Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = fiber structure formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 59
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

19 pages, 13331 KiB  
Article
Multi-Scale Study on Ultrasonic Cutting of Nomex Honeycomb Composites of Disc Cutters
by Yiying Liang, Feng Feng, Wenjun Cao, Ge Song, Xinman Yuan, Jie Xu, Qizhong Yue, Si Pan, Enlai Jiang, Yuan Ma and Pingfa Feng
Materials 2025, 18(15), 3476; https://doi.org/10.3390/ma18153476 - 24 Jul 2025
Viewed by 185
Abstract
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the [...] Read more.
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the effects of ultrasonic vibration on fiber distribution, cell-level shear response, and the overall cutting mechanics. At the microscale, analyses show that ultrasonic vibration mitigates stress concentrations, thereby shortening fiber length. At the mesoscale, elastic buckling and plastic yielding models show that ultrasonic vibration lowers shear strength and modifies the deformation. A macro-scale comparison of cutting behavior with and without ultrasonic vibration was conducted. The results indicate that the intermittent contact effect induced by vibration significantly reduces cutting force. Specifically, at an amplitude of 40 μm, the cutting force decreased by approximately 29.7% compared to the condition without ultrasonic vibration, with an average prediction error below 8.6%. Compared to conventional machining, which causes the honeycomb angle to deform to approximately 130°, ultrasonic vibration preserves the original 120° geometry and reduces burr length by 36%. These results demonstrate that ultrasonic vibration effectively reduces damage through multi-scale interactions, offering theoretical guidance for high-precision machining of fiber-reinforced composites. Full article
Show Figures

Figure 1

13 pages, 5908 KiB  
Article
Experimental Study on the Strength Characteristics of Modified Guilin Red Clay
by Wenwu Chen, Zhigao Xie, Jiguang Chen, Mengyao Hong, Xiaobo Wang, Haofeng Zhou and Bai Yang
Buildings 2025, 15(14), 2533; https://doi.org/10.3390/buildings15142533 - 18 Jul 2025
Viewed by 218
Abstract
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to [...] Read more.
To address the engineering challenges associated with Guilin red clay, such as its potentially low strength and unfavorable mechanical behavior, this study investigated the effectiveness of lignin and lime as modifiers. Consolidation undrained triaxial tests and scanning electron microscopy (SEM) were employed to evaluate the strength characteristics and microstructural changes in modified clay specimens with varying dosages. The results demonstrate distinct strengthening mechanisms: Lignin exhibits an optimal dosage (6%), significantly increasing cohesion and internal friction angle through physical reinforcement (“soil fiber” formation), but higher dosages (8%) lead to particle separation and strength reduction. In contrast, lime provides continuous and substantial strength enhancement with increasing dosage (up to 8%), primarily through chemical reactions producing cementitious compounds (e.g., C-S-H, C-A-H) that densify the structure. Consequently, lime-modified clay shows significantly higher cohesion and internal friction angle compared to lignin-modified clay at equivalent or higher dosages, with corresponding stress–strain curves shifting from enhanced (strain-hardening) to softening behavior. These findings provide practical insights into red clay improvement in geotechnical engineering applications. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 385
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 5242 KiB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Viewed by 323
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

23 pages, 8380 KiB  
Article
Characterizing the Fermentation of Oat Grass (Avena sativa L.) in the Rumen: Integrating Degradation Kinetics, Ultrastructural Examination with Scanning Electron Microscopy, Surface Enzymatic Activity, and Microbial Community Analysis
by Liepeng Zhong, Yujun Qiu, Mingrui Zhang, Shanchuan Wei, Shuiling Qiu, Zhiyi Ma, Mingming Gu, Benzhi Wang, Xinyue Zhang, Mingke Gu, Nanqi Shen and Qianfu Gan
Animals 2025, 15(14), 2049; https://doi.org/10.3390/ani15142049 - 11 Jul 2025
Viewed by 260
Abstract
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern [...] Read more.
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern Fujian, were selected as experimental animals. The rumen degradation rate of oat grass was measured at 4, 12, 24, 36, 48, and 72 h using the nylon bag method. Surface physical structure changes in oat grass were observed using scanning electron microscopy (SEM), cellulase activity was measured, and bacterial composition was analyzed using high-throughput 16S rRNA gene sequencing technology. The findings of this study indicate that oat grass had effective degradation rates (ED) of 47.94%, 48.69%, 38.41%, and 30.24% for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acidic detergent fiber (ADF), respectively. The SEM was used to investigate the degradation process of oat grass in the rumen. After 24 h, extensive degradation of non-lignified tissue was observed, resulting in the formation of cavities. At 36 h, significant shedding was observed, and by 72 h, only the epidermis and thick-walled tissue, which exhibited resistance to degradation, remained intact. Surface-attached microorganisms produced β-GC, EG, CBH, and NEX enzymes. The activity of these enzymes exhibited a significant increase between 4 and 12 h and showed a positive correlation with the degradation rate of nutrients. However, the extent of correlation varied. Prevotella and Treponema were identified as key genera involved in the degradation of roughage, with their abundance decreasing over time. Principle Coordinate Analysis (PCOA) revealed no significant differences in the rumen microbial structure across different time points. However, Non-Metric Multidimensional Scaling (NMDS) indicated a discernible diversity order among the samples. According to the Spearman correlation coefficient test, Ruminococcus, Fibrobacter, and Saccharoferments exhibited the closest relationship with nutrient degradation rate and surface enzyme activity, displaying a significant positive correlation. In summary, this study delineates a time-resolved correlative framework linking microbial succession to structural and enzymatic dynamics during oat grass degradation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 311
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

