy, B.E.; Saito, Y.A.; Quigley, E.M.M.; Moayyedi, P. A Systematic Review and Meta-Analysis Evaluating the Efficacy of a Gluten-Free Diet and a Low FODMAPS Diet in Treating Symptoms of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2018, 113, 1290–1300. [Google Scholar] [CrossRef]
- Brierley, R. UEG Week 2024. Lancet Gastroenterol. Hepatol. 2024, 9, 1086. [Google Scholar] [CrossRef]
- Rajilić-Stojanović, M.; Jonkers, D.M.; Salonen, A.; Hanevik, K.; Raes, J.; Jalanka, J.; de Vos, W.M.; Manichanh, C.; Golic, N.; Enck, P.; et al. Intestinal microbiota and diet in IBS: Causes, consequences, or epiphenomena? Am. J. Gastroenterol. 2015, 110, 278–287. [Google Scholar] [CrossRef]
- Tetali, B.; Suresh, S. Management of irritable bowel syndrome: A narrative review. Transl. Gastroenterol. Hepatol. 2024, 9, 26. [Google Scholar] [CrossRef]
- Sánchez-Pellicer, P.; Álamo-Marzo, J.M.; Martínez-Villaescusa, M.; Núñez-Delegido, E.; Such-Ronda, J.F.; Huertas-López, F.; Serrano-López, E.M.; Martínez-Moreno, D.; Navarro-López, V. Comparative Analysis of Gut Microbiota in Patients with Irritable Bowel Syndrome and Healthy Controls. J. Clin. Med. 2025, 14, 1198. [Google Scholar] [CrossRef]
- Cheng, X.; Ren, C.; Mei, X.; Jiang, Y.; Zhou, Y. Gut microbiota and irritable bowel syndrome: Status and prospect. Front. Med. 2024, 11, 1429133. [Google Scholar] [CrossRef]
- Kraimi, N.; Ross, T.; Pujo, J.; De Palma, G. The gut microbiome in disorders of gut–brain interaction. Gut Microbes 2024, 16, 2360233. [Google Scholar] [CrossRef]
- Ringel-Kulka, T.; Benson, A.K.; Carroll, I.M.; Kim, J.; Legge, R.M.; Ringel, Y. Molecular characterization of the intestinal microbiota in patients with and without abdominal bloating. Am. J. Physiol. Liver Physiol. 2016, 310, G417–G426. [Google Scholar] [CrossRef]
- Napolitano, M.; Fasulo, E.; Ungaro, F.; Massimino, L.; Sinagra, E.; Danese, S.; Mandarino, F.V. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms 2023, 11, 2369. [Google Scholar] [CrossRef]
- Crucillà, S.; Caldart, F.; Michelon, M.; Marasco, G.; Costantino, A. Functional Abdominal Bloating and Gut Microbiota: An Update. Microorganisms 2024, 12, 1669. [Google Scholar] [CrossRef]
- Lu, S.; Chen, Y.; Guo, H.; Liu, Z.; Du, Y.; Duan, L. Differences in clinical manifestations and the fecal microbiome between irritable bowel syndrome and small intestinal bacterial overgrowth. Dig. Liver Dis. 2024, 56, 2027–2037. [Google Scholar] [CrossRef]
- Velasco-Aburto, S.; Llama-Palacios, A.; Sánchez, M.C.; Ciudad, M.J.; Collado, L. Nutritional Approach to Small Intestinal Bacterial Overgrowth: A Narrative Review. Nutrients 2025, 17, 1410. [Google Scholar] [CrossRef]
- Goździewska, M.; Łyszczarz, A.; Kaczoruk, M.; Kolarzyk, E. Relationship between SIBO and other bowel diseases and a common eating pattern for them. Part III. Ann. Agric. Environ. Med. 2024, 31, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Mars, R.A.; Yang, Y.; Ward, T.; Houtti, M.; Priya, S.; Lekatz, H.R.; Tang, X.; Sun, Z.; Kalari, K.R.; Korem, T.; et al. Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell 2020, 182, 1460–1473.e17. [Google Scholar] [CrossRef] [PubMed]
