Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Study Selection
2.3. Data Extraction and Synthesis
3. Bioactive Compounds in Plant Tubers
3.1. Polyphenolic Compounds
3.2. Resistant Starch
3.3. Vitamins and Minerals
3.4. Pigments
4. Health Benefits of Tuber
4.1. Antioxidant Effect
Vegetables | Compounds Type | Compounds Class | Compound Average Content | Health Benefits | References |
---|---|---|---|---|---|
Carrot | Polyphenolic compounds | Caffeic acid; ferulic acid; sinapic acid; vanillic acid; p-coumaric acid; p-hydroxybenxoic acid; and total phenolic | 24 mg/100 mg fw; 2.4 mg/100 g fw; 0.06 mg/100 g fw; 1.2 mg/100 g fw; 0.71 mg/100 g fw; 4.2 mg/100 g fw; and 7.3–224 mg/100 g fw | Antioxidant, anti-inflammatory, antidiabetic and anticancer | [32,68,72,73,74] |
Carotenoids | β-Carotene; α-carotene; lutein (orange, purple, red); lycopene (red); zeaxanthin; β-cryptoxanthin; and total of carotenoids | 0.09 to 7.6 μg/g dry kernel, 8.2 mg/100 g fw root; 3.5 mg/100 g fw root; 0.1 to 28 μg/g dry kernel, 250 μg μg/100 g fw root; 1 μg/100 g fw root; 0.01 to 8.1 μg/g dry kernel; 0.08 to 2.45 μg/g dry kernel; and 6–54.8 mg/100 g fw root | |||
Vitamins | Vitamin A/provitamin A (β-carotene); vitamin E (tocopherols); vitamin C | 700 μg; 0.19–15 mg 1; 1–5.3 mg/100 g fw | |||
Macro and micro elements | K; Ca; Mg; Mn Fe; Zn; Cu | 152.4 mg; 31.4 mg; 27.2 mg; 0.58 mg; 0.25 mg; 0.32 mg; 0.07 mg/100 g fw | |||
Beetroot | Polyphenolic compounds | Gallic acid; chlorogenic acid; caffeic acid; ferulic acid; myricetin; luteolin; quercetin; epicatechin; and total phenols | 36.40–65.93 mg; 1.7–4.67 mg; 0.74–0.90 mg; 0.54–1.71 mg; 0.27–0.30 mg; 0.13–0.14 mg; 0.1–0.13 mg; 3.20 mg/100 g fw; and 245 mg GAE/100 g fw 3 | Antioxidation, anti-inflammatory, anti-hypertensive, decrease of oxidative stress and inflammation in animals studies | [16,71,72] |
Betalains | Total betalains (isobetanin, 2,17′-bidecarboxy-neobetanin, miraxanthin II, vulgxanthin I (deep read), Vulgaxanthin I, indicaxanthin, miraxanthin (yellow)); betalain | 370 mg/100 g; 128.7–797 mg/100 g | |||
Carotenoids | a-Carotene; lycopene | 22 mg/100 g fw; 0.03 mg/100 g fw | |||
Vitamins | Vitamin B; vitamin A; vitamin C; riboflavin; vitamin B6; folacin; niacin | 0.3–0.4 mg 2; 36 IU; 4.9 mg; 0.04 mg; 0.067 mg; 109 mcg; 0.334 mg/100 g fw | |||
Macro and micro elements | Potassium; sodium; phosphorus; calcium; magnesium; iron; zinc; copper; manganese; selenium | 325 mg; 78 mg; 40 mg; 16 mg; 23 mg; 0.80 mg; 0.35 mg; 0.075 mg/100 g; 0.33 mg/100 g; 0.7 mg/100 g | |||
Taro | Polyphenolic compounds | Total catechin; trans-ferulic acid; anthocyanins quercetin | 35.5 mg; 26.80 mg/100 g de; 16 mg/100 g corm skin; 2.9 mg/100 g fw | Antimetastatic, antioxidant, anticancer, anti-inflammatory, antidiabetic, antimicrobial | [77,78,79,80,81,82,83,84,85,86] |
Carotenoids | β-Carotene | 10.4–18.5 mg/100 g taro flour | |||
Vitamins | Vitamin A; vitamin C; vitamin E; thiamin; riboflavin; niacin; vitamin K | 8.92 mg; 4.5–10.29 mg; 1.89–2.38 mg; 0.21 mg; 0.02–0.04 mg; 0.58 mg/100 g dw, 0.001 mg/100 g | |||
Macro and micro elements | Calcium; iron; magnesium; phosphorus; sodium; potassium; manganese; zinc; copper | 41–782.15 mg; 1.16–218.50 mg; 7.3–543.90 mg; 1.39 mg; 6.2–25.6 mg; 224–372.40 mg; 0.13–221.30 mg; 5.14–392.23 mg; 0.67–231.70 mg | |||
Sweet potato | Polyphenolic compounds | Chlorogenic acid; neochlorogenic acid | 56.3 mg, 620–2024 mg (peel), 88–252 mg (flesh); 5.18 mg, 53–83 mg/kg dw (peel) | Antioxidant, anti-inflammatory, hypoglycemic anticancer, hepatoprotective | [13,68,73,75,76] |
Carotenoids | β-Carotene (orange) | <1 (white cultivars)–131 μg/g fresh roots (orange cultivars) | |||
Vitamins | Vitamin C; thiamin; niacin; vitamin B6; vitamin K | 14.8 mg; 0.045 mg; 0.43 mg; 0.12; 0.2 μg/100 g fw | |||
Macro and micro elements | Sodium; potassium; calcium; magnesium; iron; zinc; manganese; copper | 71.1 mg; 1134 mg; 60.7 mg; 31.3 mg; 1.4 mg; 1.1 mg; 0.5 mg; 0.5 mg/100 g | |||
Yam | Polyphenolic compounds | Total anthocyanin; sinapic acid, ferulic acid; total polyphenols | 31 mg; 131 mg; 31.3 mg/100 g dm; 76.64–324.69 μg GAE/g fw 3 | Antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic | [20,73,88,94,95] |
Carotenoids | All-trans-β-carotene; β-carotene epoxides; provitamin A | 96–332 μg; 96–1670 μg; 102–927 μg/100 g dw | |||
Vitamins | Vitamin C; vitamin E | 82.13 mg; 88.33 mg/100 g fw | |||
Macro and micro elements | Sodium; magnesium; calcium; iron; zinc; copper; cobalt; manganese | 11.4–12.06 mg; 7.11–566 mg; 21.8–660 mg; 2.05 mg; 7.6–14.1 mg; 0.5 mg; 0.57–0.82 mg; 0.26–10.6 mg/100 g fw | |||
Cassava | Polyphenolic compounds | Gallic acid; chlorogenic acid; ferulic acid; rutin; caffeic acid; catechin | 144.2 μg; 65.9 μg; 118.8 μg; 815 μg; 13.8; 12.8 μg/mL ethanolic extract of cassava | Antioxidant, anti-inflammatory, anticancer, antimicrobial, hypoglycemic | [22,23,73,87] |
Carotenoids | β-Carotene (orange color and cream color), 9-Z- β-carotene, 13-Z- β-carotene (orange color) | 0.2 to 4.9 μg/g fresh roots | |||
Vitamins | Vitamin A; niacin; riboflavin; thiamin; vitamin C | 0.005–0.04; 0.6–1 mg; 0.03–0.06 mg; 0.03–0.28 mg; 14.9–50 mg/100 g fw | |||
Minerals | Calcium; magnesium; phosphorus; iron; potassium; copper; manganese; sulfur; sodium; zinc | 16–176 mg; 30–80 mg; 6–152 mg; 0.3–14 mg; 250–720 mg; 0.3–0.6 mg; 273 ppm; 7.6–21.3 mg; 1.4–4.1 mg/100 g fw | |||
Potatoes | Polyphenols | Chlorogenic acid; cryptochlorogenic acid; neochlorogenic acid; caffeic acid; caffeoyl putrescine; rutinose; kaempferol-3-rutinose; anthocyanins content | 21.9–80.4 mg 4; 1.0–12.6 mg 5; 0.1–2.9 mg 4; 0.5–5.2 mg 6; 0.2–1.3 mg 4; 0.29–1.36 mg 7; 0.13–0.46 mg 8; 5.5–368 mg/100 g fw 9 | Free radical, oxyradical, hydroxyl radical scavenging activity, protection of liver injury (rats), cholesterol-lowering effects in rats | [11,89,90,91] |
Carotenoids | Carotenoids content in flesh | 50 to 2000 μg/100 g fw 10 | |||
Vitamins | Vitamin C, total ascorbic acid; niacin; pantothenic acid; vitamin B6; folate total; choline total | 19.7 mg; 1.06 mg; 0.295 mg; 0.298 mg; 15 µg; 12.1 mg/100 g fw | |||
Macro and micro elements | Calcium; magnesium; potassium; phosphorus; iron; zinc; manganese; copper; boron | 9.40–11 mg 11; 16–28 mg; 280–580 mg; 59–60.57 mg; 0.65–1.49 mg; 0.26 mg; 0.15 mg; 0.095 mg; 0.10 mg/100 g fw | |||
