Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability
Abstract
1. Introduction
- Production of rapidly dissolving nanofibers
- Enhanced dissolution rates for poorly water-soluble drugs [34,35,36,37]. The high surface area of nanofibers accelerates drug dissolution, potentially increasing their bioavailability [38]. Additionally, amorphous PVP can molecularly interact with drugs, stabilizing them in amorphous forms, which further enhances solubility [39].
- -
- Suppresses drug crystallization
- -
- To investigate how the PHB/PVP blend composition affects the structural-dynamic parameters of electrospun materials using EPR, DSC, and IR spectroscopy.
- To characterize the fiber diameter and cross-sectional geometry of these polymer systems.
2. Materials and Methods
2.1. Preparation of Forming Solutions, Electrospinning of PHB/PVP
2.2. X-Band Electron Paramagnetic Resonance
2.3. Differential Scanning Calorimetry
2.4. Sorption Capacity of Ultrafine PHB/PVP Fibers
- Pre-treatment: 1-h evacuation to 0.1 mmHg (oil forevacuum pump) to remove ambient moisture
- Equilibration: Exposure to controlled water vapor pressures via a saturated inlet cylinder
- Measurement: Cathetometer recording of spiral elongation until equilibrium
- Pressure increment: Stepwise increases (0.8–0.9 activity range) with re-equilibration
- -
- Kinetic curve construction (mass gain vs. time) at discrete pressures
- -
- Equilibrium moisture uptake calculation
- -
- Water diffusion coefficient derivation
- -
- Sorption isotherm plotting (moisture uptake vs. vapor activity)
2.5. IR Spectroscopy
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
- -
- Elongated elliptical beads (25–30 μm longitudinal; 10–15 μm transverse dimensions)
- -
- Cylindrical fiber segments averaging 2–3 μm in diameter
- -
- Heterogeneous structures combining fibers (2–5 μm diameter) and fiber-like deposits
- -
- Resulting from a suboptimal molecular weight for stable electrospinning
- Electrospraying (droplet formation)
- Mixed-mode ejection (simultaneous droplets/fibers)
- Stable fiber formation
3.2. Thermophysical Characteristics of PHB/PVP Composites
- -
- PHB crystallinity (χ)
- -
- Enthalpy of H-bond dissociation (ΔH)
- -
- Peak dissociation temperature (T)
- -
- Increase from 55.8% to 69.8% at 3% PVP
- -
- Sharp decrease to 48.3% at 50% PVP
- -
- Transition point at 50/50 composition
- -
- Stabilization with minimal variation in χ at PVP > 50%
3.3. Study of the Surface of PHB/PVP Fiber Material by IR Spectroscopy
3.4. Molecular Dynamics in Amorphous Regions of Electrospun PHB/PVP Composites
- -
- Eact increases with minor PVP additions (≤17%)
- -
- Progressive decrease occurs at intermediate PVP concentrations
- -
- A sharp drop at >50% PVP, followed by minimal concentration dependence.
- -
- At ≤9% PVP: Significant τ increase confirms slowed segmental dynamics due to enhanced crystallinity (Section 3.2), concurrent with sharp C decrease
- -
- At PVP concentrations > 9%, accelerated molecular mobility emerges through interfacial layer formation.