- Nordin, E.; Hellström, P.M.; Dicksved, J.; Pelve, E.; Landberg, R.; Brunius, C. Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study. Nutrients 2023, 15, 3045. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Fitzgerald, P.; Cryan, J.F.; Cassidy, E.M.; Quigley, E.M.; Dinan, T.G. Tryptophan degradation in irritable bowel syndrome: Evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol. 2009, 9, 6. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; Van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.-P.; Cominetti, O.; Berger, B.; Combremont, S.; Marquis, J.; Xie, G.; Jia, W.; Pinto-Sanchez, M.I.; Bercik, P.; Bergonzelli, G. Metabolome-associated psychological comorbidities improvement in irritable bowel syndrome patients receiving a probiotic. Gut Microbes 2024, 16, 2347715. [Google Scholar] [CrossRef]
- Mujagic, Z.; Kasapi, M.; Jonkers, D.M.; Garcia-Perez, I.; Vork, L.; Weerts, Z.Z.R.; Serrano-Contreras, J.I.; Zhernakova, A.; Kurilshikov, A.; Scotcher, J.; et al. Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome. Gut Microbes 2022, 14, 2063016. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.-L.; Farzi, A.; Zhu, W.-Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. Int. Rev. J. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef]
- Kaelberer, M.M.; Rupprecht, L.E.; Liu, W.W.; Weng, P.; Bohórquez, D.V. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu. Rev. Neurosci. 2020, 43, 337–353. [Google Scholar] [CrossRef]
- Londregan, A.; Alexander, T.D.; Covarrubias, M.; Waldman, S.A. Fundamental Neurochemistry Review: The role of enteroendocrine cells in visceral pain. J. Neurochem. 2023, 167, 719–732. [Google Scholar] [CrossRef]
- Liddle, R.A. Guanylyl cyclase C ameliorates visceral pain: An unsuspected link. J. Clin. Investig. 2023, 133, e166703. [Google Scholar] [CrossRef]
- Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 2018, 8, 74. [Google Scholar] [CrossRef]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’RIordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Wang, Y.-P. Gut microbiota-brain axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Sundin, J.; Rangel, I.; Fuentes, S.; Jong, I.H.; Hultgren-Hörnquist, E.; de Vos, W.M.; Brummer, R.J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 2015, 41, 342–351. [Google Scholar] [CrossRef]
- Bellono, N.W.; Bayrer, J.R.; Leitch, D.B.; Castro, J.; Zhang, C.; O’Donnell, T.A.; Brierley, S.M.; Ingraham, H.A.; Julius, D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017, 170, 185–198.e16. [Google Scholar] [CrossRef]
- Jadhav, A.; Bajaj, A.; Xiao, Y.; Markandey, M.; Ahuja, V.; Kashyap, P.C. Role of Diet–Microbiome Interaction in Gastrointestinal Disorders and Strategies to Modulate Them with Microbiome-Targeted Therapies. Annu. Rev. Nutr. 2023, 43, 355–383. [Google Scholar] [CrossRef]
- Pizarroso, N.A.; Fuciños, P.; Gonçalves, C.; Pastrana, L.; Amado, I.R. A review on the role of food-derived bioactive molecules and the microbiota–gut–brain axis in satiety regulation. Nutrients 2021, 13, 632. [Google Scholar] [CrossRef]
- Bercik, P.; Collins, S.M. The effects of inflammation, infection and antibiotics on the microbiota-gut- Brain axis. Adv. Exp. Med. Biol. 2014, 817, 279–289. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Cani, P.D. Interaction between obesity and the gut microbiota: Relevance in nutrition. Annu. Rev. Nutr. 2011, 31, 15–31. [Google Scholar] [CrossRef]
- Black, C.J.; Staudacher, H.M.; Ford, A.C. Efficacy of a low FODMAP diet in irritable bowel syndrome: Systematic review and network meta-analysis. Gut 2022, 71, 1117–1126. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Lomer, M.C.E.; Farquharson, F.M.; Louis, P.; Fava, F.; Franciosi, E.; Scholz, M.; Tuohy, K.M.; Lindsay, J.O.; Irving, P.M.; et al. A Diet Low in FODMAPs Reduces Symptoms in Patients with Irritable Bowel Syndrome and A Probiotic Restores Bifidobacterium Species: A Randomized Controlled Trial. Gastroenterology 2017, 153, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Deleu, S.; Becherucci, G.; Godny, L.; Mentella, M.C.; Petito, V.; Scaldaferri, F. The Key Nutrients in the Mediterranean Diet and Their Effects in Inflammatory Bowel Disease: A Narrative Review. Nutrients 2024, 16, 4201. [Google Scholar] [CrossRef] [PubMed]
