Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
Abstract
1. Introduction
Polymer | Chemical Formula | Principal Applications | Significant Properties |
---|---|---|---|
PVDF (Polyvinylidene fluoride) | (C2H2F2)n | Sensors, energy collectors, tissue engineering | High chemical stability, piezoelectricity (β-phase), excellent biocompatibility |
PPy (Polypyrrole) | (C4H3N)n | Biosensors, drug delivery, neural interfaces | Intrinsic conductivity, poor mechanical flexibility, limited biodegradability |
PANI (Polyaniline) | (C6H5NH)n | Conductive coatings, sensors, neural electrodes | Conductive, environmental instability, poor mechanical strength |
PLA (Polylactic acid) | (C3H4O2)n | Biodegradable scaffolds, medical implants | Biodegradable, good mechanical properties, lacks electrical activity |
PCL (Polycaprolactone) | (C6H10O2)n | Long-term implants, drug delivery | Slow biodegradation, flexible, electrically inert |
PGA (Polyglycolic acid) | (C2H2O2)n | Fast-degrading sutures, tissue scaffolds | Rapid biodegradation, good strength, no piezoelectricity |
2. Materials and Methods
2.1. Design of PVDF Fiber Mats
2.2. Cell Culture
2.3. Cell Growth Control and Viability
2.4. Characterization of Hep-G2 Cells Cultivated on PVDF Fiber Mats
2.4.1. Scanning Electron Microscopy and Elemental Composition Analysis
2.4.2. Electrochemical Impedance Spectroscopy Analysis
3. Results and Discussion
3.1. Cell Culture Dynamics on Different Substrate Materials
3.2. Control and Growth of Hep-G2 Cells
3.3. Membrane Staining with Methylene Blue
3.4. Scanning Electron Microscopy (SEM) Analysis
3.5. Energy-Dispersive X-Ray Spectroscopy (EDS) Analysis
- Carbon (C) and fluorine (F): These elements are characteristic of the PVDF polymer, confirming the integrity and presence of the polymer matrix.
- Oxygen (O), phosphorus (P), and sulfur (S): Probable chemical elements derived from cellular components such as phospholipids, proteins, and nucleic acids or potentially from surface modifications introduced during processing.
- Sodium (Na) and chlorine (Cl): These elements may originate from residual components of the cell culture medium.
- Silicon (Si): Element possibly associated with metal-based coatings applied to enhance the bioactivity of the membrane.
- Aluminum (Al): Signal detected from the aluminum foil substrate (Al-foil) that supports the PVDF membrane.
3.6. Electrochemical Impedance Spectroscopy Analysis; Application
3.6.1. Electrical Circuit Model Analysis
3.6.2. Electrochemical Characterization Results
3.6.3. Electrochemical Impedance Spectroscopy (EIS)
3.6.4. Electrical Circuit Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Rothman, S. How is the balance between protein synthesis and degradation achieved? Theor. Biol. Med. Model. 2010, 7, 25. [Google Scholar] [CrossRef]
- Ribeiro, C.; Correia, D.M.; Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B Biointerfaces 2015, 136, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ushida, T.; Tateishi, T. A biodegradable hybrid sponge nested with collagen microsponges for dermal tissue engineering. Biomaterials 2002, 23, 2447–2453. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Méndez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Dallaev, R.; Pisarenko, T.; Sobola, D.; Orudzhev, F.; Ramazanov, S.; Trčka, T. Brief review of PVDF properties and applications potential. Polymers 2022, 14, 4793. [Google Scholar] [CrossRef]