3.5. Analysis of Sorption Capacity of Ultrafine PHB/PVP Fibers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lins, L.C.; Padoin, N.; Pires, A.T.N.; Soares, C. Modeling Ketoprofen Release from PHB/Chitosan Composite Microparticles. Polym. Bull. 2016, 73, 1515–1529. [Google Scholar] [CrossRef]
- O’brien, M.P.; Carnes, M.E.; Page, R.L.; Gaudette, G.R.; Pins, G.D. Designing Biopolymer Microthreads for Tissue Engineering and Regenerative Medicine. Curr. Stem Cell Rep. 2016, 2, 147–157. [Google Scholar] [CrossRef]
- Su, F.; Iwata, T.; Tanaka, F.; Doi, Y. Crystal Structure and Enzymatic Degradation of Poly(4-Hydroxybutyrate). Macromolecules 2003, 36, 6401–6409. [Google Scholar] [CrossRef]
- Corsi, I.; Venditti, I.; Trotta, F.; Punta, C. Environmental Safety of Nanotechnologies: The Eco-Design of Manufactured Nanomaterials for Environmental Remediation. Sci. Total. Environ. 2023, 864, 161181. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Luzi, F.; Puglia, D.; Torre, L. Natural Fiber Biodegradable Composites and Nanocomposites: A Biomedical Application. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Ignatova, M.; Manolova, N.; Rashkov, I.; Markova, N. Antibacterial and Antioxidant Electrospun Materials from Poly(3-Hydroxybutyrate) and Polyvinylpyrrolidone Containing Caffeic Acid Phenethyl Ester—“in” and “on” Strategies for Enhanced Solubility. Int. J. Pharm. 2018, 545, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Bonartsev, A.P.; Bonartseva, G.A.; Reshetov, I.V.; Kirpichnikov, M.P.; Shaitan, K.V. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Nat. 2019, 11, 4–16. [Google Scholar] [CrossRef]
- Pieja, A.J.; Rostkowski, K.H.; Criddle, C.S. Distribution and Selection of Poly-3-Hydroxybutyrate Production Capacity in Methanotrophic Proteobacteria. Microb. Ecol. 2011, 62, 564–573. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Tebaldi, M.L.; Maia, A.L.C.; Poletto, F.; de Andrade, F.V.; Soares, D.C.F. Poly(-3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV): Current Advances in Synthesis Methodologies, Antitumor Applications and Biocompatibility. J. Drug Deliv. Sci. Technol. 2019, 51, 115–126. [Google Scholar] [CrossRef]
- Nobes, G.A.R.; Maysinger, D.; Marchessault, R.H. Polyhydroxyalkanoates: Materials for Delivery Systems. Drug Deliv. J. Deliv. Target. Ther. Agents 1998, 5, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ivanoska-Dacikj, A.; Stachewicz, U. Smart Textiles and Wearable Technologies-Opportunities Offered in the Fight against Pandemics in Relation to Current COVID-19 State. Rev. Adv. Mater. Sci. 2020, 59, 487–505. [Google Scholar] [CrossRef]
- De Sio, L.; Ding, B.; Focsan, M.; Kogermann, K.; Pascoal-Faria, P.; Petronella, F.; Mitchell, G.; Zussman, E.; Pierini, F. Personalized Reusable Face Masks with Smart Nano-Assisted Destruction of Pathogens for COVID-19: A Visionary Road. Chem.—A Eur. J. 2021, 27, 6112–6130. [Google Scholar] [CrossRef]
- Ferri, M.; Papchenko, K.; Degli Esposti, M.; Tondi, G.; De Angelis, M.G.; Morselli, D.; Fabbri, P. Fully Biobased Polyhydroxyalkanoate/Tannin Films as Multifunctional Materials for Smart Food Packaging Applications. ACS Appl. Mater. Interfaces 2023, 15, 28594–28605. [Google Scholar] [CrossRef]