- Vilar, E.G.; Oliva, S.L.; Penadés, B.F.; Niño, G.M.S.; Lora, A.T.; Rojo, S.S.; Martín, I.S.M. Mediterranean Diet Effect on the Intestinal Microbiota, Symptoms, and Markers in Patients with Functional Gastrointestinal Disorders. Microorganisms 2024, 12, 1969. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.; Keville, S.; Schmidt, U.; Chalder, T. Eating disorders and irritable bowel syndrome: Is there a link? J. Psychosom. Res. 2005, 59, 57–64. [Google Scholar] [CrossRef]
- Alvira, M.S.V.; Ossa, L.M.A.; Espinosa, E.P. Stress, depression, anxiety, and eating habits in people with irritable bowel syndrome. Rev. Colomb. Gastroenterol. 2022, 37, 369–382. [Google Scholar] [CrossRef]
- Tang, T.N.; Toner, B.B.; Stuckless, N.; Dion, K.L.; Kaplan, A.S.; Ali, A. Features of eating disorders in patients with irritable bowel syndrome. J. Psychosom. Res. 1998, 45, 171–178. [Google Scholar] [CrossRef]
- Afridi, H.; Ahmad, R.; Sethi, M.R.; Irfan, M. Is there a relationship between irritable bowel syndrome and generalized anxiety disorder? J. Postgrad. Med. Inst. 2017, 31, 271–275. [Google Scholar]
- Sultan, N.; Foyster, M.; Tonkovic, M.; Noon, D.; Burton-Murray, H.; Biesiekierski, J.R.; Tuck, C.J. Presence and characteristics of disordered eating and orthorexia in irritable bowel syndrome. Neurogastroenterol. Motil. 2024, 36, e14797. [Google Scholar] [CrossRef]
- Chey, W.D. Elimination Diets for Irritable Bowel Syndrome: Approaching the End of the Beginning. Am. J. Gastroenterol. 2019, 114, 201–203. [Google Scholar] [CrossRef]
- Bonet, R.; Garrote, A. Ortorexia. Farm. Prof. 2016, 30, 13–15. [Google Scholar] [CrossRef]
- Harer, K.; Baker, J.; Reister, N.; Collins, K.; Watts, L.; Phillips, C.; Chey, W.D. Avoidant/Restrictive Food Intake Disorder in the Adult Gastroenterology Population: An Under-Recognized Diagnosis? Am. J. Gastroenterol. 2018, 113, S247–S248. [Google Scholar] [CrossRef]
- Tuck, C.; Sultan, N.; Tonkovic, M.; Biesiekierski, J. Su572 comparing the prevalence of orthorexia nervosa and psychosocial sensations in patients with irritable bowel syndrome, eating disorders and healthy controls. Gastroenterology 2021, 160, 6. [Google Scholar] [CrossRef]
- Barlow, I.U.; Lee, E.; Saling, L. Orthorexia nervosa versus healthy orthorexia: Anxiety, perfectionism, and mindfulness as risk and preventative factors of distress. Eur. Eat. Disord. Rev. 2024, 32, 130–147. [Google Scholar] [CrossRef]
- Reed-Knight, B.; Squires, M.; Chitkara, D.K.; van Tilburg, M.A.L. Adolescents with irritable bowel syndrome report increased eating-associated symptoms, changes in dietary composition, and altered eating behaviors: A pilot comparison study to healthy adolescents. Neurogastroenterol. Motil. 2016, 28, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.B.; Kuo, B.; Eddy, K.T.; Breithaupt, L.; Becker, K.R.; Dreier, M.J.; Thomas, J.J.; Staller, K. Disorders of gut–brain interaction common among outpatients with eating disorders including avoidant/restrictive food intake disorder. Int. J. Eat. Disord. 2021, 54, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Carpinelli, L.; Savarese, G.; Pascale, B.; Milano, W.D.; Iovino, P. Gut–Brain Interaction Disorders and Anorexia Nervosa: Psychopathological Asset, Disgust, and Gastrointestinal Symptoms. Nutrients 2023, 15, 2501. [Google Scholar] [CrossRef] [PubMed]
