Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = energy storage grid-connected inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 - 23 Jan 2026
Viewed by 130
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 3115 KB  
Article
A Novel Reactive Power Decoupling Strategy for VSG Inverter Systems Using Adaptive Dynamic Virtual Impedance
by Wei Luo, Chenwei Zhang, Weizhong Chen, Bin Zhang and Zhenyu Lv
Electronics 2026, 15(1), 241; https://doi.org/10.3390/electronics15010241 - 5 Jan 2026
Viewed by 201
Abstract
Virtual synchronous machine (VSG) technology provides a robust framework for integrating electric vehicle energy storage into modern microgrids. Nonetheless, conventional VSG control often suffers from intense interaction between active and reactive power flows, which can trigger persistent steady-state errors, power fluctuations, and potential [...] Read more.
Virtual synchronous machine (VSG) technology provides a robust framework for integrating electric vehicle energy storage into modern microgrids. Nonetheless, conventional VSG control often suffers from intense interaction between active and reactive power flows, which can trigger persistent steady-state errors, power fluctuations, and potential system collapse. This research addresses these challenges by developing a 5th-order electromagnetic dynamic model tailored for a two-stage cascaded bridge inverter. By synthesizing a 3rd-order power regulation loop with a 2nd-order output stage, the proposed model captures stability boundaries across an extensive parameter spectrum. Unlike traditional 3rd-order “quasi-steady-state” approaches—which overlook essential dynamics under weak-damping or low-inertia conditions—this study utilizes the 5th-order model to derive an adaptive dynamic virtual impedance decoupling technique. This strategy facilitates real-time compensation of the cross-coupling between active and reactive channels, significantly boosting the inverter’s damping ratio. Quantitative analysis confirms that this approach curtails overshoot by 85.6% and accelerates the stabilization process by 42%, markedly enhancing the overall dynamic performance of the grid-connected system. Full article
(This article belongs to the Special Issue Intelligent Control Strategies for Power Electronics)
Show Figures

Figure 1

20 pages, 7350 KB  
Article
Topology Optimization and Leakage Current Suppression of Photovoltaic Energy Storage Four-Leg Inverter Based on Independent Split Capacitor
by Jiang Liu, Jinyuan Wang, Dong Lin and Zicheng Li
Electronics 2025, 14(23), 4708; https://doi.org/10.3390/electronics14234708 - 29 Nov 2025
Viewed by 321
Abstract
Leakage current is a prevalent issue in non-isolated photovoltaic (PV) energy storage inverter systems, which not only induces additional power losses but also poses potential safety hazards and degrades system operational efficiency. To address this critical problem, this paper proposes an improved three-phase [...] Read more.
Leakage current is a prevalent issue in non-isolated photovoltaic (PV) energy storage inverter systems, which not only induces additional power losses but also poses potential safety hazards and degrades system operational efficiency. To address this critical problem, this paper proposes an improved three-phase four-leg PV energy storage inverter topology integrated with independent split capacitors, based on the traditional three-level topology. First, an in-depth analysis of the leakage current generation mechanism is conducted, focusing on the impacts of common-mode voltage fluctuations and parasitic capacitance on leakage current paths. By establishing an equivalent mathematical model, a systematic comparative analysis is performed between the proposed topology and the traditional topology regarding key performance indicators, including leakage current suppression capability, DC-side neutral point potential stability, and power quality. Notably, the improved topology requires no additional control strategy design; under the same carrier modulation strategy and parameter configuration as the traditional topology, it can stably constrain the DC-side neutral point potential to fluctuate within an acceptable range. Experimental results demonstrate that the proposed topology reduces the peak leakage current to within 200 mA while maintaining the total harmonic distortion (THD) of the load-side current at a low level. These performance metrics comply with the relevant national and industry power quality standards for PV grid-connected systems, endowing the topology with high engineering practical value. Full article
Show Figures