21 pages, 9386 KiB  
Article
Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability
by Svetlana G. Karpova, Anatoly A. Olkhov, Ivetta A. Varyan, Ekaterina P. Dodina, Yulia K. Lukanina, Natalia G. Shilkina, Anatoly A. Popov, Alexandre A. Vetcher, Anna G. Filatova and Alexey L. Iordanskii
J. Compos. Sci. 2025, 9(7), 355; https://doi.org/10.3390/jcs9070355 - 8 Jul 2025
Viewed by 343
Abstract
Ultrafine fibers from poly(3-hydroxybutyrate) (PHB) and polyvinylpyrrolidone (PVP) and their blends with different component ratios in the range of 0/100 to 100/0 wt.% were obtained, and their structure and dynamic properties were studied. The polymers were obtained via electrospinning in solution mode. The [...] Read more.
Ultrafine fibers from poly(3-hydroxybutyrate) (PHB) and polyvinylpyrrolidone (PVP) and their blends with different component ratios in the range of 0/100 to 100/0 wt.% were obtained, and their structure and dynamic properties were studied. The polymers were obtained via electrospinning in solution mode. The structure, morphology, and segmental dynamic behavior of the fibers were determined using optical microscopy, SEM, EPR, DSC, and IR spectroscopy. The low-temperature maximum on the DSC endotherms provided information on the state of the PVP hydrogen bond network, which made it possible to determine the enthalpies of thermal destruction of these bonds. The PHB/PVP fiber blend ratio significantly affected the structural and dynamic parameters of the system. Thus, at low concentrations of PVP (up to 9%) in the structure of ultra-fine fibers, the distribution of this polymer occurs in the form of tiny particles, which are crystallization centers, which causes a significant increase in the degree of crystallinity (χ) activation energy (Eact) and slowing down of molecular dynamics (τ). At higher concentrations of PVP, loose interphase layers were formed in the system, which caused a decrease in these parameters. The strongest changes in the concentration of hydrogen bonds occurred when PVP was added to the composition from 17 to 50%, which was due to the formation of intermolecular hydrogen bonds both in PVP and during the interaction of PVP and PHB. The diffusion coefficient of water vapor in the studied systems (D) decreased as the concentration of glassy PVP in the composition increased. The concentration of the radical decreased with an increase in the proportion of PVP, which can be explained by the glassy state of this polymer at room temperature. A characteristic point of the 50/50% mixture component ratio was found in the region where an inversion transition of PHB from a dispersion material to a dispersed medium was assumed. The conducted studies made it possible for the first time to conduct a comprehensive analysis of the effect of the component ratio on the structural and dynamic characteristics of the PHB/PVP fibrous material at the molecular scale. Full article
Show Figures

Figure 1

21 pages, 8891 KiB  
Article
Urolithin A Attenuates Periodontitis in Mice via Dual Anti-Inflammatory and Osteoclastogenesis Inhibition: A Natural Metabolite-Based Therapeutic Strategy
by Yishu Xia, Danni Wu, Linyi Zhou, Xinyu Wu and Jianzhi Chen
Molecules 2025, 30(13), 2881; https://doi.org/10.3390/molecules30132881 - 7 Jul 2025
Viewed by 381
Abstract
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, [...] Read more.
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, the impact of UA on periodontitis remains unknown. To investigate the preventive effect of UA, we employed a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 mouse macrophages, a receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation model, and a ligature-induced periodontitis model in mice. The expression of inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6) was analyzed to assess anti-inflammatory efficacy. Bone loss in mice with periodontitis was assessed through histological and imaging techniques, including haematoxylin and eosin staining to evaluate alveolar bone morphology, Masson’s trichrome staining to visualize collagen fiber distribution, and micro-computed tomography scanning to quantify bone structural parameters. Additionally, we investigated the underlying mechanisms by examining osteoclast activity through tartrate-resistant acid phosphatase staining and the expression levels of proteins RANKL and osteoprotegerin (OPG). We found that UA reduced IL-6 and TNF-α levels in vitro and in vivo, inhibited osteoclast differentiation, and decreased the RANKL/OPG ratio in periodontitis mice. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 278
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 454
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