- Kessler, U.; Rekkedal, G.Å.; Rø, Ø.; Berentsen, B.; Steinsvik, E.K.; Lied, G.A.; Danielsen, Y. Association between gastrointestinal complaints and psychopathology in patients with anorexia nervosa. Int. J. Eat. Disord. 2020, 53, 802–806. [Google Scholar] [CrossRef]
- Diaz, S.; Bittar, K.; Hashmi, M.F.; Mendez, M.D. Constipation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 12 November 2023. [Google Scholar]
- Altomare, A.; Di Rosa, C.; Imperia, E.; Emerenziani, S.; Cicala, M.; Guarino, M.P.L. Diarrhea predominant-irritable bowel syndrome (IBS-D): Effects of different nutritional patterns on intestinal dysbiosis and symptoms. Nutrients 2021, 13, 1506. [Google Scholar] [CrossRef]
- Zuo, X.L.; Li, Y.Q.; Shi, L.; Lv, G.P.; Kuang, R.G.; Lu, X.F.; Li, J.M.; Desmond, P.V. Visceral hypersensitivity following cold water intake in subjects with irritable bowel syndrome. J. Gastroenterol. 2006, 41, 311–317. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yau, C.Y.; Loh, C.Y.L.; Lim, W.S.; Teoh, S.E.; Yau, C.E.; Ong, C.; Thumboo, J.; Namasivayam, V.S.O.; Ng, Q.X. Examining the Association between Coffee Intake and the Risk of Developing Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4745. [Google Scholar] [CrossRef] [PubMed]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Esmaillzadeh, A.; Adibi, P. Association of Coffee and Caffeine Intake with Irritable Bowel Syndrome in Adults. Front. Nutr. 2021, 8, 632469. [Google Scholar] [CrossRef] [PubMed]
- Clevers, E.; Launders, D.; Helme, D.; Nybacka, S.; Störsrud, S.; Corsetti, M.; Van Oudenhove, L.; Simrén, M.; Tack, J. Coffee, Alcohol, and Artificial Sweeteners Have Temporal Associations with Gastrointestinal Symptoms. Dig. Dis. Sci. 2024, 69, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Ligaarden, S.C.; Lydersen, S.; Farup, P.G. Diet in subjects with irritable bowel syndrome: A cross-sectional study in the general population. BMC Gastroenterol. 2012, 12, 61. [Google Scholar] [CrossRef]
- Isakov, V.A.; Pilipenko, V.I.; Vlasova, A.V.; Kochetkova, A.A. Evaluation of the Efficacy of Kombucha-Based Drink Enriched with Inulin and Vitamins for the Management of Constipation-Predominant Irritable Bowel Syndrome in Females: A Randomized Pilot Study. Curr. Dev. Nutr. 2023, 7, 102037. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef]
- Barrett, J.S. Extending our knowledge of fermentable, short-chain carbohydrates for managing gastrointestinal symptoms. Nutr. Clin. Pract. 2013, 28, 300–306. [Google Scholar] [CrossRef]
- Thibault, R.; Abbasoglu, O.; Ioannou, E.; Meija, L.; Ottens-Oussoren, K.; Pichard, C.; Rothenberg, E.; Rubin, D.; Siljamäki-Ojansuu, U.; Vaillant, M.-F.; et al. ESPEN guideline on hospital nutrition. Clin. Nutr. 2021, 40, 5684–5709. [Google Scholar] [CrossRef]
- Berger, M.M.; Shenkin, A.; Dizdar, O.S.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN practical short micronutrient guideline. Clin. Nutr. 2024, 43, 825–857. [Google Scholar] [CrossRef]
- Bek, S.; Teo, Y.N.; Tan, X.; Fan, K.H.R.; Siah, K.T.H. Association between irritable bowel syndrome and micronutrients: A systematic review. J. Gastroenterol. Hepatol. 2022, 37, 1485–1497. [Google Scholar] [CrossRef]
- Williams, C.E.; Williams, E.A.; Corfe, B.M. Vitamin D status in irritable bowel syndrome and the impact of supplementation on symptoms: What do we know and what do we need to know? Eur. J. Clin. Nutr. 2018, 72, 1358–1363. [Google Scholar] [CrossRef]