Yacon | Polyphenolic compounds | Chlorogenic acid; caffeic acid; coumaric acid; total polyphenol content | Fractional concentration (%) of phenolic compounds: 53.72; 40.63; 4.38; 175.1 μg/g yacon syrup 12 350–570 mg GAE and 790–3080 mg CAE/100 4 g dw and 1202 μg GAE/g 3 yacon syrup | Antioxidant, anti-inflammatory, hypoglycemic, cardioprotective, prebiotic, anti-obesity | [95,96,97,98] |
Carotenoids | Carotene | 80–130 μg/100 g fw | |||
Vitamins | Thiamin; riboflavin; niacin, vitamin C | 10–70 μg; 100–310 μg; 330 μg, 13 mg/100 g fw | |||
Macro and micro elements | Phosphorus; potassium; calcium; magnesium; sulfur | 23.2 mg; 171.7 mg; 6.3 mg; 3.7 mg; 9.7 mg/100 g fw yacon pulp | |||
Jerusalem artichoke | Polyphenolic compounds | Chlorogenic acid (CQA); dicaffeoyl isomers 3,5-diCQA caffeic acid; total phenols | 1.48 mg; 0.82 mg; 70 μg/g dw; 7.4 mg GAE/g fw | Antioxidant, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, anti-obesity, anti-hypertension | [47,92] |
Carotenoids | β-Carotene | 12 μg/100 g fw | |||
Vitamins | Choline; niacin, vitamin C | 30 mg; 1.3 mg; 4 mg | |||
Macro and micro elements | Potassium; phosphorous; magnesium; calcium; sodium | 490 mg; 78 mg; 17 mg; 14 mg; 4 mg/100 g fw |
4.2. Glycemic Response
5. Potentially Hazardous Compounds in Root and Tuber Vegetables
5.1. Acrylamide
5.2. Fermentable Oligo-, Di-, Monosaccharides, and Polyols (FODMAPs)
5.3. Phytate
5.4. Oxalate
5.5. Cyanogenic Glycosides
5.6. Steroidal Glycoalkaloids
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosell, M.Á.; Quizhpe, J.; Ayuso, P.; Peñalver, R.; Nieto, G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato (Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants 2024, 13, 954. [Google Scholar] [CrossRef] [PubMed]
- Quizhpe, J.; Ayuso, P.; Rosell, M.D.L.Á.; Peñalver, R.; Nieto, G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024, 13, 3513. [Google Scholar] [CrossRef] [PubMed]
- Apostol, L.; Belc, N.; Gaceu, L.; Vladut, V.; Oprea, O.B. Chemical Composition and Rheological Parametrs of Helianthus tuberosus Flour Used as a Sources of Bioactive Compounds in Bakery. Rev. Chim. 2019, 70, 2048–2053. [Google Scholar] [CrossRef]
- Daly, M.E.; Huang, X.; Nitride, C.; Hughes, C.; Tanskanen, J.; Shewry, P.R.; Gethings, L.A.; Mills, E.C. Proteomic Profiling of Celiac-Toxic Motifs and Allergens in Cereals Containing Gluten. J. Proteome Res. 2025, 24, 2336–2348. [Google Scholar] [CrossRef]
- Epping, J.; Laibach, N. An underutilized orphan tuber crop—Chinese yam: A review. Planta 2020, 252, 58. [Google Scholar] [CrossRef]
- Sergheeva, E.; Netreba, N. Oil crop pomace as a potential source of portein and dietary fibery. J. Eng. Sci. 2024, 31, 196–215. [Google Scholar] [CrossRef]
- Pradeepika, C.; Selvakumar, R.; Krishnakumar, T.; Nabi, S.U.; Sajeev, M.S. Pharmacology and Phytochemistry of Underexploited Tuber Crops: A Review. J. Pharmacogn. Phytochem. 2018, 7, 1007–1019. [Google Scholar]
- Halim, M.A.; Alharbi, S.A.; Alarfaj, A.A.; Almansour, M.I.; Ansari, M.J.; Nessa, M.J.; Kabir, F.N.A.; Khatun, A.A. Improvement and quality evaluation of gluten-free cake supplemented with sweet potato flour and carrot powder. Appl. Food Res. 2024, 4, 100543. [Google Scholar] [CrossRef]
- Judprasong, K.; Tanjor, S.; Puwastien, P.; Sungpuag, P. Investigation of Thai plants for potential sources of inulin-type fructans. J. Food Compos. Anal. 2011, 24, 642–649. [Google Scholar] [CrossRef]
- Santamaria, M.; Ruiz, M.; Garzon, R.; Rosell, C.M. Comparison of vegetable powders as ingredients of flatbreads: Technological and nutritional properties. Int. J. Food Sci. Technol. 2024, 59, 7203–7212. [Google Scholar] [CrossRef]
- Atikur, R.M. Effects of Peeling Methods on Mineral Content of Potato and Development of Potato Based Biscuit. Int. J. Nutr. Food Sci. 2015, 4, 669. [Google Scholar] [CrossRef][Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Millena, C.G.; Binaday, J.A.B.; Bulawan, C.; Nipas, E.G.D.; Ruivivar, S.S.; Rosales, A.L. Nutritional composition and mineral bioavailability of selected root and tuber crops in the Bicol Region, Philippines. Food Res. 2024, 8, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Nie, S.; Zhu, F. Chemical constituents and health effects of sweet potato. Food Res. Int. 2016, 89, 90–116. [Google Scholar] [CrossRef]
- Ceclu, L.; Nistor, O.V. Red Beetroot: Composition and Health Effects—A Review. J. Nutr. Med. Diet. Care 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab. 2020, 17, 3. [Google Scholar] [CrossRef]
- Basiony, A.M.; Atta, M.B.; Abd-Elazim, E.I.; Mohamed, A.S. Chemical Composition and Functional Properties of Egyptian Taro (Colocasia esculenta) Mucilage. Al-Azhar J. Agric. Res. 2022, 47, 185–1901. [Google Scholar] [CrossRef]
- Shah, Y.A.; Saeed, F.; Afzaal, M.; Waris, N.; Ahmad, S.; Shoukat, N.; Ateeq, H. Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. J. Food Process. Preserv. 2022, 46, e16951. [Google Scholar] [CrossRef]
- Agbor-Egbe, T.; Treche, S. Evaluation of the Chemical Composition of Cameroonian Yam Germplasm. J. Food Compos. Anal. 1995, 8, 274–283. [Google Scholar] [CrossRef]
- Liu, Y.M.; Lin, K.W. Antioxidative Ability, Dioscorin Stability, and the Quality of Yam Chips from Various Yam Species as Affected by Processing Method. J. Food Sci. 2009, 74, C118–C125. [Google Scholar] [CrossRef]
- Mafaldo, Í.M.; Araújo, L.M.; Cabral, L.; Barão, C.E.; Noronha, M.F.; Fink, J.R.; de Albuquerque, T.M.R.; dos Santos Lima, M.; Vidal, H.; Pimentel, T.C.; et al. Cassava (Manihot esculenta) Brazilian cultivars have different chemical compositions, present prebiotic potential, and beneficial effects on the colonic microbiota of celiac individuals. Food Res. Int. 2024, 195, 114909. [Google Scholar] [CrossRef] [PubMed]
- Mohidin, S.R.N.S.P.; Moshawih, S.; Hermansyah, A.; Asmuni, M.I.; Shafqat, N.; Ming, L.C. Cassava (Manihot esculenta Crantz): A Systematic Review for the Pharmacological Activities, Traditional Uses, Nutritional Values, and Phytochemistry. J. Evid.-Based Integr. Med. 2023, 28, 2515690X231206227. [Google Scholar] [CrossRef] [PubMed]
- Panghal, A.; Munezero, C.; Sharma, P.; Chhikara, N. Cassava toxicity, detoxification and its food applications: A review. Toxin Rev. 2021, 40, 1–16. [Google Scholar] [CrossRef]