- Li, Y.; Liao, C.; Tjong, S.C. Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering. Nanomaterials 2019, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Sencadas, V.; Botelho, G.; Lanceros-Méndez, S. Tailoring the morphology and crystallinity of poly(vinylidene fluoride) in electrospun nanofibers. J. Nanomater. 2015, 2015, 015001. [Google Scholar]
- Zhang, Y.; Martínez-Gómez, A.; Li, X.; Pérez, M.A. Polyvinylidene fluoride in biomedical applications: Properties, challenges, and future prospects. Eur. Polym. J. 2025, 231, 113889. [Google Scholar] [CrossRef]
- Sajkiewicz, P.; Wasiak, A.; Gocłowski, Z. Phase transitions during stretching of poly(vinylidene fluoride). Eur. Polym. J. 1999, 35, 423–429. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Du, C. Progress in piezoelectric nanogenerators based on PVDF composite films. Micromachines 2021, 12, 1278. [Google Scholar] [CrossRef]
- Lim, J.Y.; Kim, S.; Seo, Y. Enhancement of β-phase in PVDF by electrospinning. AIP Conf. Proc. 2015, 1664, 070006. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, Y.; Zhang, L. Electrospun PVDF-based piezoelectric nanofibers: Materials, structures, and applications. Nanoscale Adv. 2023, 5, 1043–1059. [Google Scholar] [CrossRef]
- Yin, J.; Boaretti, C.; Lorenzetti, A.; Trivellin, N.; Modesti, M.; Roso, M. Piezoelectric field enhanced photocatalytic efficiency of PVDF/TiO2 core–shell nanofibrous membrane via coaxial electrospinning. J. Environ. Chem. Eng. 2023, 11, 110298. [Google Scholar] [CrossRef]
- Pusty, M.; Sinha, L.; Shirage, P.M. A flexible self-poled piezoelectric nanogenerator based on a rGO–Ag/PVDF nanocomposite. New J. Chem. 2019, 43, 284–294. [Google Scholar] [CrossRef]
- Bagla, A.; Mitharwal, C.; Rault, F.; Salaün, F.; Mitra, S. Influence of solution parameters on phase formation and morphology of electrospun poly(vinylidene fluoride) nanofiber. arXiv 2022. [Google Scholar] [CrossRef]
- Mohammadpourfazeli, S.; Arash, S.; Ansari, A.; Yang, S.; Mallick, K.; Bagherzadeh, R. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electromechanical properties. RSC Adv. 2023, 13, 370–387. [Google Scholar] [CrossRef]
- Sharma, T.; Aroom, K.; Naik, S.; Gill, B.; Zhang, J.X.J. Flexible thin-film PVDF-TrFE based pressure sensor for smart catheter applications. Ann. Biomed. Eng. 2013, 41, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Shukla, P. A comparative analysis of the basic properties and applications of poly (vinylidene fluoride)(PVDF) and poly (methyl methacrylate)(PMMA). Polym. Bull. 2022, 79, 5635–5665. [Google Scholar] [CrossRef]
- Tandon, B.; Magaz, A.; Balint, R.; Blaker, J.J.; Cartmell, S.H. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. 2018, 129, 148–168. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Jiang, Y. Advanced functional polymer materials for biomedical applications. J. Appl. Polym. Sci. 2023, 140, e56391. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yao, J. Polymeric membranes for biomedical applications. Polymers 2022, 15, 619. [Google Scholar] [CrossRef]