Graphical abstract

31 pages, 5169 KB  
Article
Harmonic Mitigation in Unbalanced Grids Using Hybrid PSO-GA Tuned PR Controller for Two-Level SPWM Inverter
by Pema Dorji, Taimoor Muzaffar Gondal, Stefan Lachowicz and Octavian Bass
Electronics 2025, 14(21), 4351; https://doi.org/10.3390/electronics14214351 - 6 Nov 2025
Viewed by 725
Abstract
This study proposes an integrated control–optimization framework for harmonic mitigation in two-level, grid-connected inverters with battery energy storage operating under unbalanced grid conditions. A proportional–resonant controller in the stationary αβ frame and a proportional–integral controller in the synchronous dq frame are [...] Read more.
This study proposes an integrated control–optimization framework for harmonic mitigation in two-level, grid-connected inverters with battery energy storage operating under unbalanced grid conditions. A proportional–resonant controller in the stationary αβ frame and a proportional–integral controller in the synchronous dq frame are compared, with controller gains optimized using PSO, GA, and a hybrid PSO–GA approach. The hybrid method achieves superior trade-offs among THD, convergence speed, and computational effort. For the PR controller, hybrid PSO–GA reduces THD to 1.07%, satisfying IEEE 1547 and IEC 61727 standards, while for the PI controller it achieves 2.70%, outperforming standalone PSO (4.12%) and GA (3.38%). The hybrid-optimized gains further minimize tracking error indices (IAE, ISE, ITAE, ITSE), ensuring precise steady-state current regulation. Convergence analysis shows that hybrid PSO–GA attains optimal solutions within three iterations for both controllers, faster than GA and comparable to PSO for the PR case. Simulation studies on the IEEE 13-bus unbalanced feeder in DIgSILENT PowerFactory validate the proposed framework. Results confirm that the PR controller delivers a 60.36% THD reduction and tenfold ISE improvement over the optimized PI design, establishing a robust and scalable solution for harmonic suppression in unbalanced grid-tied energy systems. Full article
Show Figures

Figure 1

17 pages, 2504 KB  
Article
Adaptive Control of Inertia and Damping in Grid-Forming Photovoltaic-Storage System
by Zicheng Zhao, Haijiang Li, Linjun Shi, Feng Wu, Minshen Lin and Hao Fu
Sustainability 2025, 17(21), 9540; https://doi.org/10.3390/su17219540 - 27 Oct 2025
Cited by 1 | Viewed by 742
Abstract
The increasing penetration of renewable energy, such as photovoltaic generation, makes it essential to enhance power system dynamic performance through improved grid-forming control strategies. In the grid-forming control system, the virtual synchronous generator control (VSG) is currently widely used. However, the inertia (J) [...] Read more.
The increasing penetration of renewable energy, such as photovoltaic generation, makes it essential to enhance power system dynamic performance through improved grid-forming control strategies. In the grid-forming control system, the virtual synchronous generator control (VSG) is currently widely used. However, the inertia (J) and damping (D) in the traditional VSG are fixed values, which can result in large overshoots and long adjustment times when dealing with disturbances such as load switching. To address these issues, this paper proposes an adaptive virtual synchronous generator (VSG) control strategy for grid-side inverters, which is accomplished by adaptively adjusting the VSG’s inertia and damping. Firstly, we established a photovoltaic-storage VSG grid-forming system; here, the photovoltaic power is boosted through a DC-DC converter, and the energy storage is connected to the common DC bus through a bidirectional DC-DC converter. We analyzed how J and D shape the system’s output characteristics. Based on the power-angle characteristic curve, the tanh function was introduced to design the control function, and a JD collaborative adaptive control (ACL) strategy was proposed. Finally, simulation experiments were conducted under common working conditions, such as load switching and grid-side voltage disturbance, to verify the results. From the results shown, the proposed strategy can effectively improve the response speed of the system, suppress system overshoot and oscillation, and, to a certain extent, improve the dynamic performance of the system. Full article
(This article belongs to the Special Issue Advances in Sustainable Battery Energy Storage Systems)
Show Figures