- Williams, C.E.; Williams, E.A.; Corfe, B.M. Vitamin D supplementation in people with IBS has no effect on symptom severity and quality of life: Results of a randomised controlled trial. Eur. J. Nutr. 2022, 61, 299–308. [Google Scholar] [CrossRef]
- Abbasnezhad, A.; Amani, R.; Hajiani, E.; Alavinejad, P.; Cheraghian, B.; Ghadiri, A. Effect of vitamin D on gastrointestinal symptoms and health-related quality of life in irritable bowel syndrome patients: A randomized double-blind clinical trial. Neurogastroenterol. Motil. 2016, 28, 1533–1544. [Google Scholar] [CrossRef]
- Hekmatdoost, A.; Jalili, M.; Vahedi, H.; Poustchi, H. Effects of Vitamin D supplementation in patients with irritable bowel syndrome: A randomized, double-blind, placebo-controlled clinical trial. Int. J. Prev. Med. 2019, 10, 16. [Google Scholar] [CrossRef]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar] [CrossRef]
- El-Salhy, M.; Østgaard, H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. The role of diet in the pathogenesis and management of irritable bowel syndrome (Review). Int. J. Mol. Med. 2012, 29, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Tack, J.; Suzuki, H. Magnesium Oxide in Constipation. Nutrients 2021, 13, 421. [Google Scholar] [CrossRef]
- Charlebois, E.; Pantopoulos, K. Nutritional Aspects of Iron in Health and Disease. Nutrients 2023, 15, 2441. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.A.; Powell, J.J.; Strnad, P. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef]
- He, Z.; Chen, H.; Chen, Y.; Sun, X.; Qiu, F.; Qiu, Y.; Wen, C.; Mao, Y.; Ye, D. Selenium deficiency induces irritable bowel syndrome: Analysis of UK Biobank data and experimental studies in mice. Ecotoxicol. Environ. Saf. 2024, 281, 116604. [Google Scholar] [CrossRef] [PubMed]
- El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Distrutti, E.; Monaldi, L.; Ricci, P.; Fiorucci, S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol. 2016, 22, 2219–2241. [Google Scholar] [CrossRef]
- Mari, A.; Abu Baker, F.; Mahamid, M.; Sbeit, W.; Khoury, T. The evolving role of gut microbiota in the management of irritable bowel syndrome: An overview of the current knowledge. J. Clin. Med. 2020, 9, 685. [Google Scholar] [CrossRef]
- McKenzie, Y.A.; Thompson, J.; Gulia, P.; Lomer, M.C.E. British Dietetic Association systematic review of systematic reviews and evidence-based practice guidelines for the use of probiotics in the management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 576–592. [Google Scholar] [CrossRef]
- Yuan, F.; Ni, H.; Asche, C.V.; Kim, M.; Walayat, S.; Ren, J. Efficacy of Bifidobacterium infantis 35624 in patients with irritable bowel syndrome: A meta-analysis. Curr. Med. Res. Opin. 2017, 33, 1191–1197. [Google Scholar] [CrossRef]
- Ford, A.C.; Harris, L.A.; Lacy, B.E.; Quigley, E.M.M.; Moayyedi, P. Systematic review with meta-analysis: The efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2018, 48, 1044–1060. [Google Scholar] [CrossRef]
- Doron, S.; Snydman, D.R. Risk and safety of probiotics. Clin. Infect. Dis. 2015, 60, S129–S134. [Google Scholar] [CrossRef]
- Galica, A.N.; Galica, R.; Dumitrașcu, D.L. Diet, fibers, and probiotics for irritable bowel syndrome. J. Med. Life 2022, 15, 174–179. [Google Scholar] [CrossRef]
- Available online: https://www.nice.org.uk/guidance/cg61/resources/april-2025-exceptional-surveillance-of-irritable-bowel-syndrome-in-adults-diagnosis-and-management-nice-guideline-cg61-pdf-19917991669957 (accessed on 31 May 2025).