- Motamedi, A.S.; Mirzadeh, H.; Hajiesmaeilbaigi, F.; Bagheri-Khoulenjani, S.; Shokrgozar, M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Prog. Biomater. 2017, 6, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Makarov, V.A.; Makarova, L. Dependence and homeostasis of membrane impedance on cell morphology. Sci. Rep. 2018, 8, 10314. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, X.; Sun, X.; Zhang, Y.; Wang, H. Piezoelectric biomaterials for innovative regenerative medicine. Adv. Healthc. Mater. 2019, 8, 1801043. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Zhao, Y.; Li, D. Piezoelectric materials for biomedical applications. Mater. Today Phys. 2021, 20, 100460. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- López Juárez, C.X. Aplicación de la Tecnología de Electrospinning Para el Desarrollo de la Mejora Continua de la Producción Industrial. Master’s Thesis, Universidad Autónoma del Estado de México, Repositorio Institucional de la UAEMEX, Toluca, Mexico, 2024. [Google Scholar]
- Alberts, B. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2017. [Google Scholar]
- Segeritz, C.-P.; Vallier, L. Cell Culture: Growing Cells as Model Systems in vitro. In Basic Science Methods for Clinical Researchers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151–172. [Google Scholar]
- Porras-Herrera, D.R.; Herrera-Hernández, H.; Miranda-Hernández, J.G.; Castillo-Robles, J.A.; Armendariz-Mireles, E.N.; Calles-Arriaga, C.A.; Rocha-Rangel, E. Innovative bioceramic based on hydroxyapatite with titanium nanoparticles as reinforcement for possible medical applications. J. Manuf. Mater. Process. 2024, 8, 296. [Google Scholar] [CrossRef]
- Herrera Hernández, H.; Mandujano Ruiz, A.; González Morán, C.O.; Miranda Hernández, J.G.; Flores Cuautle, J.d.J.A.; Morales Hernández, J.; Hernández Casco, I. Microstructural and Electrochemical Study: Pitting Corrosion Mechanism on A390 Al–Si Alloy and Ce–Mo Treatment as a Better Corrosion Protection. Materials 2024, 17, 3044. [Google Scholar] [CrossRef] [PubMed]
- Herrera Hernández, H.; Ruiz Reynoso, A.M.; Trinidad González, J.C.; González Morán, C.O.; Miranda Hernández, J.G.; Mandujano Ruiz, A.; Morales Hernández, J.; Orozco Cruz, R. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. In Electrochemical Impedance Spectroscopy; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Mansfeld, F.; Hsu, C.-H. Technical note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Mansfeld, F.; Hsu, C.-H. On the physical interpretation of constant phase elements. Electrochem. Solid-State Lett. 2001, 4, B1–B3. [Google Scholar]
- Mansfeld, F.; Hsu, C.-H. On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy. Electrochem. Solid-State Lett. 2001, 4, B67–B69. [Google Scholar]
- He, Z.; Mansfeld, F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2009, 2, 215–219. [Google Scholar] [CrossRef]
- Brug, G.J.; Van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Abreu-Quijano, M.A. Influence of the alkyl chain length of 2-amino-5-alkyl-1,3,4-thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corros. Sci. 2012, 54, 231–243. [Google Scholar] [CrossRef]
Location Region of EDS | Elemental Composition in Mass % | ||||||||
---|---|---|---|---|---|---|---|---|---|
C Carbon | O Oxygen | F Fluorine | Al Aluminum | S Sulfur | Cl Chlorine | P Phosphorus | Si Silicon | Na Sodium | |