- Simanca-Sotelo, M.; De Paula, C.; Domínguez-Anaya, Y.; Pastrana-Puche, Y.; Álvarez-Badel, B. Physico-chemical and sensory characterization of sweet biscuits made with Yacon flour (Smallanthus sonchifolius). NFS J. 2021, 22, 14–19. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Z.; Zhang, H.; Jin, Y.; Zhang, Y.; Hayford, F. Phytochemical Properties and Nutrigenomic Implications of Yacon as a Potential Source of Prebiotic: Current Evidence and Future Directions. Foods 2018, 7, 59. [Google Scholar] [CrossRef]
- Kim, S.J.; Jin, Y.I.; Nam, J.H.; Hong, S.Y.; Sohn, W.B.; Kwon, O.K.; Chang, D.C.; Cho, H.M.; Jeong, J.C. Comparison of Nutrient Composition of Yacon Germplasm. Korean J. Plant Resour. 2013, 26, 9–18. [Google Scholar] [CrossRef]
- Samal, L.; Chaturvedi, V.B.; Saikumar, G.; Somvanshi, R.; Pattanaik, A.K. Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: Effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J. Sci. Food Agric. 2015, 95, 1689–1696. [Google Scholar] [CrossRef]
- Díaz, A.; García, M.A.; Dini, C. Jerusalem artichoke flour as food ingredient and as source of fructooligosaccharides and inulin. J. Food Compos. Anal. 2022, 114, 104863. [Google Scholar] [CrossRef]
- Rubel, I.A.; Iraporda, C.; Manrique, G.D.; Genovese, D.B.; Abraham, A.G. Inulin from Jerusalem artichoke (Helianthus tuberosus L.): From its biosynthesis to its application as bioactive ingredient. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100281. [Google Scholar] [CrossRef]
- Mogoș, T.; Dondoi, C.; Iacobini, A.E. A review of dietary fiber in the diabetic diet. Rom. J. Diabetes Nutr. Metab. Dis. 2017, 24, 161–164. [Google Scholar] [CrossRef]
- Nassar, N.M.; de Sousa, M.V. Amino acids profile in cassava, its interspecific hybrid. Genet. Mol. Res. 2007, 6, 292–297. [Google Scholar] [PubMed]
- Cozma, A.; Velciov, A.; Popescu, S.; Alexal, E.; Popescu, S.; Mărăzan, V.; Cozma, B.; Radaet, M. Fresh root vegetables as mineralizing foods. Res. J. Agric. Sci. 2022, 54, 49–56. [Google Scholar]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Canja, C.M.; Mazarel, A.; Lupu, M.I.; Margean, A.; Pădureanu, V. Dietary fiber role and place in baking products. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2016, 9, 91–96. [Google Scholar]
- Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021, 9, 6406–6420. [Google Scholar] [CrossRef]
- Gęsiński, K.; Nowak, K. Comparative analysis of the biological value of protein of Chenopodium quinoa Willd. and Chenopodium album L. Part II. Amino acid composition of the green matter protein. Acta Sci. Pol. Agric. 2011, 10, 47–56. [Google Scholar]
- Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef]
- Yi, B.; Hu, L.; Mei, W.; Zhou, K.; Wang, H.; Luo, Y.; Wei, X.; Dai, H. Antioxidant Phenolic Compounds of Cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 10157–10167. [Google Scholar] [CrossRef]
- Ferdaus, M.J.; Chukwu-Munsen, E.; Foguel, A.; da Silva, R.C. Taro Roots: An Underexploited Root Crop. Nutrients 2023, 15, 3337. [Google Scholar] [CrossRef]
- Shittu, T.A.; Dixon, A.; Awonorin, S.O.; Sanni, L.O.; Maziya-Dixon, B. Bread from composite cassava–wheat flour. II: Effect of cassava genotype and nitrogen fertilizer on bread quality. Food Res. Int. 2008, 41, 569–578. [Google Scholar] [CrossRef]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; D’Amelia, V.; et al. Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [PubMed]
- Cebulak, T.; Krochmal-Marczak, B.; Stryjecka, M.; Krzysztofik, B.; Sawicka, B.; Danilčenko, H.; Jarienè, E. Phenolic Acid Content and Antioxidant Properties of Edible Potato (Solanum tuberosum L.) with Various Tuber Flesh Colours. Foods 2023, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É. Finding valuable bioactive components from Jerusalem artichoke (Helianthus tuberosus L.) leaf protein concentrate in a green biorefinery concept. bioXiv 2019, arXiv:866178. [Google Scholar] [CrossRef]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É. Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Ciborska, J.; Tańska, M.; Narwojsz, A.; Starowicz, M.; Przybyłowicz, K.E.; Sawicki, T. The Impact of the Method Extraction and Different Carrot Variety on the Carotenoid Profile, Total Phenolic Content and Antioxidant Properties of Juices. Plants 2020, 9, 1759. [Google Scholar] [CrossRef]
- Munim, A.; Rod, M.; Tavakoli, H.; Hosseinian, F. An Analysis of the Composition, Health Benefits, and Future Market Potential of the Jerusalem Artichoke in Canada. J. Food Res. 2017, 6, 69. [Google Scholar] [CrossRef]
- Aigster, A.; Duncan, S.E.; Conforti, F.D.; Barbeau, W.E. Physicochemical properties and sensory attributes of resistant starch-supplemented granola bars and cereals. LWT-Food Sci. Technol. 2011, 44, 2159–2165. [Google Scholar] [CrossRef]
- Raigond, P.; Ezekiel, R.; Raigond, B. Resistant starch in food: A review. J. Sci. Food Agric. 2015, 95, 1968–1978. [Google Scholar] [CrossRef]
- Kavey, R.E.W.; Daniels, S.R.; Lauer, R.M.; Atkins, D.L.; Hayman, L.L.; Taubert, K. American Heart Association Guidelines for Primary Prevention of Atherosclerotic Cardiovascular Disease Beginning in Childhood. Circulation 2003, 107, 1562–1566. [Google Scholar] [CrossRef]
- Bullock, N.R.; Norton, G. Biotechniques to assess the fermentation of resistant starch in the mammalian gastrointestinal tract. Carbohydr. Polym. 1999, 38, 225–230. [Google Scholar] [CrossRef]
- Morita, T.; Oh-hashi, A.; Takei, K.; Ikai, M.; Kasaoka, S.; Kiriyama, S. Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. J. Nutr. 1997, 127, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Ashwar, B.A.; Gani, A.; Shah, A.; Wani, I.A.; Masoodi, F.A. Preparation, health benefits and applications of resistant starch—A review. Starch-Stärke 2016, 68, 287–301. [Google Scholar] [CrossRef]
- Leszczyński, W. Resistant starch–classification, structure, production. Pol. J. Food Nutr. Sci. 2004, 54, 37–50. [Google Scholar]
- Robertson, T.M.; Alzaabi, A.Z.; Robertson, M.D.; Fielding, B.A. Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients 2018, 10, 1764. [Google Scholar] [CrossRef]
- Brumovsky, L.A.; Brumovsky, J.O.; Fretes, M.R.; Peralta, J.M. Quantification of resistant starch in several starch sources treated thermally. Int. J. Food Prop. 2009, 12, 451–460. [Google Scholar] [CrossRef]
- Peng, Z.; Cheng, L.; Meng, K.; Shen, Y.; Wu, D.; Shu, X. Retaining a large amount of resistant starch in cooked potato through microwave heating after freeze-drying. Curr. Res. Food Sci. 2022, 5, 1660–1667. [Google Scholar] [CrossRef]
