Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification of ssIIa/ssIIIa/sbeIIa/sbeIIb Mutants
2.3. Grain Weight
2.4. Microscopic Examination of Barley Grains
2.5. Starch Extraction
2.6. SDS-PAGE and Immunoblotting Analysis
2.7. Microscopic Imaging and Particle Size Analysis of Barley Starch Granules
2.8. Measurement of Grain Ingredients
2.9. Analyses of Starch Structure and Properties
2.10. Statistical Analyses
3. Results
3.1. Genotypes of ssIIa/ssIIIa/sbeIIa/sbeIIb Mutants
3.2. The Protein Expression Levels of the Mutation Genes in the ssIIa/ssIIIa/sbeIIa/sbeIIb Mutants
3.3. The Morphology and Sizes of the ssIIa/ssIIIa/sbeIIa/sbeIIb Mutant Grains
3.4. The Composition of ssIIa/ssIIIa/sbeIIa/sbeIIb Mutant Grain
3.5. The Amylose Content of ssIIa/ssIIIa/sbeIIa/sbeIIb Mutant Grains
3.6. Starch Swelling Power and Solubility
3.7. Chain Length Distribution of Debranched Starch
3.8. The Granule Morphology and Particle Size Distribution of Barley Starch
3.9. Thermal Properties
4. Discussion
4.1. Cas9-Mediated Mutagenesis Produced Barley Mutants
4.2. Mutated SSIIa, SSIIIa, SBEIIa, and SBEIIb Genes in Barley Led to the Novel Starch Phenotype and Grain Compositions
4.3. Cas9-Mediated Multi-Gene Editing System Helps to Improve the Health Quality of Barley
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briggs, D.E. Barley; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Szczodrak, J.; Pomeranz, Y. Starch and enzyme-resistant starch from high-amylose barley. Cereal Chem. 1991, 68, 589–596. [Google Scholar] [CrossRef]
- Zhou, M.X. Barley production and consumption. In Genetics and Improvement of Barley Malt Quality; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17. [Google Scholar] [CrossRef]
- Pržulj, N.; Grujić, R.; Trkulja, V. Nutritional advantages of barley in human diet. In Central European Congress on Food; Springer: Berlin/Heidelberg, Germany, 2022; pp. 379–388. [Google Scholar]
- Fan, X.Y.; Zhu, J.; Dong, W.B.; Sun, Y.D.; Lv, C.; Guo, B.J.; Xu, R.G. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front. Plant Sci. 2017, 8, 1531. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Li, D.H.; Du, X.H.; Wang, H.; Larroque, O.; Jenkins, C.L.; Jobling, S.A.; Morell, M.K. The barley amo 1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. J. Exp. Bot. 2011, 62, 5217–5231. [Google Scholar] [CrossRef] [PubMed]
- Hoseney, R.C. Principles of Cereal Science and Technology; A General Reference on Cereal Foods; American Association of Cereal Chemists: St. Paul, MN, USA, 1986. [Google Scholar]
- Myers, A.M.; Morell, M.K.; James, M.G.; Ball, S.G. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122, 989–998. [Google Scholar] [CrossRef]
- Hazard, B.; Trafford, K.; Lovegrove, A.; Griffiths, S.; Uauy, C.; Shewry, P. Strategies to improve wheat for human health. Nat. Food 2020, 1, 475–480. [Google Scholar] [CrossRef]
- Liu, J.X.; Wu, X.B.; Yao, X.F.; Yu, R.; Larkin, P.J.; Liu, C.M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc. Natl. Acad. Sci. USA 2018, 115, 11327–11332. [Google Scholar] [CrossRef]
- Morell, M.K.; Kosar-Hashemi, B.; Cmiel, M.; Samuel, M.S.; Chandler, P.; Rahman, S.; Buleon, A.; Batey, I.L.; Li, Z.Y. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J. 2003, 34, 173–185. [Google Scholar] [CrossRef]
- Williams, N.D.; Miller, J.D.; Klindworth, D.L. Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci. 1992, 32, 612–616. [Google Scholar] [CrossRef]
- Chen, K.L.; Wang, Y.P.; Zhang, R.; Zhang, H.W.; Gao, C.X. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Hua, K.; Zhang, J.S.; Botella, J.R.; Ma, C.L.; Kong, F.J.; Liu, B.H.; Zhu, J.K. Perspectives on the application of genome editing technologies in crop breeding. Mol. Plant 2019, 12, 1047–1059. [Google Scholar] [CrossRef]