- Borah, A.R.; Hazarika, P.; Duarah, R.; Goswami, R.; Hazarika, S. Biodegradable Electrospun Membranes for Sustainable Industrial Applications. ACS Omega 2024, 9, 11129–11147. [Google Scholar] [CrossRef]
- Ladhari, S.; Vu, N.-N.; Boisvert, C.; Saidi, A.; Nguyen-Tri, P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS Appl. Bio Mater. 2023, 6, 1398–1430. [Google Scholar] [CrossRef] [PubMed]
- Muiruri, J.K.; Yeo, J.C.C.; Zhu, Q.; Ye, E.; Loh, X.J.; Li, Z. Poly(Hydroxyalkanoates): Applications and End-of-Life Strategies-Life Cycle Assessment Nexus. ACS Sustain. Chem. Eng. 2022, 10, 3387–3406. [Google Scholar] [CrossRef]
- Karpova, S.G.; Ol’khov, A.A.; Zhul’kina, A.L.; Popov, A.A.; Iordanskii, A.L. Nonwoven Materials Based on Electrospun Ultrathin Fibers of Poly(3-Hydroxybutyrate) and Complex Tin Chloride–Porphyrin. Polym. Sci. Ser. A 2021, 63, 369–381. [Google Scholar] [CrossRef]
- Karpova, S.G.; Ol’khov, A.A.; Popov, A.A.; Zhulkina, A.L.; Kosenko, R.Y.; Iordanskii, A.L. Study of the Effect of External Factors on the Structural and Dynamic Parameters of Film Materials Based on Poly(3-Hydroxybutyrate) and Polyactide. Nanobiotechnol. Rep. 2021, 16, 211–221. [Google Scholar] [CrossRef]
- Karpova, S.G.; Chumakova, N.A.; Lobanov, A.V.; Olkhov, A.A.; Vetcher, A.A.; Iordanskii, A.L. Evaluation and Characterization of Ultrathin Poly(3-Hydroxibutirate) Fibers Loaded with Tetraphenylporphyrin and Its Complexes with Fe(III) and Sn(IV). Polymers 2022, 14, 610. [Google Scholar] [CrossRef]
- Karpova, S.G.; Varyan, I.A.; Olkhov, A.A.; Tyubaeva, P.M.; Popov, A.A. A Feature of the Crystalline and Amorphous Structure of Ultra Thin Fibers Based on Poly(3-Hydroxybutyrate) (PHB) Containing Minor Concentrations of Hemin and a Complex of Tetraphenylporphyrin with Iron. Polymers 2022, 14, 4055. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Kaur, J.; Lahooti, B.; Varahachalam, S.P.; Jayant, R.D.; Joshi, A. Drug-Releasing Nano-Bioimplants: From Basics to Current Progress. In Engineered Nanostructures for Therapeutics and Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Kaetsu, I.; Yoshida, M.; Asano, M.; Yamanaka, H.; Imai, K.; Yuasa, H.; Mashimo, T.; Suzuki, K.; Katakai, R.; Oya, M. Biodegradable Implant Composites for Local Therapy. J. Control. Release 1987, 6, 249–263. [Google Scholar] [CrossRef]
- Chen, S.; Tian, H.; Mao, J.; Ma, F.; Zhang, M.; Chen, F.; Yang, P. Preparation and Application of Chitosan-Based Medical Electrospun Nanofibers. Int. J. Biol. Macromol. 2023, 226, 410–422. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Comprehensive Review on Polylactic Acid (PLA)—Synthesis, Processing and Application in Food Packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef]
- Briassoulis, D.; Tserotas, P.; Athanasoulia, I.-G. Alternative Optimization Routes for Improving the Performance of Poly(3-Hydroxybutyrate) (PHB) Based Plastics. J. Clean. Prod. 2021, 318, 128555. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; O’fLaherty, V.; Lens, P.N. Polyhydroxyalkanoate Bio-Production and Its Rise as Biomaterial of the Future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef]