Figure 1

24 pages, 5112 KB  
Article
Power Management for V2G and V2H Operation Modes in Single-Phase PV/BES/EV Hybrid Energy System
by Chayakarn Saeseiw, Kosit Pongpri, Tanakorn Kaewchum, Sakda Somkun and Piyadanai Pachanapan
World Electr. Veh. J. 2025, 16(10), 580; https://doi.org/10.3390/wevj16100580 - 14 Oct 2025
Cited by 1 | Viewed by 1273
Abstract
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, [...] Read more.
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, optimizing usage, improving grid stability, and supplying backup power. The proposed four-port converter consists of an interleaved bidirectional DC-DC converter for high-voltage BES, a bidirectional buck–boost DC-DC converter for EV charging and discharging, a DC-DC boost converter with MPPT for PV, and a grid-tied inverter. Its non-isolated structure ensures high efficiency, compact design, and fewer switches, making it suitable for residential applications. A state-of-charge (SoC)-based power management strategy coordinates operation among PV, BES, and EV in both on-grid and off-grid modes. It reduces reliance on EV energy when supporting V2G and V2H, while SoC balancing between BES and EV extends lifetime and lowers current stress. A 7.5 kVA system was simulated in MATLAB/Simulink to validate feasibility. Two scenarios were studied: PV, BES, and EV with V2G supporting the grid and PV, BES, and EV with V2H providing backup power in off-grid mode. Tests under PV fluctuations and load variations confirmed the effectiveness of the proposed design. The system exhibited a fast transient response of 0.05 s during grid-support operation and maintained stable voltage and frequency in off-grid mode despite PV and load fluctuations. Its protection scheme disconnected overloads within 0.01 s, while harmonic distortions in both cases remained modest and complied with EN50610 standards. Full article
Show Figures

Graphical abstract

20 pages, 4152 KB  
Article
A Tie-Line Fault Ride-Through Strategy for PV Power Plants Based on Coordinated Energy Storage Control
by Bo Pan, Feng Xu, Xiangyi Bi, Dong Wan, Zhihua Huang, Jinsong Yang, An Wen and Penghui Shang
Energies 2025, 18(20), 5335; https://doi.org/10.3390/en18205335 - 10 Oct 2025
Viewed by 591
Abstract
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading [...] Read more.
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading to substantial power losses. To address this problem, this paper proposes a tie-line fault ride-through control strategy based on the coordinated control of on-site energy storage units. After a fault on the tie-line occurs, the control mode of PV inverters is switched to achieve source–load balance, and the control mode of energy storage inverters is switched to VF control mode, which supports the stability of voltage and frequency in the islanded system. Subsequently, the strategy coordinates with the tie-line recloser device to perform synchronous checking and grid reconnection. Simulation results show that, for transient tie-line faults, the proposed method can achieve stable control of the islanded system and grid reconnection within 2 s after a fault on the tie-line occurs. It successfully realizes fault ride-through within the operation time limit of anti-islanding protection, effectively preventing the PV plant from disconnecting from the grid. Finally, a connection scheme for the control strategy of a typical PV plant is presented, providing technical reference for on-site engineering. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

26 pages, 8623 KB  
Article
Voltage Fluctuation Enhancement of Grid-Connected Power System Using PV and Battery-Based Dynamic Voltage Restorer
by Tao Zhang, Yao Zhang, Zhiwei Wang, Zhonghua Yao and Zhicheng Zhang
Electronics 2025, 14(17), 3413; https://doi.org/10.3390/electronics14173413 - 27 Aug 2025
Viewed by 1073
Abstract
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its [...] Read more.
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its shared circuit topology with photovoltaic (PV) inverters—which enables the dual functions of voltage compensation and PV-storage power generation—this study integrates PV and energy storage as a coordinated energy unit into the DVR, forming a PV-storage-integrated DVR system. The core innovation of this system lies in extending the voltage disturbance detection capability of the DVR to include harmonics. By incorporating a Butterworth filtering module and voltage fluctuation tracking technology, high-precision disturbance identification is achieved, thereby supporting power balance control and functional coordination. Furthermore, a multi-mode-power coordinated regulation method is proposed, enabling dynamic switching between operating modes based on PV output. Simulation and experimental results demonstrate that the proposed system and strategy enable smooth mode transitions. This approach not only ensures reliable voltage compensation for sensitive loads but also enhances the grid-support capability of PV systems, offering an innovative technical solution for the integration of renewable energy and power quality management. Full article
Show Figures

Figure 1

20 pages, 5404 KB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 866
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