- Huang, L.C.; Li, Q.F.; Zhang, C.Q.; Chu, R.; Gu, Z.W.; Tan, H.Y.; Zhao, D.S.; Fan, X.L.; Liu, Q.Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol. J. 2020, 18, 2164. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Q.P.; Li, X.F.; Wang, F.Q.; Chen, Z.H.; Wang, J.; Li, W.Q.; Fan, F.J.; Tao, Y.J.; Jiang, Y.J.; et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol. J. 2021, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.C.; Liu, T.L.; Ma, X.L.; Wang, B.; Zheng, Z.Y.; Zhang, Y.L.; Xie, X.R.; Yang, B.W.; Zhao, Z.; Zhu, Q.L.; et al. Quantitative regulation of waxy expression by CRISPR/Cas9-based promoter and 5′UTR-intron editing improves grain quality in rice. Plant Biotechnol. J. 2020, 18, 2385. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ral, J.P.; Wei, Y.M.; Zheng, Y.L.; Li, Z.Y.; Jiang, Q.T. Genome editing of five starch synthesis genes produces highly resistant starch and dietary fibre in barley grains. Plant Biotechnol. J. 2024, 22, 2051–2053. [Google Scholar] [CrossRef]
- Aoe, S.; Yamanaka, C.; Fuwa, M.; Tamiya, T.; Nakayama, Y.; Miyoshi, T.; Kitazono, E. Effects of BARLEYmax and high-β-glucan barley line on short-chain fatty acids production and microbiota from the cecum to the distal colon in rats. PLoS ONE 2019, 14, e0218118. [Google Scholar] [CrossRef]
- Bird, A.R.; Flory, C.; Davies, D.A.; Usher, S.; Topping, D.L. A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J. Nutr. 2004, 134, 831–835. [Google Scholar] [CrossRef]
- Bird, A.R.; Jackson, M.; King, R.A.; Davies, D.A.; Usher, S.; Topping, D.L. A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br. J. Nutr. 2004, 92, 607–615. [Google Scholar] [CrossRef]
- Morrison, W.R.; Laignelet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1983, 1, 9–20. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, J.J.; Feng, X.Q.; Zhong, X.J.; Lan, J.Y.; Tang, H.P.; Harwood, W.; Li, Z.Y.; Guzmán, C.; Xu, Q.; et al. Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydr. Polym. 2022, 285, 119238. [Google Scholar] [CrossRef]
- O’Shea, M.G.; Morell, M.K. High resolution slab gel electrophoresis of 8-amino-1,3, 6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis 1996, 17, 681–686. [Google Scholar] [CrossRef]
- Batey, I.L.; Curtin, B.M. Measurement of Amylose/Amylopectin Ratio by High-Performance Liquid Chromatography. Starch 1996, 48, 338–344. [Google Scholar] [CrossRef]
- Holme, I.B.; Wendt, T.; Gil-Humanes, J.; Deleuran, L.C.; Starker, C.G.; Voytas, D.F.; Pedersen, B.-H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017, 95, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, T.; Shorinola, O.; Stacey, N.; Li, C.D.; Østergaard, L.; Patron, N.; Uauy, C.; Harwood, W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015, 16, 258. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhong, X.J.; Li, Q.; Lan, J.Y.; Tang, H.P.; Qi, P.F.; Ma, J.; Wang, J.R.; Chen, G.Y.; Pu, Z.E.; et al. Mutation of the D-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley. Food Chem. 2020, 311, 125892. [Google Scholar] [CrossRef]
- Jane, J.; Chen, Y.Y.; Lee, L.F.; McPherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of amylopectin branch chain length and amylose content on the gelatinisation and pasting properties of starch. Cereal Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Regina, A.; Blazek, J.; Gilbert, E.; Flanagan, B.M.; Gidley, M.J.; Cavanagh, C.; Ral, J.-P.; Larroque, O.; Bird, A.R.; Li, Z.; et al. Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics. Carbohydr. Polym. 2012, 89, 979–991. [Google Scholar] [CrossRef]
