Sustainable Biocomposites, 3rd Edition

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Biocomposites".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 610

Special Issue Editors


E-Mail Website
Guest Editor
Laboratoire de Biomatériaux, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
Interests: biomaterials; biocomposites; bioenergy; materials characterization; wood processing and valorization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
UniLaSalle, Unité Transformations & Agroressources, Rouen, France
Interests: matériaux biosourcés; ingénierie des polymères; matériaux composites et nanocomposites; analyses et caractérisation avancés des matériaux

E-Mail Website
Guest Editor
1. Centre for Materials and Processes, Institut Mines-Télécom, IMT Nord Europe, F-59000, Lille, France
2. Laboratoire de Génie Civil et géo-Environnement, ULR 4515 – LGCgE, Institut Mines-Télécom, University Lille, F-59000, Lille, France
Interests: materials mechanics; eco-materials; biomass and waste valorisation; biocomposites; hydrothermal treatment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Electromechanical Systems Laboratory, LASEM, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia
Interests: materials and engineering; WPC composites; polymers and composites; biocomposites; ecofriendly materials; nanocomposites; recycling; naturals fibres

Special Issue Information

Dear Colleagues,

The global economy is shifting towards a bioeconomy, and there is continuous pressure to substitute petroleum-based materials with biosourced, sustainable, and renewable ones, including biocomposites. Biocomposites are increasingly interesting as a renewable, environmentally friendly alternative to non-renewable materials. They contribute to reaching environmental targets by reducing greenhouse gas emissions (GHG) and carbon footprint. They also attenuate the impact of climate change. Thus, they contribute to building a foundation of sustainability and bioeconomy worldwide. The Euromag2025 Conference entitled “Biobased Materials for Circular Economy” addresses these issues. Manuscripts presented at this conference aim to address the challenges and opportunities of biomass valorization for the production of fossil-free biocomposites from the extraction of natural biopolymers at macro and nanoscale levels to the reuse and recycling in circular systems.

This Special Issue includes a collection of selected manuscripts presented at the Euromagh2025 Conference but is not limited to. The potential topics of interest include but are not limited to the following:

  • Processing of biocomposites and nano-biocomposites;
  • Mixtures rheology and processing;
  • Advanced characterization of biocomposites;
  • Matrix-fiber adhesion and interactions;
  • Properties, structure, and rupture mechanisms;
  • Properties modeling and optimization;
  • End-use and application;
  • Recycling, reuse, and circularity;
  • Sustainability, environmental impacts, and life cycle analysis;
  • Contribution of biocomposites to circular economy, climate change attenuation, and GHG emission mitigation.

Prof. Dr. Ahmed Koubaa
Dr. Mohamed Ragoubi
Dr. Frédéric Becquart
Dr. Ahmed Elloumi
Prof. Dr. Philippe Michaud
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • processing of biocomposites and nano-biocomposites
  • mixtures rheology and processing
  • advanced characterization of biocomposites
  • matrix-fiber adhesion and interactions
  • properties, structure, and rupture mechanisms
  • properties modeling and optimization
  • end-use and application
  • recycling, reuse, and circularity sustainability, environmental impacts, and life cycle analysis
  • contribution of biocomposites to circular economy, climate change attenuation, and GHG emission mitigation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 1992 KiB  
Article
Innovation in Biodegradable Composites: Wheat Flour and Hermetia illucens Larvae Flour Biocomposites Enhanced with Cellulose Nanocrystals
by Diana Carmona-Cantillo, Alexis López-Padilla and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(5), 249; https://doi.org/10.3390/jcs9050249 - 17 May 2025
Viewed by 73
Abstract
The development of biocomposites derived from wheat flour and Hermetia illucens (black soldier fly) larvae flour presents a viable and sustainable alternative to conventional petroleum-based plastics, which contribute significantly to environmental degradation. The incorporation of cellulose nanocrystals (CNCs) is anticipated to enhance the [...] Read more.
The development of biocomposites derived from wheat flour and Hermetia illucens (black soldier fly) larvae flour presents a viable and sustainable alternative to conventional petroleum-based plastics, which contribute significantly to environmental degradation. The incorporation of cellulose nanocrystals (CNCs) is anticipated to enhance the functional properties of these materials, particularly for food packaging applications. The objective of this study was to develop and characterise biodegradable composites formulated from wheat and larvae flours, and to evaluate the effect of CNC addition on their physicochemical, mechanical, and structural properties. The biocomposites were produced using compression moulding and subsequently subjected to comprehensive characterisation. The results indicated that the addition of CNCs markedly improved the optical, barrier, and mechanical properties of the composites. These improvements render the materials suitable for packaging systems requiring moisture retention and reduced permeability to water vapour. From a mechanical perspective, composites incorporating CNCs exhibited increased tensile strength and stiffness, although a reduction in elongation at break was observed when compared to those prepared solely with larvae flour (LF). Scanning electron microscopy (SEM) analyses revealed that higher concentrations of larvae flour yielded composites with fewer surface fractures and reduced porosity. In conclusion, the utilisation of wheat and insect larvae flours, in combination with cellulose nanocrystals, represents an innovative and environmentally responsible approach for the development of biodegradable composites suitable for eco-friendly food packaging applications. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

