Nanocomposite Modified Cement and Concrete

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanocomposite Materials".

Deadline for manuscript submissions: 19 September 2025 | Viewed by 655

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science and Engineering, University of Jinan, Jinan, China
Interests: nano-modified cement-based materials; photocatalytic cement-based materials; solid waste-based building materials

Special Issue Information

Dear Colleagues,

Nanomodified cementitious materials exhibit unique structural and functional properties that have garnered significant attention in recent years. Notably, these advanced materials are increasingly being utilized in innovative technologies and applications, particularly in construction and environmental engineering. We invite authors to contribute original research articles exploring the fundamental and applied aspects of nanomodified cementitious materials, including the effects of nanoscale additives on mechanical strength, durability, self-healing, photocatalytic properties, and resistance to environmental degradation. Topics of interest include the incorporation of nanoparticles, nanofibers, and nanocomposites, as well as their impact on microstructure, hydration processes, and multifunctional performance. Both theoretical and experimental contributions are welcome. The aim of this issue is to provide a comprehensive overview of the current advancements in the development and application of nanomodified cementitious materials, highlighting their potential to revolutionize the construction industry and address pressing environmental challenges. Potential topics include, but are not limited to, the following:

  • Nanomodified cementitious materials and nanocomposites;
  • Mechanical and durability enhancement through nanotechnology;
  • Self-healing and self-cleaning cement-based materials;
  • Photocatalytic and antimicrobial properties of cementitious systems;
  • Hydration processes and microstructural evolution in nanomaterials;
  • Functionalized nanoparticles and their applications in construction;
  • Sustainable and multifunctional cementitious materials for advanced engineering.

Dr. Dan Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • nanofibers
  • nanocomposites
  • cementitious materials
  • construction materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6793 KiB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 (registering DOI) - 26 Jun 2025
Viewed by 89
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

19 pages, 5185 KiB  
Article
Smart Cement-Based Materials Reinforced with CNT-Grafted CFs: Preparation and Performance Evaluation
by Xiaoyan Liu, Xiangwei Guo, Junqing Zuo, Aihua Liu, Haifeng Li, Feng Fu, Gangao Wang, Qianwen Hu and Surendra P. Shah
Nanomaterials 2025, 15(11), 823; https://doi.org/10.3390/nano15110823 - 29 May 2025
Viewed by 356
Abstract
Smart cement-based materials have the potential to monitor the health of structures. The performances of composites with various kinds of conductive fillers have been found to be sensitive and stable. However, poor dispersion of conductive fillers limits their application. This study adopted the [...] Read more.
Smart cement-based materials have the potential to monitor the health of structures. The performances of composites with various kinds of conductive fillers have been found to be sensitive and stable. However, poor dispersion of conductive fillers limits their application. This study adopted the coupling agent method to attach carbon nanotubes (CNTs) onto the surface of carbon fibers (CFs). The CNT-grafted CFs (CNT-CFs) were adopted as conductive fillers to develop a CNT-CF-incorporated cementitious composite (CNT-CF/CC). The feasibility of this approach was demonstrated through Scanning Electron Microscopy (SEM) analysis and X-ray Photoelectron Spectroscopy (XPS) analysis. The CNT-CF/CC exhibited excellent conductivity because of the introduction of CNTs compared with the CF-incorporated cementitious composite (CF/CC). The CNT-CF/CC reflected huge responses under different temperatures and moisture contents. Even under conditions of high humidity or elevated temperatures, the CNT-CF/CC demonstrated stable performance and exhibited a broad measurement range. The introduction of CNT-CFs also enhanced the mechanical properties of the composite, displaying superior piezoresistivity. The failure load for the CNT-CF/CC reached 25 kN and the maximum FCR was 24.77%. In the cyclic loading, the maximum FCR reached 20.03% when subjected to peak cyclic load at 45% of the failure load. The additional conductive pathways introduced by CNTs enhanced the conductivity and sensitivity of the composite. And the anchoring connection between CNT-CFs and the cement matrix has been identified as a primary factor enhancing the stability in performance. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Figure 1

Back to TopTop