- Rivera-Briso, A.L.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Samui, A.B.; Kanai, T. Polyhydroxyalkanoates Based Copolymers. International Journal of Biological Macromolecules. Int. J. Biol. Macromol. 2019, 140, 522–537. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, X.; Ramakrishna, S.; He, L.; Wu, G. Reactive Blends Based on Polyhydroxyalkanoates: Preparation and Biomedical Application. Mater. Sci. Eng. C 2017, 70, 1107–1119. [Google Scholar] [CrossRef]
- Chin, W.W.L.; Heng, P.W.S.; Thong, P.S.P.; Bhuvaneswari, R.; Hirt, W.; Kuenzel, S.; Soo, K.C.; Olivo, M. Improved Formulation of Photosensitizer Chlorin E6 Polyvinylpyrrolidone for Fluorescence Diagnostic Imaging and Photodynamic Therapy of Human Cancer. Eur. J. Pharm. Biopharm. 2008, 69, 1083–1093. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M. Poly(Vinylpyrrolidone)—A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Pérez-Masiá, R.; Lagaron, J.M. A Review on Electrospun Polymer Nanostructures as Advanced Bioactive Platforms. Polym. Eng. Sci. 2016, 56, 500–527. [Google Scholar] [CrossRef]
- Kaljević, O.; Djuris, J.; Čalija, B.; Lavrič, Z.; Kristl, J.; Ibrić, S. Application of Miscibility Analysis and Determination of Soluplus Solubility Map for Development of Carvedilol-Loaded Nanofibers. Int. J. Pharm. 2017, 533, 445–454. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.K. Moving Polyvinyl Pyrrolidone Electrospun Nanofibers and Bioprinted Scaffolds toward Multidisciplinary Biomedical Applications. Eur. Polym. J. 2020, 136, 109919. [Google Scholar] [CrossRef]
- Vrbata, P.; Berka, P.; Stránská, D.; Doležal, P.; Musilová, M.; Čižinská, L. Electrospun Drug Loaded Membranes for Sublingual Administration of Sumatriptan and Naproxen. Int. J. Pharm. 2013, 457, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S. Electrospun Polyvinyl-Alcohol Nanofibers as Oral Fast-Dissolving Delivery System of Caffeine and Riboflavin. Colloids Surf. B Biointerfaces 2013, 103, 182–188. [Google Scholar] [CrossRef]
- Ulubayram, K.; Calamak, S.; Shahbazi, R.; Eroglu, I. Nanofibers Based Antibacterial Drug Design, Delivery and Applications. Curr. Pharm. Des. 2015, 21, 1930–1943. [Google Scholar] [CrossRef]
- Karpova, S.G.; Ol’kHov, A.A.; Iordanskii, A.L.; Lomakin, S.M.; Shilkina, N.S.; Popov, A.A. Structural Dynamic Properties of Nonwoven Composite Mixtures Based on Ultrafine Tissues of Poly(3-Hydroxybutyrate) with Chitosan. Russ. J. Phys. Chem. B 2016, 10, 687–698. [Google Scholar] [CrossRef]
- Zharkova, I.; Staroverova, O.; Voinova, V.; Andreeva, N.; Shushckevich, A.; Sklyanchuk, E.; Kuzmicheva, G.; Bespalova, A.; Akulina, E.; Shaitan, K.; et al. Biocompatibility of Electrospun Poly(3-Hydroxybutyrate) and Its Composites Scaffolds for Tissue Engineering. Biomeditsinskaya Khimiya 2014, 60, 553–560. [Google Scholar] [CrossRef]
- Michalak, M.; Kwiecień, M.; Kawalec, M.; Kurcok, P. Oxidative Degradation of Poly(3-Hydroxybutyrate). A New Method of Synthesis for the Malic Acid Copolymers. RSC Adv. 2016, 6, 12809–12818. [Google Scholar] [CrossRef]
- Weber, J.; Du, N.; Guiver, M.D. Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers. Macromolecules 2011, 44, 1763–1767. [Google Scholar] [CrossRef]