- Moongngarm, A. Chemical compositions and resistant starch content in starchy foods. Am. J. Agric. Biol. Sci. 2013, 8, 107–113. [Google Scholar] [CrossRef]
- Mejía-Agüero, L.E.; Galeno, F.; Hernández-Hernández, O.; Matehus, J.; Tovar, J. Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties. J. Sci. Food Agric. 2012, 92, 673–678. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Vashisht, P.; Bebartta, R.P.; Thakur, D.; Chaudhary, V. Jerusalem Artichoke: A Comprehensive Review of Nutritional Composition, Health Benefits and Emerging Trends in Food Applications. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70114. [Google Scholar] [CrossRef]
- Spooner, D.M. Solanum tuberosum (Potatoes). In Brenner’s Encyclopedia of Genetics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 481–483. [Google Scholar] [CrossRef]
- Temesgen, M.; Retta, N. Nutritional potential, health and food security benefits of taro (Colocasia esculenta (L.)): A review. Food Sci. Qual. Manag. 2015, 36, 23–26. [Google Scholar]
- Zekarias, T.; Basa, B.; Herago, T. Medicinal, nutritional and anti-nutritional properties of cassava (Manihot esculenta): A review. Acad. J. Nutr. 2019, 8, 34–46. [Google Scholar]
- Dhawan, D.; Sharma, S. Exploration of the nourishing, antioxidant and product development potential of beetroot (Beta vulgaris) flour. Int. J. Health Sci. Res. 2019, 9, 280–284. [Google Scholar]
- Atalo, E.G.; Rollon, R.J.C.; Jabagat, G.D. Impact of nutrient management strategies on cassava performance, nutrient uptake, and economic returns in Agusan del Sur, Philippines. Ceylon J. Sci. 2025, 54, 515–525. [Google Scholar] [CrossRef]
- Zhou, L.; Mu, T.H.; Ma, M.M.; Zhang, R.F.; Sun, Q.H.; Xu, Y.W. Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making. J. Integr. Agric. 2019, 18, 231–245. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Deng, B.; Ru, W.; Tong, C.; Bao, J. Physicochemical, nutritional, and antioxidant properties in seven sweet potato flours. Front. Nutr. 2022, 9, 923257. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Nutti, M.R.; Viana de Carvalho, J.L. Carotenoids of sweet potato, cassava, and maize and their use in bread and flour fortification. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 301–311. [Google Scholar] [CrossRef]
- Tharise, N.; Julianti, E.; Nurminah, M. Evaluation of physico-chemical and functional properties of composite flour from cassava, rice, potato, soybean and xanthan gum as alternative of wheat flour. Int. Food Res. J. 2014, 21, 1641–1649. [Google Scholar]
- Chhikara, N.; Kushwaha, K.; Jaglan, S.; Sharma, P.; Panghal, A. Nutritional, physicochemical, and functional quality of beetroot (Beta vulgaris L.) incorporated Asian noodles. Cereal Chem. 2019, 96, 154–161. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.; Stevenson, E. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Purewal, S.S.; Verma, P.; Kaur, P.; Sandhu, K.S.; Singh, R.S.; Kaur, A.; Salar, R.K. A comparative study on proximate composition, mineral profile, bioactive compounds and antioxidant properties in diverse carrot (Daucus carota L.) flour. Biocatal. Agric. Biotechnol. 2023, 48, 102640. [Google Scholar] [CrossRef]
- Bashir, R.; Tabassum, S.; Rashid, A.; Rehman, S.; Adnan, A.; Ghaffar, R. Bioactive components of root vegetables. In Advances in Root Vegetables Research; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Tian, Z.; Dong, T.; Wang, S.; Sun, J.; Chen, H.; Zhang, N.; Wang, S. A comprehensive review on botany, chemical composition and the impacts of heat processing and dehydration on the aroma formation of fresh carrot. Food Chem. X 2024, 22, 101201. [Google Scholar] [CrossRef] [PubMed]
- Franková, H.; Musilová, J.; Árvay, J.; Šnirc, M.; Jančo, I.; Lidiková, J.; Vollmannová, A. Changes in antioxidant properties and phenolics in sweet potatoes (Ipomoea batatas L.) due to heat treatments. Molecules 2022, 27, 1884. [Google Scholar] [CrossRef]
- Musilová, J.; Franková, H.; Fedorková, S.; Lidiková, J.; Vollmannová, A.; Sulírová, K.; Árvay, J.; Kasal, P. Comparison of polyphenols, phenolic acids, and antioxidant activity in sweet potato (Ipomoea batatas L.) tubers after heat treatments. J. Agric. Food Res. 2024, 18, 101271. [Google Scholar] [CrossRef]
- Corrêa, A.C.N.T.F.; Vericimo, M.A.; Dashevskiy, A.; Pereira, P.R.; Paschoalin, V.M.F. Liposomal taro lectin nanocapsules control human glioblastoma and mammary adenocarcinoma cell proliferation. Molecules 2019, 24, 471. [Google Scholar] [CrossRef]
- Agyare, C.; Boakye, Y.D. Antimicrobial and anti-inflammatory properties of Anchomanes difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem. Pharmacol. 2015, 5, 1000201. [Google Scholar] [CrossRef]
- Baro, M.R.; Das, M.; Kalita, A.; Das, B.; Sarma, K. Exploring the anti-inflammatory potential of Colocasia esculenta root extract in in-vitro and in-vivo models of inflammation. J. Ethnopharmacol. 2023, 303, 116021. [Google Scholar] [CrossRef]
- Li, H.; Hwang, S.; Kang, B.; Hong, J.; Lim, S. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. Molecules 2014, 19, 13212–13224. [Google Scholar] [CrossRef]
- Chakraborty, P.; Deb, P.; Chakraborty, S.; Chatterjee, B.; Abraham, J. Cytotoxicity and antimicrobial activity of Colocasia esculenta. J. Chem. Pharm. Res. 2015, 7, 627–635. [Google Scholar]
- Elmosallamy, A.; Eltawil, N.; Ibrahim, S.; Hussein, S. Phenolic profile: Antimicrobial activity and antioxidant capacity of Colocasia esculenta (L.) Schott. Egypt. J. Chem. 2021, 64, 2165–2172. [Google Scholar] [CrossRef]
- Mergedus, A.; Kristl, J.; Ivancic, A.; Sober, A.; Sustar, V.; Krizan, T.; Lebot, V. Variation of mineral composition in different parts of taro (Colocasia esculenta) corms. Food Chem. 2015, 170, 37–46. [Google Scholar] [CrossRef]
- Nagar, C.K.; Dash, S.K.; Rayaguru, K.; Pal, U.S.; Nedunchezhiyan, M. Isolation, characterization, modification and uses of taro starch: A review. Int. J. Biol. Macromol. 2021, 192, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Baião, D.; De Freitas, C.; Gomes, L.; Da Silva, D.; Correa, A.; Pereira, P.; Aguila, E.; Paschoalin, V. Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients 2017, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Eze, F.O.; Mukosha, C.E.; Anozie, C.; Moudrý, J.; Ali, S.; Ghorbani, M.; Amirahmadi, E.; Baloch, S.B.; Baiyeri, K.P. Response of carrots (Daucus carota) on the growth, yield, and nutritional composition to varying poultry manure rates. Agric. Res. 2024, 13, 841–850. [Google Scholar] [CrossRef]