- Silva, H.; Porter, J.; Barrett, J.; Gibson, P.R.; Garg, M. Dietary Intake, Symptom Control and Quality of Life After Dietitian-Delivered Education on a FODMAP Diet for Irritable Bowel Syndrome: A 7-Year Follow Up. Neurogastroenterol. Motil. 2025, e70116. [Google Scholar] [CrossRef]
- Basnayake, C.; Kamm, M.A.; Stanley, A.; Wilson-O’BRien, A.; Burrell, K.; Lees-Trinca, I.; Khera, A.; Kantidakis, J.; Wong, O.; Fox, K.; et al. Standard gastroenterologist versus multidisciplinary treatment for functional gastrointestinal disorders (MANTRA): An open-label, single-centre, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2020, 5, 890–899. [Google Scholar] [CrossRef]
- Berry, S.K.; Chey, W.D. Integrated Care for Irritable Bowel Syndrome: The Future Is Now. Gastroenterol. Clin. N. Am. 2021, 50, 713–720. [Google Scholar] [CrossRef]
- Ankersen, D.V.; Weimers, P.; Burisch, J. Whats ‘App-ening’: The help of new technologies in nutrition in digestive diseases. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 426–431. [Google Scholar] [CrossRef]
Category | Allowed Foods (Low FODMAP Content) | Foods to Limit (Moderate FODMAP Content) | Foods to Avoid (High FODMAP Content) |
---|---|---|---|
Vegetables | Zucchini, carrots, tomatoes, spinach, lettuce, cucumbers, eggplant, bell peppers, green beans, radishes | Beets, avocado (≤30 g of avocado pulp), champignon mushrooms, pumpkin, broccoli (only florets), Brussels sprouts (small portions), sweet corn, fennel, sweet potatoes (in small amounts), frozen peas | Onion, garlic, cauliflower, leeks, asparagus, savoy cabbage, spring onion, portobello mushrooms, broccoli stems, artichokes |
Fruits | Unripe bananas, strawberries, blueberries, raspberries, kiwi, oranges, mandarins, grapes, dragon fruit, cantaloupe melon | Dried plums (small amounts), apricots (½ fruit), figs (1–2 fruits), papaya, grapefruit, raisins, nectarines, lime (limited quantities), currants, pineapple (in moderation) | Apples, pears, mango, watermelon, cherries, peaches, nectarines, plums, lychee, mixed berries |
Cereals and derivatives | Rice, oats, quinoa, corn, polenta, rice pasta, gluten-free bread (made with FODMAP-friendly flours), tapioca, buckwheat, millet | Whole rye bread (small portions), pearled spelt, hulled barley, couscous (small amounts), crackers with small quantities of wheat, lentil pasta (small amounts), whole grain cereals, oat flour, corn cakes | Wheat, rye, barley (large amounts), white bread, regular pasta, standard cookies, cereals with honey/fructose, crackers, soft wheat flour, couscous, industrial baked goods |
Dairy products | Lactose-free milk, aged cheeses, clarified butter, lactose-free yogurt, lactose-free cream, brie cheese (small amounts), mozzarella (limited portion), cheddar, feta, plant-based milks, kefir | Greek yogurt (moderate amounts), diluted cow’s milk, soft cheeses, cooking cream (small amounts), lactose-free ricotta, plant-based cream (watch for additives), soy yogurt, oat milk (small amounts), blue cheeses, fermented milk | Cow’s milk, goat’s milk, regular yogurt, full cream, cream cheese, mascarpone, fresh cheeses (e.g., primo sale), condensed milk, sheep’s milk, industrial ice cream |
Proteins | Beef, chicken, turkey, fish (tuna, salmon, cod), eggs, tofu, tempeh, cured ham, untreated bacon, bresaola, seafood | Cured meats with additives (nitrates, dextrose), marinated meat, soft tofu, processed burgers, canned meat, flavored canned tuna, hot dogs, sausage (small amounts), pre-breaded packaged meat, processed shellfish | Lentils, beans, chickpeas, soy, fava beans, dried peas, vegetable burgers with fructans, unfixed tofu, protein-enriched foods with polyols, miso, industrial legume soups |