- Rahma, A.; Munir, M.M.; Khairurrijal; Prasetyo, A.; Suendo, V.; Rachmawati, H. Intermolecular Interactions and the Release Pattern of Electrospun Curcumin-Polyvinyl(Pyrrolidone) Fiber. Biol. Pharm. Bull. 2016, 39, 163–173. [Google Scholar] [CrossRef]
- Hao, Y.-M.; Li, K. Entrapment and Release Difference Resulting from Hydrogen Bonding Interactions in Niosome. Int. J. Pharm. 2011, 403, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Xi, J.; Kong, L.; Gao, Y.; Gong, Y.; Zhao, N.; Zhang, X. Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Films Modified with Polyvinylpyrrolidone and Behavior of MC3T3-E1 Osteoblasts Cultured on the Blended Films. J. Biomater. Sci. Polym. Ed. 2005, 16, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Gnatowski, A.; Sosnowski, M. Effect of PVP and Polybond Compatibilizers on Dynamic Properties of Polymer Blends Analyzed with DMTA. Adv. Sci. Technol. Res. J. 2018, 12, 36–40. [Google Scholar] [CrossRef]
- Ignatova, M.; Nachev, N.; Spasova, M.; Manolova, N.; Rashkov, I.; Naydenov, M. Electrospun 5-Chloro-7-Iodo-8-Hydroxyquinoline (Clioquinol)-Containing Poly(3-Hydroxybutyrate)/Polyvinylpyrrolidone Antifungal Materials Prospective as Active Dressings against Esca. Polymers 2022, 14, 367. [Google Scholar] [CrossRef]
- Karpova, S.G.; Olkhov, A.A.; Varyan, I.A.; Popov, A.A.; Iordanskii, A.L. Effect of Drug Encapsulation and Hydrothermal Exposure on the Structure and Molecular Dynamics of the Binary System Poly(3-Hydroxybutyrate)-Chitosan. Polymers 2023, 15, 2260. [Google Scholar] [CrossRef]
- Karpova, S.G.; Olkhov, A.A.; Varyan, I.A.; Shilkina, N.G.; Berlin, A.A.; Popov, A.A.; Iordanskii, A.L. Biocomposites Based on Electrospun Fibers of Poly(3-Hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact. Polymers 2023, 15, 4171. [Google Scholar] [CrossRef]
- Karpova, S.G.; Ol’khov, A.A.; Chvalun, S.N.; Tyubaeva, P.M.; Popov, A.A.; Iordanskii, A.L. Comparative Structural Dynamic Analysis of Ultrathin Fibers of Poly-(3-Hydroxybutyrate) Modified by Tetraphenyl–Porphyrin Complexes with the Metals Fe. Nanotechnol. Russ. 2019, 14, 367–379. [Google Scholar] [CrossRef]
- Olkhov, A.A.; Tyubaeva, P.M.; Vetcher, A.A.; Karpova, S.G.; Kurnosov, A.S.; Rogovina, S.Z.; Iordanskii, A.L.; Berlin, A.A. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers 2021, 13, 941. [Google Scholar] [CrossRef] [PubMed]
- Sysoeva, N.; Karmilov, A.; Buchachenko, A. NMR in Paramagnetic Complexes of Radicals with Organic Ligands. Chem. Phys. 1976, 15, 321–330. [Google Scholar] [CrossRef]
- Vasserman, A.; Barashkova, I.; Yasina, L.; Pupov, V. Rotary and Progressive Diffusion of the Nitroxyl Radical in Amorphous Polymers. Polym. Sci. U.S.S.R. 1977, 19, 2389–2398. [Google Scholar] [CrossRef]
- A Olkhov, A.; E Mastalygina, E.; Iordanskii, A.L. Biopolymer Geotextiles Based on Mixtures of Polyhydroxybutyrate and Polylactic Acid. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1079, 052019. [Google Scholar] [CrossRef]