- Fan, X.Y.; Guo, M.; Li, R.D.; Yang, Y.H.; Liu, M.; Zhu, Q.; Tang, S.Z.; Gu, M.H.; Xu, R.G.; Yan, C.J. Allelic variations in the soluble starch synthase II gene family result in changes of grain quality and starch properties in rice (Oryza sativa L.). J. Agric. Sci. 2017, 155, 129–140. [Google Scholar] [CrossRef]
- Topping, D.L.; Morell, M.K.; King, R.A.; Li, Z.Y.; Bird, A.R.; Noakes, M. Resistant starch and health—Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starch-Stärke 2003, 55, 539–545. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; King, R.A.; Christophersen, C.T.; Bird, A.R. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr. Metab. 2012, 9, 93. [Google Scholar] [CrossRef]
- Sano, Y. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 1984, 68, 467–473. [Google Scholar] [CrossRef]
- Tian, Z.X.; Qian, Q.; Liu, Q.Q.; Yan, M.X.; Liu, X.F.; Yan, C.J.; Liu, G.F.; Gao, Z.Y.; Tang, S.Z.; Zeng, D.L.; et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 2009, 106, 21760–21765. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.R.; Vuaran, M.S.; King, R.A.; Noakes, M.; Keogh, J.; Morell, M.K.; Topping, D.L. Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects. Br. J. Nutr. 2008, 99, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Jenkins, C.L.D.; Bushell, R.; Morell, M.K.; Bird, A.R. Fructan extracts from wheat stem and barley grain stimulate large bowel fermentation in rats. Nutr. Res. 2012, 32, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Jobling, S.A.; Morell, M.K.; Taketa, S.; Bird, A.R. Wholegrain barley β-glucan fermentation does not improve glucose tolerance in rats fed a high-fat diet. Nutr. Res. 2015, 35, 162–168. [Google Scholar] [CrossRef]
Genotype | Differences in Chain Length Distribution (%) | |||
---|---|---|---|---|
DP6-12 | DP13-24 | DP25-36 | DP > 36 | |
ssIIa/ssIIIa/sbeIIa/sbeIIb − NE | 9.11 | −4.77 | −3.19 | −1.15 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIa | −5.04 | 9.16 | −3.20 | −0.92 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIIa | 11.14 | −7.21 | −3.05 | −0.88 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − sbeIIa/sbeIIb | 8.66 | −8.71 | 0.01 | 0.04 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIa/sbeIIa/sbeIIb | 2.02 | −2.64 | 0.46 | 0.16 |
Genotype | Differential Compositions of Starch Granules (%) | |||
---|---|---|---|---|
B Granule (1–10 μm) | A1 Granule (10–20 μm) | A2 Granule (20–60 μm) | A3 Granule (60–120 μm) | |
ssIIa/ssIIIa/sbeIIa/sbeIIb − NE | 1.06 | 3.45 | −7.92 | 3.41 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIa | −8.95 | 12.03 | −1.79 | −1.27 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIIa | −15.51 | 6.98 | 5.09 | 3.41 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − sbeIIa/sbeIIb | −4.18 | 9.91 | −5.49 | −0.25 |
ssIIa/ssIIIa/sbeIIa/sbeIIb − ssIIa/sbeIIa/sbeIIb | −9.16 | 5.7 | 1.92 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Ral, J.-P.; Jiang, Q.; Li, Z. Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes. Foods 2025, 14, 2319. https://doi.org/10.3390/foods14132319
Yang Q, Ral J-P, Jiang Q, Li Z. Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes. Foods. 2025; 14(13):2319. https://doi.org/10.3390/foods14132319
Chicago/Turabian StyleYang, Qiang, Jean-Philippe Ral, Qiantao Jiang, and Zhongyi Li. 2025. "Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes" Foods 14, no. 13: 2319. https://doi.org/10.3390/foods14132319
APA StyleYang, Q., Ral, J.-P., Jiang, Q., & Li, Z. (2025). Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes. Foods, 14(13), 2319. https://doi.org/10.3390/foods14132319