16 pages, 2975 KB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 671
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 7019 KB  
Article
An Enhanced Control of Grid-Connected Solid-Oxide Fuel Cell System Using Beluga Whale-Optimized Fractional-Order PID Control
by Moayed Mohamed, Ilyes Boulkaibet, Mohamed Ebeed and Ali M. El-Rifaie
Processes 2025, 13(7), 2044; https://doi.org/10.3390/pr13072044 - 27 Jun 2025
Cited by 1 | Viewed by 727
Abstract
Fuel cells (FCs) are widely used in various applications such as transportation, vehicles, and energy storage, as well as in commercial and residential buildings. The FC is connected to the grid via an inverter, which converts DC power to AC power for integration [...] Read more.
Fuel cells (FCs) are widely used in various applications such as transportation, vehicles, and energy storage, as well as in commercial and residential buildings. The FC is connected to the grid via an inverter, which converts DC power to AC power for integration with the AC grid. Thus, it is essential to adjust the gain of the inverter’s controllers to improve FC performance and the quality of the power generated by the FCs. In this work, a fractional-order PID (FOPID) controller is used to control an inverter where the FOPID’s gain settings are determined optimally to improve the performance of the current controller of the solid-oxide fuel cell (SOFC). The optimal parameters of the FOPID are obtained using a newly developed and efficient algorithm called beluga whale optimization (BWO). To highlight the efficiency of the proposed optimization approach, the obtained results are compared with particle swarm optimization (PSO) and the conventional active power controller (APC). The findings of this paper demonstrate that the SOFC achieves significantly superior performance when the FOPID controller is optimally tuned using BWO across all performance metrics related to the FC inverter. PSO also yields good results, ensuring smooth system operation and good performance. Based on the results, the output current from the SOFC using the BWO and PSO algorithms aligns well with the reference current, whereas the APC exhibits poor performance in tracking reference current changes in two cases. Specifically, the APC introduces a delay of approximately one second (0.5 to 0.6 s), resulting in poor control performance. This delay causes the system to deviate from the reference current control (RCC) by 10%, leading to poor performance. However, the proposed optimization algorithms effectively resolve this issue, offering a robust solution for enhanced current control. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 10146 KB  
Article
Damping Characteristic Analysis of LCL Inverter with Embedded Energy Storage
by Jingbo Zhao, Yongyong Jia, Guojiang Zhang, Haiyun An and Tianhui Zhao
Energies 2025, 18(12), 3127; https://doi.org/10.3390/en18123127 - 13 Jun 2025
Viewed by 711
Abstract
This paper investigates the system architecture and circuit topology of grid-connected inverters with embedded energy storage (EES), encompassing their modulation strategies and control methodologies. A mathematical model for an EES grid-connected inverter is derived based on capacitor current feedback control, from which the [...] Read more.
This paper investigates the system architecture and circuit topology of grid-connected inverters with embedded energy storage (EES), encompassing their modulation strategies and control methodologies. A mathematical model for an EES grid-connected inverter is derived based on capacitor current feedback control, from which the expression for the inverter’s output impedance is obtained. Building on this foundation, this study analyzes the influence of control parameters—such as the proportional coefficient, resonant coefficient, and switching frequency—on the inverter’s output impedance. Subsequently, the stability of single and multiple inverter grid-connected systems under various operating conditions is assessed using impedance analysis and the Nyquist criterion. Finally, the validity of the stability analysis based on the established mathematical model is verified through simulations conducted on the Matlab/Simulink platform, where models for both a single inverter and a two-inverter grid-connected system are constructed. Full article
(This article belongs to the Topic Power System Dynamics and Stability, 2nd Edition)
Show Figures

Figure 1

34 pages, 5896 KB  
Article
Networked Multi-Agent Deep Reinforcement Learning Framework for the Provision of Ancillary Services in Hybrid Power Plants
by Muhammad Ikram, Daryoush Habibi and Asma Aziz
Energies 2025, 18(10), 2666; https://doi.org/10.3390/en18102666 - 21 May 2025
Cited by 1 | Viewed by 1755
Abstract
Inverter-based resources (IBRs) are becoming more prominent due to the increasing penetration of renewable energy sources that reduce power system inertia, compromising power system stability and grid support services. At present, optimal coordination among generation technologies remains a significant challenge for frequency control [...] Read more.
Inverter-based resources (IBRs) are becoming more prominent due to the increasing penetration of renewable energy sources that reduce power system inertia, compromising power system stability and grid support services. At present, optimal coordination among generation technologies remains a significant challenge for frequency control services. This paper presents a novel networked multi-agent deep reinforcement learning (N—MADRL) scheme for optimal dispatch and frequency control services. First, we develop a model-free environment consisting of a photovoltaic (PV) plant, a wind plant (WP), and an energy storage system (ESS) plant. The proposed framework uses a combination of multi-agent actor-critic (MAAC) and soft actor-critic (SAC) schemes for optimal dispatch of active power, mitigating frequency deviations, aiding reserve capacity management, and improving energy balancing. Second, frequency stability and optimal dispatch are formulated in the N—MADRL framework using the physical constraints under a dynamic simulation environment. Third, a decentralised coordinated control scheme is implemented in the HPP environment using communication-resilient scenarios to address system vulnerabilities. Finally, the practicality of the N—MADRL approach is demonstrated in a Grid2Op dynamic simulation environment for optimal dispatch, energy reserve management, and frequency control. Results demonstrated on the IEEE 14 bus network show that compared to PPO and DDPG, N—MADRL achieves 42.10% and 61.40% higher efficiency for optimal dispatch, along with improvements of 68.30% and 74.48% in mitigating frequency deviations, respectively. The proposed approach outperforms existing methods under partially, fully, and randomly connected scenarios by effectively handling uncertainties, system intermittency, and communication resiliency. Full article
(This article belongs to the Collection Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

