Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (460)

Search Parameters:
Keywords = electrochemical sensing platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1779 KB  
Review
Two-Dimensional Carbon-Based Electrochemical Sensors for Pesticide Detection: Recent Advances and Environmental Monitoring Applications
by K. Imran, Al Amin, Gajapaneni Venkata Prasad, Y. Veera Manohara Reddy, Lestari Intan Gita, Jeyaraj Wilson and Tae Hyun Kim
Biosensors 2026, 16(1), 62; https://doi.org/10.3390/bios16010062 - 14 Jan 2026
Viewed by 197
Abstract
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. [...] Read more.
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. Exposure to pesticides can lead to skin irritation, respiratory disorders, and various chronic health problems. Moreover, pesticides frequently enter surface water bodies such as rivers and lakes through agricultural runoff and leaching processes. Therefore, developing effective analytical methods for the rapid and sensitive detection of pesticides in food and water is of great importance. Electrochemical sensing techniques have shown remarkable progress in pesticide analysis due to their high sensitivity, simplicity, and potential for on-site monitoring. Two-dimensional (2D) carbon nanomaterials have emerged as efficient electrocatalysts for the precise and selective detection of pesticides, owing to their large surface area, excellent electrical conductivity, and unique structural features. In this review, we summarize recent advancements in the electrochemical detection of pesticides using 2D carbon-based materials. Comprehensive information on electrode fabrication, sensing mechanisms, analytical performance—including sensing range and limit of detection—and the versatility of 2D carbon composites for pesticide detection is provided. Challenges and future perspectives in developing highly sensitive and selective electrochemical sensing platforms are also discussed, highlighting their potential for simultaneous pesticide monitoring in food and environmental samples. Carbon-based electrochemical sensors have been the subject of many investigations, but their practical application in actual environmental and food samples is still restricted because of matrix effects, operational instability, and repeatability issues. In order to close the gap between laboratory research and real-world applications, this review critically examines sensor performance in real-sample conditions and offers innovative approaches for in situ pesticide monitoring. Full article
Show Figures

Figure 1

21 pages, 5307 KB  
Article
Simultaneous Multiparameter Detection with Organic Electrochemical Transistors-Based Biosensors
by Marjorie Montero-Jimenez, Jael R. Neyra Recky, Omar Azzaroni, Juliana Scotto and Waldemar A. Marmisollé
Chemosensors 2026, 14(1), 22; https://doi.org/10.3390/chemosensors14010022 - 9 Jan 2026
Viewed by 271
Abstract
We present a methodology that enhances the analytical performance of organic electrochemical transistors (OECTs) by continuously cycling the devices through gate potential sweeps during sensing experiments. This continuous cycling methodology (CCM) enables real-time acquisition of full transfer curves, allowing simultaneous monitoring of multiple [...] Read more.
We present a methodology that enhances the analytical performance of organic electrochemical transistors (OECTs) by continuously cycling the devices through gate potential sweeps during sensing experiments. This continuous cycling methodology (CCM) enables real-time acquisition of full transfer curves, allowing simultaneous monitoring of multiple characteristic parameters. We show that the simultaneous temporal evolution of several OECT response parameters (threshold voltage (VTH), maximum transconductance (gmax), and maximum transconductance potential (VG,gmax)) provides highly sensitive descriptors for detecting pH changes and macromolecule adsorption on OECTs based on polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) channels. Moreover, the method allows reconstruction of IDSt (drain–source current vs. time) profiles at any selected gate potential, enabling the identification of optimal gate voltage (VG) values for maximizing sensitivity. This represents a substantial improvement over traditional measurements at fixed VG, which may suffer from reduced sensitivity and parasitic reactions associated with gate polarization. Moreover, the expanded set of parameters obtained with the CCM provides deeper insight into the physicochemical processes occurring at both gate and channel electrodes. We demonstrate its applicability in monitoring polyelectrolyte and enzyme adsorption, and detecting urea and glucose through enzyme-mediated reactions. Owing to its versatility and the richness of the information it provides, the CCM constitutes a significant advance for the development and optimization of OECT-based sensing platforms. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Global Health Challenges)
Show Figures