- Verma, R.; Chandra, S.; Patel, S.V.; Sardar, R.S.S.; Patel, V. Cassava processing and its food application: A review. Pharma Innov. J. 2022, 11, 415–422. [Google Scholar]
- Fang, Z.; Wu, D.; Yü, D.; Ye, X.; Liu, D.; Chen, J. Phenolic compounds in Chinese purple yam and changes during vacuum frying. Food Chem. 2011, 128, 943–948. [Google Scholar] [CrossRef]
- Brown, C.R. Breeding for phytonutrient enhancement of potato. Am. J. Potato Res. 2008, 85, 298–307. [Google Scholar] [CrossRef]
- Brown, C.R.; Durst, R.W.; Wrolstad, R.; De Jong, W. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res. 2008, 51, 259–270. [Google Scholar] [CrossRef]
- Pandey, J.; Gautam, S.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Variation and Genetic Basis of Mineral Content in Potato Tubers and Prospects for Genomic Selection. Front. Plant Sci. 2023, 14, 1301297. [Google Scholar] [CrossRef]
- Showkat, M.M.; Falck-Ytter, A.B.; Strætkvern, K.O. Phenolic acids in Jerusalem artichoke (Helianthus tuberosus L.): Plant organ dependent antioxidant activity and optimized extraction from leaves. Molecules 2019, 24, 3296. [Google Scholar] [CrossRef]
- Ayele, E.; Urga, K.; Chandravanshi, B.S. Effect of cooking temperature on mineral content and anti-nutritional factors of yam and taro grown in southern Ethiopia. Int. J. Food Eng. 2015, 11, 371–382. [Google Scholar] [CrossRef]
- Price, E.J.; Bhattacharjee, R.; Lopez-Montes, A.; Fraser, P.D. Carotenoid profiling of yams: Clarity, comparisons and diversity. Food Chem. 2018, 259, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Caetano, B.; De Moura, N.; Almeida, A.; Dias, M.; Sivieri, K.; Barbisan, L. Yacon (Smallanthus sonchifolius) as a food supplement: Health-promoting benefits of fructooligosaccharides. Nutrients 2016, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.D.A.R.; Barcelos, M.D.F.P.; Pereira, M.C.D.A.; Ferreira, E.B. Studies of chemical and enzymatic characteristics of yacon (Smallanthus sonchifolius) and its flours. Food Sci. Technol. 2013, 33, 75–83. [Google Scholar] [CrossRef]
- Sousa, S.; Pinto, J.; Rodrigues, C.; Gião, M.; Pereira, C.; Tavaria, F.; Malcata, F.X.; Gomes, A.; Pacheco, M.B.; Pintado, M. Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour. Food Chem. 2015, 188, 504–509. [Google Scholar] [CrossRef]
- de Almeida Paula, H.A.; Abranches, M.V.; de Luces Fortes Ferreira, C.L. Yacon (Smallanthus sonchifolius): A food with multiple functions. Crit. Rev. Food Sci. Nutr. 2015, 55, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Trinidad, T.P.; Mallillin, A.C.; Sagum, R.S.; Encabo, R.R. Glycemic index of commonly consumed carbohydrate foods in the Philippines. J. Funct. Foods 2010, 2, 271–274. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Jansky, S.; Fajardo, D. Amylose content decreases during tuber development in potato. J. Sci. Food Agric. 2016, 96, 4560–4564. [Google Scholar] [CrossRef]
- Nayak, B.; Berrios, J.D.J.; Tang, J. Impact of food processing on the glycemic index (GI) of potato products. Food Res. Int. 2014, 56, 35–46. [Google Scholar] [CrossRef]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef]
- Monro, J.; Mishra, S.; Blandford, E.; Anderson, J.; Genet, R. Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool. J. Food Compos. Anal. 2009, 22, 539–545. [Google Scholar] [CrossRef]
- Iancu, M.L. Effect of potato (Solanum tuberosum) addition on dough properties, sensory qualities and resistant starch content of bread. Ann. Univ. Dunarea Jos Galaţi Fascicle VI-Food Technol. 2015, 39, 93–108. [Google Scholar]
- Kumar, A.; Mahapatra, S.; Nayak, L.; Biswal, M.; Sahoo, U.; Lal, M.K.; Nayak, A.K.; Pati, K. Tuber crops could be a potential food component for lowering starch digestibility and estimated glycemic index in rice. J. Sci. Food Agric. 2024, 104, 8519–8528. [Google Scholar] [CrossRef] [PubMed]
- Ajani, R.; Oboh, G.; Adefegha, S.A.; Nwokocha, K.E.; Akindahunsi, A.A. Sensory attributes, nutritional qualities, and glycemic indices of bread blends produced from cocoa powder flavored yellow-fleshed cassava-wheat composite flours. J. Food Process. Preserv. 2020, 44, e14673. [Google Scholar] [CrossRef]
- Çetin Babaoğlu, H.; Arslan Tontul, S.; Akin, N. Fiber enrichment of sourdough bread by inulin rich Jerusalem artichoke powder. J. Food Process. Preserv. 2021, 45, e15928. [Google Scholar] [CrossRef]
- Radovanovic, A.M.; Milovanovic, Z.Z.; Kipic, M.Z.; Ninkovic, M.B.; Cupara, S.M. Characterization of bread enriched with Jerusalem artichoke powder content. J. Food Nutr. Res. 2014, 2, 895–898. [Google Scholar] [CrossRef]
- Rolim, P.M.; Salgado, S.M.; Padilha, V.M.; Livera, A.V.S.; Andrade, S.A.C.; Guerra, N.B. Glycemic profile and prebiotic potential “in vitro” of bread with yacon (Smallanthus sonchifolius) flour. Ciênc. Tecnol. Aliment. 2011, 31, 467–474. [Google Scholar] [CrossRef]
- Liu, X.; Lu, K.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chem. 2019, 284, 118–124. [Google Scholar] [CrossRef]
- Simsek, S.; El, S.N. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chem. 2015, 168, 257–261. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Isaacs, R.L.C.; Teelucksingh, S.; Wolever, T.M.S. Glycaemic index of selected staples commonly eaten in the Caribbean and the effects of boiling v. crushing. Br. J. Nutr. 2004, 91, 971–977. [Google Scholar] [CrossRef]
- Jaworska, D.; Mojska, H.; Gielecińska, I.; Najman, K.; Gondek, E.; Przybylski, W.; Krzyczkowska, P. The effect of vegetable and spice addition on the acrylamide content and antioxidant activity of innovative cereal products. Food Addit. Contam. Part A 2019, 36, 374–384. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- Semla, M.; Goc, Z.; Martiniaková, M.; Omelka, R.; Formicki, G. Acrylamide: A common food toxin related to physiological functions and health. Physiol. Res. 2017, 66, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Pacetti, D.; Gil, E.; Frega, N.G.; Álvarez, L.; Dueñas, P.; Garzón, A.; Lucci, P. Acrylamide levels in selected Colombian foods. Food Addit. Contam. Part B 2015, 8, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Amrein, T.M.; Bachmann, S.; Noti, A.; Biedermann, M.; Barbosa, M.F.; Biedermann-Brem, S.; Grob, K.; Keiser, A.; Realini, P.; Escher, F.; et al. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. J. Agric. Food Chem. 2003, 51, 5556–5560. [Google Scholar] [CrossRef]