18 pages, 5351 KB  
Article
Fault Analysis and Protection Principle for the Distribution Networks Integrated with PV and BESS
by Jianan He, Lei Li, Jian Niu, Yabo Liang, Haitao Liu, Zhenxin Yang, Chao Li and Zhihui Zheng
Appl. Sci. 2025, 15(10), 5568; https://doi.org/10.3390/app15105568 - 16 May 2025
Viewed by 1062
Abstract
With the rapid development of renewable energy technologies, large numbers of photovoltaic (PV) and battery energy storage systems (BESS) have been connected to distribution networks. However, both PV and the BESS are inverter interfaced power sources, which may cause the traditional protection relays [...] Read more.
With the rapid development of renewable energy technologies, large numbers of photovoltaic (PV) and battery energy storage systems (BESS) have been connected to distribution networks. However, both PV and the BESS are inverter interfaced power sources, which may cause the traditional protection relays to mis-operate or mal-operate. Moreover, according to the latest grid connection specifications, PV and BESS are required to absorb negative sequence current during asymmetric faults of distribution networks, indicating that they both must adopt new control strategies during the fault ride through period. In response to the above challenges, this work first studies the fault ride through control strategies of PV and BESS when different phase-to-phase faults occur according to the latest grid connection requirements. Second, it analyzes the negative sequence impedance characteristics of PV and BESS under asymmetric faults and quantitatively calculates its variation range. Third, during symmetric faults, the differences in fault current provided by PV and BESS and those provided by the large power grid are compared. Then, this work proposes a fault direction detection principle for the distribution network with PV and BESS. For asymmetric phase-to-phase faults, this principle detects the fault direction by using the negative sequence power angle; for symmetric faults, it detects the fault direction by using the reactive current and active current. Finally, simulation tests are carried out to verify the operation performance of the proposed principle. Full article
Show Figures

Figure 1

23 pages, 5928 KB  
Article
Decoding Harmonics: Total Harmonic Distortion in Solar Photovoltaic Systems with Integrated Battery Storage
by Johana-Alejandra Arteaga, Yuri Ulianov López, Jesús Alfonso López and Johnny Posada
Electricity 2025, 6(2), 28; https://doi.org/10.3390/electricity6020028 - 13 May 2025
Cited by 2 | Viewed by 3508
Abstract
This paper analyzes the power quality in a 400 kWp grid-connected solar photovoltaic system with storage (BESS), considering standards IEEE Std 519TM, IEEE Std 1159TM, and IEC 61000-4-30. For system analysis, a photovoltaic array model is developed. Neplan-Smarter Tools software is used for [...] Read more.
This paper analyzes the power quality in a 400 kWp grid-connected solar photovoltaic system with storage (BESS), considering standards IEEE Std 519TM, IEEE Std 1159TM, and IEC 61000-4-30. For system analysis, a photovoltaic array model is developed. Neplan-Smarter Tools software is used for model validation, and experimental measurements are performed on the actual photovoltaic system, recording total harmonic distortion (THDi/THDv). A class B power quality monitor was used to measure three-phase electrical variables: current, voltage, power, power factor, and THD. The THD level was generated at an energy level below 20% of the rated power, resulting in high THDi. The recorded THDv remained below 2.5%, which means that its value is limited by the IEEE 519 standard. When the BESS was connected to the PCC grid, the voltage level remained regulated, and the electrical system appeared to be stable. This paper contributes a methodology and procedure for measurement and power quality assessment, allowing for THD identification and enabling designers to configure better designs and energy system protections when integrating solar photovoltaic energy into an electrical distribution network. Full article
Show Figures

Figure 1

Back to TopTop