17 pages, 8604 KiB  
Article
Design of Composite Systems Based on Hydrophilic Silica and Organic Acids: Gallic, Glycyrrhizic and Its Salts
by Tetiana Krupska, Qiliang Wei, Jinju Zheng, Weiyou Yang, Alina Holovan, Mykola Borysenko and Volodymyr Turov
J. Compos. Sci. 2025, 9(5), 247; https://doi.org/10.3390/jcs9050247 - 16 May 2025
Viewed by 36
Abstract
The process of formation of composite systems based on nanosilica A-300 and biologically active substances (BAS), namely gallic acid (GA), glycyrrhizic acid (GLA), and its salts, was studied using a set of physicochemical methods. It was shown that when BAS are immobilized on [...] Read more.
The process of formation of composite systems based on nanosilica A-300 and biologically active substances (BAS), namely gallic acid (GA), glycyrrhizic acid (GLA), and its salts, was studied using a set of physicochemical methods. It was shown that when BAS are immobilized on the silica surface by the method of joint grinding in a porcelain mortar, they pass into a nanosized X-ray amorphous state. Water adsorbed on the surface of such composite systems is also in a clustered state, and the radius of adsorbed water clusters is in the range of 0.4–50 nm. The chloroform environment has a complex effect on the size of water clusters. In general, there is a tendency for the radius of water clusters to increase when air is replaced by a chloroform environment. However, this does not always lead to a decrease in the interfacial energy. The possibility of the existence of metastable ice in the temperature range up to 287 K, stabilized by the surface of composite systems, was discovered. The amount of such ice can reach 20% of the total water content in the sample. The possibility of using complex viscosity measurements for hydrated silica powders and silica containing immobilized biologically active substances was shown. These measurements allow recording changes in the phase state of complex mixtures during the formation of compact composite forms under the influence of periodic mechanical loading. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Effect of the Addition of Banana Stem Lignin (Musa acuminata ssp. balbisiana var. Dominico-Harton) on the Physicochemical Properties of Biodegradable Composites Based on Methylhydroxyethylcellulose
by Yonier Alejandro Ocampo-Gómez, Fabian Rico-Rodríguez, Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(5), 244; https://doi.org/10.3390/jcs9050244 - 15 May 2025
Viewed by 141
Abstract
This study analyses the effect of lignin extracted from the Dominico-Harton banana on the physicochemical properties of biodegradable methylhydroxyethylcellulose (MHEC) composites. Lignin was obtained by grinding and sieving, followed by treatment with sulphuric acid and subsequent separation via centrifugation. Films were developed using [...] Read more.
This study analyses the effect of lignin extracted from the Dominico-Harton banana on the physicochemical properties of biodegradable methylhydroxyethylcellulose (MHEC) composites. Lignin was obtained by grinding and sieving, followed by treatment with sulphuric acid and subsequent separation via centrifugation. Films were developed using the casting method, incorporating lignin and glycerol in a matrix of MHEC dissolved in distilled water. They were characterised according to their physical, barrier, mechanical, optical, and antioxidant properties, using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The results showed that lignin provides antioxidant capacity and improves mechanical and barrier properties, while MHEC contributes flexibility and biodegradability. These films have a dense and resistant structure, with potential applications in food packaging, agriculture, and medicine. The research highlights the use of agricultural waste to develop sustainable materials as an alternative to conventional plastics. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

Back to TopTop