- Gladkova, O.; Parkhats, M.; Gorbachova, A.; Terekhov, S. FTIR Spectra and Normal-Mode Analysis of Chlorin E6 and Its Degradation-Induced Impurities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Ol’khov, A.A.; Tyubaeva, P.M.; Zernova, Y.N.; Kurnosov, A.S.; Karpova, S.G.; Iordanskii, A.L. Structure and Properties of Biopolymeric Fibrous Materials Based on Polyhydroxybutyrate–Metalloporphyrin Complexes. Russ. J. Gen. Chem. 2021, 91, 546–553. [Google Scholar] [CrossRef]
- Feldstein, M.M.; Dormidontova, E.E.; Khokhlov, A.R. Pressure Sensitive Adhesives Based on Interpolymer Complexes. Prog. Polym. Sci. 2015, 42, 79–153. [Google Scholar] [CrossRef]
- Ol’kHov, A.A.; Karpova, S.G.; Staroverova, O.V.; Kucherenko, E.L.; Ishchenko, A.A.; Iordanskii, A.L. Effect of External Factors on the Structure of Ultrathin Fibers of Poly(3-Hydroxybutyrate) and Dipyridamole. Fibre Chem. 2016, 48, 284–291. [Google Scholar] [CrossRef]
- Kamaev, P.; Aliev, I.; Iordanskii, A.; Wasserman, A. Molecular Dynamics of the Spin Probes in Dry and Wet Poly(3-Hydroxybutyrate) Films with Different Morphology. Polymer 2001, 42, 515–520. [Google Scholar] [CrossRef]
- Vorobiev, A.K.; Bogdanov, A.V.; Yankova, T.S.; Chumakova, N.A. Spin Probe Determination of Molecular Orientation Distribution and Rotational Mobility in Liquid Crystals: Model-Free Approach. J. Phys. Chem. B 2019, 123, 5875–5891. [Google Scholar] [CrossRef] [PubMed]
Polymers | Ratio of Components in Mixtures | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PHB | 100 | 97 | 95 | 91 | 83 | 65 | 50 | 40 | 30 | 20 | 10 | 0 |
PVP | 0 | 3 | 5 | 9 | 17 | 35 | 50 | 60 | 70 | 80 | 90 | 100 |
Initial PHB/PVP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Polymer | PHB | PHB/PVP | PHB/PVP | PHB/PVP | PHB/PVP | PHB/PVP | PHB/PVP | PHB/PVP | PVP | |
100 | 97/3 | 91/9 | 83/17 | 65/35 | 50/50 | 30/70 | 20/80 | 100 | ||
PHB | χ, % | 55.8 | 69.8 | 66.1 | 58.4 | 56 | 55.3 | 48.5 | 48.3 | - |
Tm | 176.4 | 175 | 175.5 | 175.7 | 175.5 | 175.3 | 175.3 | 174.5 | - | |
PVP | ΔH | - | - | 12.4 | 69.9 | 99 | 104.2 | 144 | 176.5 | 244.8 |
TD | - | - | 54 | 68.5 | 68.5 | 69.2 | 75 | 78 | 80.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpova, S.G.; Olkhov, A.A.; Varyan, I.A.; Dodina, E.P.; Lukanina, Y.K.; Shilkina, N.G.; Popov, A.A.; Vetcher, A.A.; Filatova, A.G.; Iordanskii, A.L. Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability. J. Compos. Sci. 2025, 9, 355. https://doi.org/10.3390/jcs9070355
Karpova SG, Olkhov AA, Varyan IA, Dodina EP, Lukanina YK, Shilkina NG, Popov AA, Vetcher AA, Filatova AG, Iordanskii AL. Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability. Journal of Composites Science. 2025; 9(7):355. https://doi.org/10.3390/jcs9070355
Chicago/Turabian StyleKarpova, Svetlana G., Anatoly A. Olkhov, Ivetta A. Varyan, Ekaterina P. Dodina, Yulia K. Lukanina, Natalia G. Shilkina, Anatoly A. Popov, Alexandre A. Vetcher, Anna G. Filatova, and Alexey L. Iordanskii. 2025. "Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability" Journal of Composites Science 9, no. 7: 355. https://doi.org/10.3390/jcs9070355
APA StyleKarpova, S. G., Olkhov, A. A., Varyan, I. A., Dodina, E. P., Lukanina, Y. K., Shilkina, N. G., Popov, A. A., Vetcher, A. A., Filatova, A. G., & Iordanskii, A. L. (2025). Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability. Journal of Composites Science, 9(7), 355. https://doi.org/10.3390/jcs9070355