Figure 1

25 pages, 2047 KB  
Review
Advanced Technologies in Extracellular Vesicle Biosensing: Platforms, Standardization, and Clinical Translation
by Seong-Jun Choi, Jaewon Choi, Jin Kim, Si-Hoon Kim, Hyung-Geun Cho, Min-Yeong Lim, Sehyun Chae, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Molecules 2026, 31(2), 227; https://doi.org/10.3390/molecules31020227 - 9 Jan 2026
Viewed by 327
Abstract
Recently, extracellular vesicles (EVs) have emerged as pivotal mediators of intercellular communication that reflect physiological homeostasis and pathological alterations. By encapsulating diverse biomolecules, including proteins, nucleic acids, and lipids, EVs mirror the molecular signatures of their parent cells, thereby positioning EV-based biosensing as [...] Read more.
Recently, extracellular vesicles (EVs) have emerged as pivotal mediators of intercellular communication that reflect physiological homeostasis and pathological alterations. By encapsulating diverse biomolecules, including proteins, nucleic acids, and lipids, EVs mirror the molecular signatures of their parent cells, thereby positioning EV-based biosensing as a transformative platform for noninvasive diagnostics, prognostic prediction, and therapeutic monitoring. This review provides a comprehensive overview of the current state and clinical translation of EV biosensing technologies. Herein, we have discussed ongoing efforts toward standardization and analytical validation (e.g., MISEV2023 and EV-TRACK) and evaluated advances in sensing modalities such as surface plasmon resonance (SPR), electrochemical, fluorescence, and magnetic detection systems, which have significantly improved analytical performance in terms of sensitivity and specificity. Furthermore, we highlight recent developments in multiplexed and multiomics integration at the single-EV level and the application of machine learning to enhance diagnostic accuracy and interpret biological heterogeneity. The clinical relevance of EV biosensing has been explored across multiple disease domains, including oncology, neurology, and cardiometabolic and infectious diseases, with an emphasis on translational progress toward standardized, regulatory-compliant, and scalable platforms. Finally, this review identifies key challenges in manufacturing scale-up, quality control, and point-of-care deployment and proposes a unified framework to accelerate the adoption of EV biosensing as a cornerstone of next-generation precision diagnostics and personalized medicine. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Bioapplications, 2nd Edition)
Show Figures

Figure 1

18 pages, 5173 KB  
Article
Glucose Sensor Using Fe3O4 Functionalized MXene Nanosheets as a Promising Sensing Platform: Exploring the Potential of Electrochemical Detection of Glucose
by Yu Yang, Danning Li, Changchang Zheng, Ling Zhang and Xuwei Chen
Chemosensors 2026, 14(1), 19; https://doi.org/10.3390/chemosensors14010019 - 8 Jan 2026
Viewed by 206
Abstract
Enzymatic electrochemical sensors are promising for real-time glucose monitoring due to their high sensitivity and continuous detection capability. In this work, a magnetic Fe3O4@MXene nanocomposite was synthesized hydrothermally. The introduction of Fe3O4 not only reduced MXene’s [...] Read more.
Enzymatic electrochemical sensors are promising for real-time glucose monitoring due to their high sensitivity and continuous detection capability. In this work, a magnetic Fe3O4@MXene nanocomposite was synthesized hydrothermally. The introduction of Fe3O4 not only reduced MXene’s inherent negative surface charge, improving interaction with glucose oxidase (GOD), but also formed a porous structure that enhances enzyme immobilization via physical adsorption. Based on these properties, a Fe3O4@MXene/GOD/Nafion/GCE electrode was fabricated. The composite’s high specific surface area, excellent conductivity, and good biocompatibility significantly promoted the direct electron transfer (DET) of GOD. Meanwhile, the apparent electron transfer rate constant (ks) was calculated to be 9.57 s−1, representing a 1.26-fold enhancement over the MXene-based electrode (7.57 s−1) and confirming faster electron transfer kinetics. The sensor showed a bilinear glucose response in the ranges of 0.05–15 mM, with sensitivity of 120.47 μA·mM−1·cm−2 and a detection limit of 38 μM. It also exhibited excellent selectivity, reproducibility and stability. Satisfactory recovery rates were achieved in artificial serum samples while demonstrating comparable detection performance to commercial blood glucose meters. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Global Health Challenges)
Show Figures