22 pages, 6793 KiB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 309
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

14 pages, 61510 KiB  
Article
Enhancing High-Temperature Oxidation Stability of Recycled Carbon Fibers Through Ceramic Coating
by Carmela Borriello, Sabrina Portofino, Loredana Tammaro, Pierpaolo Iovane, Gabriella Rametta and Sergio Galvagno
C 2025, 11(3), 42; https://doi.org/10.3390/c11030042 - 26 Jun 2025
Viewed by 559
Abstract
Carbon fiber-reinforced composites (CFRCs) have attracted considerable attention in recent years due to their excellent properties, enabling their use across various sectors. However, their application at high temperatures is limited by the fibers’ lack of oxidation resistance. This study demonstrates a significant advancement [...] Read more.
Carbon fiber-reinforced composites (CFRCs) have attracted considerable attention in recent years due to their excellent properties, enabling their use across various sectors. However, their application at high temperatures is limited by the fibers’ lack of oxidation resistance. This study demonstrates a significant advancement in enhancing the oxidation stability performance of carbon fiber-reinforced composites (CFRCs) by developing a silicon carbide (SiC) coating through the ceramization of carbon fibers using silicon (Si) powder. For the first time, this method was applied to recycled carbon fibers from CF thermoplastic composites. The key findings include the successful formation of a uniform SiC coating, with coating thickness increasing with process duration and decreasing at higher temperatures. The treated fibers exhibited substantially improved oxidation resistance, maintaining structural stability above 700 °C—markedly better than that of their uncoated counterparts. Thermogravimetric analysis confirmed that oxidation resistance varied depending on the CF/Si ratio, highlighting this parameter’s critical role. Overall, this study offers a viable pathway to enhance the thermal durability of recycled carbon fibers for high-temperature applications. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites (2nd Edition))
Show Figures

Graphical abstract

28 pages, 11703 KiB  
Article
Enhancing the Interfacial Adhesion and Mechanical Strength of Pultruded ECR–Glass Fiber Composites with Nanofiller-Infused Epoxy Resin
by Poorna Chandra, Ravikumar Venkatarayappa, Savitha D. Chandrashekar, Kiran Raveendra, Asha P. Bhaskararao, Suresha Bheemappa, Dayanand M. Goudar, Rajashekhar V. Kurhatti, K. Raju and Deesy G. Pinto
J. Compos. Sci. 2025, 9(7), 321; https://doi.org/10.3390/jcs9070321 - 23 Jun 2025
Viewed by 843
Abstract
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical [...] Read more.
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical characteristics. Pultrusion was used to produce hybrid nanocomposites while keeping the GF loading at a consistent 75% by weight. The hybrid nanocomposites were made with a total filler loading of 6 wt.%, including nHap, and a nS loading ranging from 2 to 4 wt.%. The mechanical performance of the composite was greatly improved by the use of these nanofillers. Compared to neat GF/Ep, hybrid nanocomposites with 6 wt.% combined fillers exhibited increased hardness (14%), tensile strength (25%), interlaminar shear strength (21.3%), and flexural strength (33%). These improvements are attributed to efficient filler dispersion, enhanced fiber-matrix adhesion, and crack propagation resistance. Incorporating 4 wt.% nS alone improved hardness (6%), tensile strength (9%), tensile modulus (21%), interlaminar shear strength (11.4%), flexural strength (12%), and flexural modulus (14%). FTIR analysis indicated Si-O-Si network formation and increased hydrogen bonding, supporting enhanced interfacial interactions. Ultraviolet reflectance measurements showed increased UV reflectivity with nS, especially in hybrid systems, due to synergistic effects. Impact strength also improved, with a notable 11.6% increase observed in the hybrid nanocomposite. Scanning and transmission electron microscopy confirmed that the nanofillers act as secondary reinforcements within the matrix. These hybrid nanocomposites present a promising material choice for various industries, including marine structural applications and automotive components. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

Back to TopTop