- Gomes, P.T.C.; Nassar, N.M.A. Cassava interspecific hybrids with increased protein content and improved amino acid profiles. Genet. Mol. Res. 2013, 12, 1214–1222. [Google Scholar] [CrossRef]
- Lim, P.K.; Jinap, S.; Sanny, M.; Tan, C.P.; Khatib, A. The influence of deep frying using various vegetable oils on acrylamide formation in sweet potato (Ipomoea batatas L. Lam) chips. J. Food Sci. 2014, 79, C173–C178. [Google Scholar] [CrossRef]
- Njintang, N.Y.; Boudjeko, T.; Tatsadjieu, L.N.; Nguema-Ona, E.; Scher, J.; Mbofung, C.M.F. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. J. Food Sci. Technol. 2014, 51, 900–907. [Google Scholar] [CrossRef]
- Choińska, R.; Piasecka-Jóźwiak, K.; Woźniak, Ł.; Świder, O.; Bartosiak, E.; Bujak, M.; Roszko, M.Ł. Starter culture-related changes in free amino acids, biogenic amines profile, and antioxidant properties of fermented red beetroot grown in Poland. Sci. Rep. 2022, 12, 20063. [Google Scholar] [CrossRef]
- Stolz, P.; Strube, J. Determination of the physiological amino acid status for identification of the culture system of wheat and carrots—Method and validation. Biol. Agric. Hortic. 2010, 27, 107–127. [Google Scholar] [CrossRef]
- Danilcenko, H.; Jariene, E.; Gajewski, M.; Sawicka, B.; Kulaitiene, J.; Cerniauskiene, J. Changes in amino acids content in tubers of Jerusalem artichoke (Helianthus tuberosus L.) cultivars during storage. Acta Sci. Pol. Hortorum Cultus 2013, 12, 97–105. [Google Scholar]
- Varma, K.; John, J.A. Cost-effective approaches for acrylamide mitigation in high-temperature-processed tuber snacks. J. Food Process. Preserv. 2022, 46, e17274. [Google Scholar] [CrossRef]
- Swiacka, J.; Kima, L.; Voß, A.; Grebenteuch, S.; Rohn, S.; Jekle, M. Special bakery products—Acrylamide formation and bread quality are influenced by potato addition. J. Cereal Sci. 2024, 117, 103926. [Google Scholar] [CrossRef]
- Swiacka, J.; Kima, L.; Voß, A.; Bork, L.V.; Grebenteuch, S.; Rohn, S.; Jekle, M. Carrot strips of various origins: Impact on acrylamide formation in baked goods. LWT 2024, 204, 116453. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sadd, P.A.; Liang, L. Correlations between the Amounts of Free Asparagine and Saccharides Present in Commercial Cereal Flours in the United Kingdom and the Generation of Acrylamide during Cooking. J. Agric. Food Chem. 2008, 56, 6145–6153. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 2010, 25, 252–258. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Rinaldoni, A.N.; Campderrós, M.E. Assessment of Jerusalem artichoke as a source for the production of gluten-free flour and fructan concentrate by ultrafiltration. Appl. Food Res. 2022, 2, 100201. [Google Scholar] [CrossRef]
- Melilli, M.G.; Buzzanca, C.; Di Stefano, V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr. Polym. 2024, 332, 121918. [Google Scholar] [CrossRef]
- Utami, N.W.A.; Sone, T.; Tanaka, M.; Nakatsu, C.H.; Saito, A.; Asano, K. Comparison of yacon (Smallanthus sonchifolius) tuber with commercialized fructo-oligosaccharides (FOS) in terms of physiology, fermentation products and intestinal microbial communities in rats. Biosci. Microbiota Food Health 2013, 32, 167–178. [Google Scholar] [CrossRef]
- Costa, G.T.; Vasconcelos, Q.D.J.S.; Abreu, G.C.; Albuquerque, A.O.; Vilar, J.L.; Aragão, G.F. Systematic review of the ingestion of fructooligosaccharides on the absorption of minerals and trace elements versus control groups. Clin. Nutr. ESPEN 2021, 41, 68–76. [Google Scholar] [CrossRef]
- Morariu, I.D.; Avasilcai, L.; Vieriu, M.; Lupu, V.V.; Morariu, B.A.; Lupu, A.; Morariu, P.C.; Pop, O.L.; Starcea, I.M.; Trandafir, L. Effects of a low-FODMAP diet on irritable bowel syndrome in both children and adults—A narrative review. Nutrients 2023, 15, 2295. [Google Scholar] [CrossRef]
- Udoro, E.O.; Anyasi, T.A.; Jideani, A.I.O. Process-induced modifications on quality attributes of cassava (Manihot esculenta Crantz) flour. Processes 2021, 9, 1891. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Lim, J.; McMeans, A.R.; Shulman, R.J.; Hamaker, B.R. Evaluation of FODMAP carbohydrates content in selected foods in the United States. J. Pediatr. 2018, 199, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Atzler, J.J.; Sahin, A.W.; Gallagher, E.; Zannini, E.; Arendt, E.K. Characteristics and properties of fibres suitable for a low FODMAP diet—An overview. Trends Food Sci. Technol. 2021, 112, 823–836. [Google Scholar] [CrossRef]
- Sancho, R.A.S.; Souza, J.D.R.; de Lima, F.A.; Pastore, G.M. Evaluation of oligosaccharide profiles in selected cooked tubers and roots subjected to in vitro digestion. LWT-Food Sci. Technol. 2017, 76, 270–277. [Google Scholar] [CrossRef]
- Alowo, D.; Olum, S.; Mukisa, I.M.; Ongeng, D. Effect of thermal and non-thermal processing on fermentable oligo-di-monosaccharides and polyols (FODMAPs) content in millet, sorghum, soybean and sesame varieties. Front. Nutr. 2025, 12, 1520510. [Google Scholar] [CrossRef]
- Franco-Robles, E.; López, M.G. Implication of fructans in health: Immunomodulatory and antioxidant mechanisms. Sci. World J. 2015, 2015, 289267. [Google Scholar] [CrossRef]
- Bae, J.-H.; Kim, H.-J.; Kim, M.-J.; Sung, B.H.; Jeon, J.-H.; Kim, H.-S.; Jin, Y.-S.; Kweon, D.-H.; Sohn, J.-H. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus. J. Biotechnol. 2018, 266, 27–33. [Google Scholar] [CrossRef]
- Flores, A.C.; Morlett, J.A.; Rodríguez, R. Inulin potential for enzymatic obtaining of prebiotic oligosaccharides. Crit. Rev. Food Sci. Nutr. 2016, 56, 1893–1902. [Google Scholar] [CrossRef]
- Matias, S.; Perez-Junkera, G.; Martínez, O.; Miranda, J.; Larretxi, I.; Peña, L.; Bustamante, M.Á.; Churruca, I.; Simón, E. FODMAP Content Like-by-like Comparison in Spanish Gluten-free and Gluten-containing Cereal-based Products. Plant Foods Hum. Nutr. 2024, 79, 545–550. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Ooko Abong, G.; Muzhingi, T.; Wandayi Okoth, M.; Ng’ang’a, F.; Ochieng’, P.E.; Mahuga Mbogo, D.; Malavi, D.; Akhwale, M.; Ghimire, S. Phytochemicals in leaves and roots of selected Kenyan orange-fleshed sweet potato (OFSP) varieties. Int. J. Food Sci. 2020, 2020, 3567972. [Google Scholar] [CrossRef] [PubMed]