Beverages | Water, green tea, black tea, espresso coffee, herbal teas (mint, ginger, chamomile), almond milk (unsweetened), rice milk, diluted fruit juices (from allowed fruits), coconut water (small amounts), broth | Light beer (small amounts), dry red or white wine, plant-based drinks, coffee with lactose-free milk, 100% fruit juices, matcha tea, kombucha, sugar-free energy drinks (in moderation), flavored water (natural), mixed fruit smoothies (watch ingredients) | Carbonated drinks with sweeteners (e.g., sorbitol, mannitol), apple, pear or mango juices, dark beer, cow’s milk, sweet liqueurs, sweetened alcoholic beverages, soy-based drinks, industrial milkshakes, energy drinks with polyol sugars |
Sweeteners | White sugar, brown sugar, maple syrup, glucose, pure stevia, coconut sugar (in moderation), rice syrup, corn syrup, blackstrap molasses, erythritol (moderate amounts) | Honey (≤1 teaspoon), invert sugar, maltose, isomalt (moderation), agave syrup (very limited), stevia with erythritol, mixed sweeteners, candies with maltodextrin, sugar-free gums (without polyols), dark chocolate (small amounts) | Sorbitol, mannitol, xylitol, maltitol, isomalt (in excess), honey in large quantities, agave syrup, diabetic sweeteners, chewing gums with polyols, sugar-free candies, filled chocolates |
Food Category | Frequency/Consumption | Notes/Details |
---|---|---|
Whole grains and legumes | Daily | Fundamental basis of the diet; prefer whole, seasonal, and locally sourced products |
Fresh vegetables | Daily | Consume a wide variety; emphasize seasonal and local choices |
Fresh fruit | Daily | Used as dessert in main meals; select seasonal varieties |
Hydration and physical activity | Daily | Water as the primary beverage; engage in regular physical activity |
Sweets | Occasional | Prepared with dried fruit, olive oil, and honey; reserved for celebrations |
Fish | Moderate | Mainly oily fish rich in omega-3 fatty acids |
Poultry and eggs | Weekly | Consume in moderation as alternatives to red and processed meats |
Fat sources | Daily | Mainly extra virgin olive oil, nuts, and seeds |
Dairy products | Reduced | Prefer fermented products like local yogurt and cheeses; limited use of butter and cream |
Red and processed meat | 3–4 times per month | Limit intake; opt for small portions |
Wine | Occasional | Not recommended, but if culturally relevant, limit to small amounts during meals and only in appropriate social contexts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siragusa, N.; Baldassari, G.; Ferrario, L.; Passera, L.; Rota, B.; Pavan, F.; Santagata, F.; Capasso, M.; Londoni, C.; Manfredi, G.; et al. The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications. Nutrients 2025, 17, 2496. https://doi.org/10.3390/nu17152496
Siragusa N, Baldassari G, Ferrario L, Passera L, Rota B, Pavan F, Santagata F, Capasso M, Londoni C, Manfredi G, et al. The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications. Nutrients. 2025; 17(15):2496. https://doi.org/10.3390/nu17152496
Chicago/Turabian StyleSiragusa, Nicola, Gloria Baldassari, Lorenzo Ferrario, Laura Passera, Beatrice Rota, Francesco Pavan, Fabrizio Santagata, Mario Capasso, Claudio Londoni, Guido Manfredi, and et al. 2025. "The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications" Nutrients 17, no. 15: 2496. https://doi.org/10.3390/nu17152496
APA StyleSiragusa, N., Baldassari, G., Ferrario, L., Passera, L., Rota, B., Pavan, F., Santagata, F., Capasso, M., Londoni, C., Manfredi, G., Consalvo, D., Lasagni, G., Pozzi, L., Lombardo, V., Mascaretti, F., Scricciolo, A., Roncoroni, L., Elli, L., Vecchi, M., & Costantino, A. (2025). The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications. Nutrients, 17(15), 2496. https://doi.org/10.3390/nu17152496