Energy-Kev | ~0.28 | ~0.52 | ~0.68 | ~1.49 | ~2.31 | ~2.62 | ~2.02 | ~1.74 | ~1.04 |
a | 35.98 | 1.29 | 33.87 | 28.85 | — | — | — | — | — |
b | 57.23 | 27.45 | 13.08 | — | 1.6 | 0.43 | 0.10 | 0.06 | 0.05 |
Signal | Trasient Response | Characteristic |
---|---|---|
1 |
| |
2–3 |
| |
4–5 |
|
Data | Circuit R(CR) | Circuit R(CR)(CR) | Circuit R(C(R(CR))) | Circuit R(CR(CR)) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Modelling | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Rs [Ω-cm2] | 10 | 10 | 10 | 10 | ||||||
Cc [F/cm2] | - | 1 × 10−6 | 1 × 10−5 | 1 × 10−4 | 1 × 10−6 | 1 × 10−6 | 1 × 10−6 | 1 × 10−6 | 1 × 10−5 | 1 × 10−4 |
Rc [Ω-cm2] | - | 300 | 300 | 300 | ||||||
Cct [F/cm2] | 1 × 10−5 | 1 × 10−3 | 1 × 10−4 | 1 × 10−4 | 1 × 10−2 | 1 × 10−4 | 1 × 10−5 | 1 × 10−4 | 1 × 10−4 | 1 × 10−5 |
Rct [Ω-cm2] | 1000 | 1000 | 1000 | 1000 |
Data | Exposure Time in NaCl 0.9%Wt. | ||||
---|---|---|---|---|---|
5 h | 24 h | 72 h | 120 h | 168 h | |
Rs [Ω] | 9.24 | 9.47 | 9.15 | 9.07 | 9.7 |
Q1 [S-secn] | 1.035 × 10−9 (n = 0.9) | 4.09 × 10−6 (n = 0.7) | 2.00 × 10−6 (n = 0.6) | 1.16 × 10−5 (n = 0.6) | 8.07 × 10−5 (n = 0.6) |
ωref-Q1 [Hz] | 159 kHz | 6.31 Hz | 6.34 Hz | 6.34 Hz | 4.0 Hz |
R1 [Ω] | 5.79 × 104 | 3.00 × 104 | 1.78 × 104 | 1.58 × 104 | 1.126 × 104 |
Q2 [S-secn] | 4.37 × 10−7 (n = 0.8) | 2.288 × 10−6 (n = 0.8) | 4.39 × 10−5 (n = 0.7) | 4.77 × 10−4 (n = 0.6) | 2.97 × 10−4 (n = 0.6) |
ωref-Q2 [Hz] | 1.26 Hz | 5.04 Hz | 6.34 mHz | 252 mHz | 252 mHz |
R2 [Ω] | 6908 | 3197 | 1386 | 1136 | 63.43 |
Chi-square | 5.58 × 10−4 | 9.58 × 10−4 | 1.04 × 10−4 | 2.45 × 10−4 | 1.40 × 10−4 |
Data | Exposure Time in NaCl 0.9%Wt. | ||||
---|---|---|---|---|---|
5 h | 24 h | 72 h | 120 h | 168 h | |
Rs [Ω-cm2] | 9.24 | 9.47 | 9.15 | 9.07 | 9.7 |
Cc [F/cm2] | 2.64 × 10−10 | 1.423 × 10−6 | 5.06 × 10−6 | 2.937 × 10−5 | 2.66 × 10−5 |
Rc [Ω-cm2] | 5.79 × 104 | 3.00 × 104 | 1.78 × 104 | 1.58 × 104 | 1.126 × 104 |
Cdl [F/cm2] | 2.956 × 10−7 | 1.134 × 10−6 | 1.422 × 10−5 | 3.834 × 10−4 | 2.388 × 10−4 |
Rct [Ω-cm2] | 6908 | 3197 | 1386 | 1136 | 63.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera Hernández, H.; González Morán, C.O.; Lara Hernández, G.; Ramírez-León, I.Z.; Trujillo Romero, C.J.; Alcántara Cárdenas, J.A.; Flores Cuautle, J.d.J.A. Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial. J. Compos. Sci. 2025, 9, 401. https://doi.org/10.3390/jcs9080401
Herrera Hernández H, González Morán CO, Lara Hernández G, Ramírez-León IZ, Trujillo Romero CJ, Alcántara Cárdenas JA, Flores Cuautle JdJA. Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial. Journal of Composites Science. 2025; 9(8):401. https://doi.org/10.3390/jcs9080401
Chicago/Turabian StyleHerrera Hernández, Héctor, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas, and Jose de Jesus Agustin Flores Cuautle. 2025. "Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial" Journal of Composites Science 9, no. 8: 401. https://doi.org/10.3390/jcs9080401
APA StyleHerrera Hernández, H., González Morán, C. O., Lara Hernández, G., Ramírez-León, I. Z., Trujillo Romero, C. J., Alcántara Cárdenas, J. A., & Flores Cuautle, J. d. J. A. (2025). Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial. Journal of Composites Science, 9(8), 401. https://doi.org/10.3390/jcs9080401