- Marfo, E.K.; Simpson, B.K.; Idowu, J.S.; Oke, O.L. Effect of local food processing on phytate levels in cassava, cocoyam, yam, maize, sorghum, rice, cowpea and soybean. J. Agric. Food Chem. 1990, 38, 1580–1585. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Israr, B.; Bhatty, N.; Ali, A. Effect of cooking on soluble and insoluble oxalate contents in selected Pakistani vegetables and beans. Int. J. Food Prop. 2011, 14, 241–249. [Google Scholar] [CrossRef]
- Chai, W.; Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 2005, 53, 3027–3030. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.A.; Gemede, H.F.; Olika Keyata, E. Nutritional composition, antinutrient contents, and polyphenol compounds of selected underutilized and some commonly consumed vegetables in East Wollega, West Ethiopia. J. Food Qual. 2022, 2022, 6942039. [Google Scholar] [CrossRef]
- Khokhar, S.; Pushpanjali; Fenwick, G.R. Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State. J. Agric. Food Chem. 1994, 42, 2440–2444. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Phillippy, B.Q. Inositol phosphates in foods. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2003; Volume 45, pp. 1–60. [Google Scholar] [CrossRef]
- Savage, G.P.; Mårtensson, L. Comparison of the estimates of the oxalate content of taro leaves and corms and a selection of Indian vegetables following hot water, hot acid and in vitro extraction methods. J. Food Compos. Anal. 2010, 23, 113–117. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT-Food Sci. Technol. 2012, 48, 59–68. [Google Scholar] [CrossRef]
- Uwamariya, V.; Wamalwa, L.N.; Anyango, J.; Nduko, J.M.; Indieka, A.S. Variation and correlation of corm trace elements, anti-nutrients and sensory attributes of taro crisps. J. Food Compos. Anal. 2021, 100, 103896. [Google Scholar] [CrossRef]
- Holmes, R.P.; Kennedy, M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000, 57, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Joung, H.; Nam, G.; Yoon, S.; Lee, J.; Shim, J.E.; Paik, H.Y. Bioavailable zinc intake of Korean adults in relation to the phytate content of Korean foods. J. Food Compos. Anal. 2004, 17, 713–724. [Google Scholar] [CrossRef]
- Raj Bhandari, M.; Kawabata, J. Cooking effects on oxalate, phytate, trypsin and α-amylase inhibitors of wild yam tubers of Nepal. J. Food Compos. Anal. 2006, 19, 524–530. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The oxalate content of fruit and vegetable juices, nectars and drinks. J. Food Compos. Anal. 2016, 45, 108–112. [Google Scholar] [CrossRef]
- Gouveia, C.S.; Ganança, J.F.; Lebot, V.; Pinheiro de Carvalho, M.Â. Changes in oxalate composition and other nutritive traits in root tubers and shoots of sweet potato (Ipomoea batatas L. [Lam.]) under water stress. J. Sci. Food Agric. 2020, 100, 1702–1710. [Google Scholar] [CrossRef]
- Judprasong, K.; Archeepsudcharit, N.; Chantapiriyapoon, K.; Tanaviyutpakdee, P.; Temviriyanukul, P. Nutrients and natural toxic substances in commonly consumed Jerusalem artichoke (Helianthus tuberosus L.) tuber. Food Chem. 2018, 238, 173–179. [Google Scholar] [CrossRef]
- Gonzales, M.G.; Del Rosario, R.M.; Walag, A.M.P. Proximate biochemical composition and antinutritional analyses of the selected parts of yacon (Smallanthus sonchifolius). Asian J. Biol. Life Sci. 2023, 12, 352–358. [Google Scholar]
- Asiyanbi-Hammed, T.T.; Simsek, S. Comparison of physical and chemical properties of wheat flour, fermented yam flour, and unfermented yam flour. J. Food Process. Preserv. 2018, 42, e13844. [Google Scholar] [CrossRef]
- Williams, H.E.; Wandzilak, T.R. Oxalate synthesis, transport and the hyperoxaluric syndromes. J. Urol. 1989, 141, 742–747. [Google Scholar] [CrossRef]
- Sanz, P.; Reig, R. Clinical and pathological findings in fatal plant oxalosis. Am. J. Forensic Med. Pathol. 1992, 13, 342–345. [Google Scholar] [CrossRef]
- Marcason, W. Where Can I Find Information on the Oxalate Content of Foods? J. Am. Diet. Assoc. 2006, 106, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.F.; Nyadanu, D.; Akromah, R.; Osei, K.; Odoom, D.A. Evaluation and phenotypic plasticity of taro [Colocasia esculenta (L.) Schott.] genotypes for nutrient and anti-nutrient composition. PLoS ONE 2023, 18, e0291358. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J. Plant cyanogenic glycosides. Toxicon 2000, 38, 11–36. [Google Scholar] [CrossRef] [PubMed]
- JECFA. Safety Evaluation of Certain Food Additives and Contaminants; WHO Food Additives Series No. 65; World Health Organization: Geneva, Switzerland, 2011; Volume 65. [Google Scholar]
- Abraham, K.; Buhrke, T.; Lampen, A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: A crossover study in humans. Arch. Toxicol. 2016, 90, 559–574. [Google Scholar] [CrossRef]
- Aloys, N.; Hui Ming, Z. Traditional cassava foods in Burundi—A review. Food Rev. Int. 2006, 22, 1–27. [Google Scholar] [CrossRef]
- Wobeto, C.; Corrêa, A.D.; Abreu, C.M.P.; Santos, C.D.; Pereira, H.V. Antinutrients in the cassava (Manihot esculenta Crantz) leaf powder at three ages of the plant. Ciênc. Tecnol. Aliment. 2007, 27, 108–112. [Google Scholar] [CrossRef]
- Siritunga, D.; Sayre, R.T. Generation of cyanogen-free transgenic cassava. Planta 2003, 217, 367–373. [Google Scholar] [CrossRef]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P.; Jayasinghe, C.V.L. Proximate Composition, Physicochemical, Functional, and Antioxidant Properties of Flours from Selected Cassava (Manihot esculenta Crantz) Varieties. Int. J. Food Sci. 2021, 2021, 6064545. [Google Scholar] [CrossRef]
- Forkum, A.T.; Wung, A.E.; Kelese, M.T.; Ndum, C.M.; Lontum, A.; Kamga, E.B.; Nsaikila, M.N.; Okwen, P.M. Safety of Cassava and Cassava-Based Products: A Systematic Review. Front. Sustain. Food Syst. 2025, 9, 1497609. [Google Scholar] [CrossRef]
- Salami, O.S.; Salami, F.K. Fermentation: A means of treating and improving the nutrition content of cassava (Manihot esculenta C.) peels and reducing its cyanide content. Genom. Appl. Biol. 2017, 8, 17–25. [Google Scholar]
- Akonor, P.T.; Dziedzoave, N.T.; Ofori, H. Degradation of cyanogenic glycosides during the processing of high quality cassava flour (HQCF). Ann. Food Sci. Technol. 2015, 16, 471–478. [Google Scholar]
- Nebiyu, A. Soaking and drying of cassava roots reduced cyanogenic potential of three cassava varieties at Jimma, Southwest Ethiopia. Afr. J. Biotechnol. 2011, 10, 13465–13469. [Google Scholar] [CrossRef]
- Birk, R.; Bravdo, B.; Shoseyov, O. Detoxification of Cassava by Aspergillus Niger B-1; Springer: Berlin/Heidelberg, Germany, 1996; Volume 45, pp. 411–414. [Google Scholar]
- Nambisan, B. Evaluation of the effect of various processing techniques on cyanogen content reduction in cassava. Acta Hortic. 1994, 375, 193–202. [Google Scholar] [CrossRef]
- Jayanty, S.S.; Kalita, D.; Bough, R. Effects of Cooking Methods on Nutritional Content in Potato Tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on glycoalkaloids in food and feed. EFSA J. 2020, 18, 6222. [Google Scholar] [CrossRef]
- Romanucci, V.; Pisanti, A.; Di Fabio, G.; Davinelli, S.; Scapagnini, G.; Guaragna, A.; Zarrelli, A. Toxin levels in different varieties of potatoes: Alarming contents of α-chaconine. Phytochem. Lett. 2016, 16, 103–107. [Google Scholar] [CrossRef]
- Kondamudi, N.; Smith, J.K.; McDougal, O.M. Determination of Glycoalkaloids in Potatoes and Potato Products by Microwave Assisted Extraction. Am. J. Potato Res. 2017, 94, 153–159. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Content of anthocyanins and glycoalkaloids in blue-fleshed potatoes and changes in the content of α-solanine and α-chaconine during manufacture of fried and dried products. Int. J. Food Sci. Technol. 2018, 53, 719–727. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E. Glycoalkaloids and Calystegine Alkaloids in Potatoes. In Advances in Potato Chemistry and Technology, 2nd ed.; Singh, J., Kaur, L., Eds.; Academic Press: London, UK, 2016; Chapter 7; pp. 167–194. [Google Scholar]
- Pęksa, A.; Tajner-Czopek, A.; Gryszkin, A.; Miedzianka, J.; Rytel, E.; Wolny, S. Assessment of the Content of Glycoalkaloids in Potato Snacks Made from Colored Potatoes, Resulting from the Action of Organic Acids and Thermal Processing. Foods 2024, 13, 1712. [Google Scholar] [CrossRef]
- Martínez-García, I.; Pérez-Quintanilla, D.; Morante Zarcero, S.; Sierra Alonso, I. Effect of Various Culinary Treatments on the Glycoalkaloid Content of Potato Peel. J. Food Compos. Anal. 2025, 137, 106937. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N. Use of Potato Flour in Bread and Flat Bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 247–259. [Google Scholar] [CrossRef]
- Happel, K.; Müller, L.; Hartwig, C.; Zorn, H. Degradation of potato pulp glycoalkaloids by cultivation of Pleurotus pulmonarius and Flammulina velutipes. Eur. Food Res. Technol. 2025, 251, 1481–1494. [Google Scholar] [CrossRef]
Raw Material | Energy [kcal/100 g] | Ash [%] | Carbohydrates [%] | Simple Sugars [%] | FOS [%] | Fat [%] | Protein [%] | Dietary Fiber [%] | Water [%] | References |
---|---|---|---|---|---|---|---|---|---|---|
Carrot | 41 | 0.7–4.5 | 7–10 | F: 0.8; G: 0.4; S: 4.5 | 0.1 | 0.1 | 0.9 | 1.2 | 86–89 | [8,9,10] |
Potatoes | 80 | 2.1 | 16.8 | F: 0.9; G: 1.0; S: 1.5 | ND | 0.25 | 1.8 | 1.30 | 79 | [9,11,12] |
Sweet potatoes | 79 | 1.2 | 17.3 | F: 0.1.2; G: 0.1–1.2; S: 1.6–2.6 | 0.1–0.2 | 0.2 | 2.0 | 4.6 | 63.3–94.4 | [9,13,14] |
Beetroot | 43 | 1.1 | 9.6 | Total 6.76 | ND | 0.17 | 1.6 | 2.8 | 87.6 | [9,15,16] |
Taro | 112 | 1.2 | 26.4 | F: 0.2–1.4; G: 0.4; S: 0.8–2.3 | 0.1 | 0.2 | 1.5 | 2.45–4.1 | 70.64 | [9,17,18] |
Yam | 118 | 1.0–3.8 | 17.9–21.9 | F: 0.2–1.4; G: 0.14–2.0; S: 0.4–0.7 | 0.2 | 0.2 –0.5 | 3.7–7.5 | 4.1 | 68.1–73.3 | [9,19,20] |
Cassava | 110–160 | 0.4–1.7 | 25.3–38.1 | F: 0.3; G: 0.2; S: 1.7 | 0.1–0.2 | 0.1–0.3 | 0.3–3.5 | 0.1–3.7 | 59.7 | [9,21,22,23] |
Yacon | 46–56 | 0.2–0.3 | 10.6–13.1 | F: 0.9; G: 0.4; S: 1.4 | 4–9.1 | 0.1–0.2 | 0.37–0.7 | 0.4–1.1 | 85.9–86.8 | [20,24,25,26] |
Jerusalem artichoke | 73 | 1.9–2.5 | 15.8–17.4 | Total 9.6 | 12–15 | 0.1 | 1.8–2 | 1.6 | 80.3 | [27,28] |
Family | Species | Oxalate | Phytate | References 1 | References 2 |
---|---|---|---|---|---|
Apiaceae | Carrot (Daucus carota) | 3–49 | 15–88; 446 ** | [147,148] | [149,150] |
Amaranthaceae | Beetroot (Beta vulgaris L. Var. Vulgaris) | 39–109 | 5–52 | [147,151] | [147,152] |
Araceae | Taro (Colocasia esculenta L. Schott) | 26.3–109 | 49.6–169 | [153,154,155] | [88,152] |
Solanaceae | Potato (Solanum tuberosum L.) | ND–26 | 21–55 | [156] | [157] |
Dioscoreaceae | Yam (Discorea deltoidea) | 4–197 | 46–72; 184–363 *; 637 | [158] | [94,152,158] |
Convolvulaceae | Sweet potato (Ipomoea batatas L. Lam.) | 467.3–523.9 **; 25.6–793.3 * | ND–12; 50–420 ** | [145,159,160] | [145,157] |
Euphorbiaceae | Cassava (Manihot esculenta) | 15.7 | 191.2–624 | [62] | [63,146] |
Asteraceae | Jerusalem artichoke Helianthus tuberosus | 0.9–22 | 30–190 | [161] | [152,161] |
Yacon (Smallanthus sonchifolius) | 8.5; 68.1 ** | 273 | [96] | [162] |
Tuber | AA | HCN | α-Solanine, α-Chaconine | Phytate | Oxalate | FODMAPs |
---|---|---|---|---|---|---|
Cassava | Moderate-High | Moderate-High | N.d./N | Moderate-High | Low | Low |
Potato | Moderate-High | N.d./N | Moderate-High | Low | Low | Low |
Sweet potato | Moderate | N.d./N | N.d./N | Low | Moderate-High | Low |
Beetroot | Low-Moderate | N.d./N | N.d./N | Low | Moderate | Low |
Carrot | Low | N.d./N | N.d./N | Low | Low | Low |
Taro | Low | N.d./N | N.d./N | Moderate | Moderate | Low |
Yam | Low | N.d./N | N.d./N | Moderate | Moderate | Low |
Jerusalem artichoke | Low | N.d./N | N.d./N | Low-Moderate | Low | High (inulin rich) |
Yacon | Low | N.d./N | N.d./N | Moderate | Low | High (FOS rich) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, R.; Pejcz, E.; Harasym, J. Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks. Molecules 2025, 30, 2838. https://doi.org/10.3390/molecules30132838
Wiśniewski R, Pejcz E, Harasym J. Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks. Molecules. 2025; 30(13):2838. https://doi.org/10.3390/molecules30132838
Chicago/Turabian StyleWiśniewski, Rafał, Ewa Pejcz, and Joanna Harasym. 2025. "Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks" Molecules 30, no. 13: 2838. https://doi.org/10.3390/molecules30132838
APA StyleWiśniewski, R., Pejcz, E., & Harasym, J. (2025). Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks. Molecules, 30(13), 2838. https://doi.org/10.3390/molecules30132838