Figure 1

22 pages, 1613 KB  
Review
Recent Advances in Nucleic Acid-Based Electrochemical Sensors for the Detection of Food Allergens
by Simone Fortunati, Shaista Nazir and Marco Giannetto
Sensors 2026, 26(1), 263; https://doi.org/10.3390/s26010263 - 1 Jan 2026
Viewed by 426
Abstract
Food allergies represent a growing public health concern, requiring analytical methods capable of detecting trace levels of allergenic ingredients in increasingly complex and processed food matrices. In recent years, nucleic acid-based electrochemical sensors have emerged as a powerful alternative to protein-targeting assays, offering [...] Read more.
Food allergies represent a growing public health concern, requiring analytical methods capable of detecting trace levels of allergenic ingredients in increasingly complex and processed food matrices. In recent years, nucleic acid-based electrochemical sensors have emerged as a powerful alternative to protein-targeting assays, offering improved stability and sequence specificity, as well as compatibility with portable, low-cost sensing platforms. This review provides a comprehensive overview of nucleic acid-based sensing strategies developed for detecting either allergen proteins or nucleic acids related to allergenic species. Particular attention is given to the methodological approaches implemented, which for DNA detection include sandwich-type designs and DNA switches, while for protein detection rely on aptamer-based assays in a labelled or label-free setup. The review also discusses the impact of pre-analytical steps, such as nucleic acid extraction and PCR-based amplification, on assay reproducibility, cost and applicability at the point of need. Although significant improvements in analytical performance have been achieved, challenges remain in terms of simplifying workflows, standardizing methods, validating them on a large scale, and developing continuous monitoring schemes for timely intervention. The review highlights emerging opportunities, including multiplexed detection platforms, robust extraction protocols, and the harmonization of allergen thresholds, which are key to supporting the practical implementation of nucleic acid-based sensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

17 pages, 2312 KB  
Article
Green Nanoparticles for Enhanced Electrochemical Monitoring of Pharmaceutical Contaminants: Comparative Investigation Between Monometallic and Bimetallic Nanoparticles
by Soumaya Nasri, Amani Chrouda, Shazalia Mahmoud Ahmed Ali, Bakheit Mustafa, Manahil Babiker Elamin, Laila M. Alhaidari, Hamdi Ben Halima and Nicole Jafezic-Renault
Micromachines 2026, 17(1), 60; https://doi.org/10.3390/mi17010060 - 31 Dec 2025
Viewed by 235
Abstract
Study presents a comparative analytical investigation into the green synthesis of monometallic and bimetallic nanoparticles using Punica granatum (pomegranate) extract, aimed at developing high-performance electrochemical sensors for the detection of ciprofloxacin (CIP) as a representative pharmaceutical pollutant. Three nanoparticle systems were successfully synthesized: [...] Read more.
Study presents a comparative analytical investigation into the green synthesis of monometallic and bimetallic nanoparticles using Punica granatum (pomegranate) extract, aimed at developing high-performance electrochemical sensors for the detection of ciprofloxacin (CIP) as a representative pharmaceutical pollutant. Three nanoparticle systems were successfully synthesized: monometallic Au@NPs and TiO2@NPs, as well as the bimetallic AuTiO2@NPs. Their structural and physicochemical characteristics were comprehensively analyzed using UV–Vis spectroscopy, FTIR, SEM, TEM, and XRD techniques. The obtained nanoparticles exhibited predominantly spherical morphologies with average particle sizes of approximately 40 ± 5 nm for Au@NPs, 50 ± 7 nm for TiO2@NPs, and 60 ± 6 nm for AuTiO2@NPs. These nanomaterials were subsequently employed to modify electrode surfaces for electrochemical sensing applications. Their analytical performance was evaluated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The sensors displayed excellent sensitivity, with limits of detection of 0.8 ppb for TiO2@NPs, 0.8 ppb for Au@NPs, and 0.2 ppb for the AuTiO2@NP-based sensor. The bimetallic platform demonstrated superior electrochemical behavior, enhanced signal intensity, and strong selectivity, achieving recovery rates of 98% in tap water and 103% in wastewater. Overall, the results confirm the effectiveness of green-synthesized bimetallic nanoparticles as efficient, low-cost materials for environmental monitoring of emerging pharmaceutical contaminants. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Graphical abstract

42 pages, 1822 KB  
Review
Reversibility as a Design Principle in Inorganic, Organometallic and Organic Redox Mediators for Biosensors
by Angel A. J. Torriero
Inorganics 2026, 14(1), 10; https://doi.org/10.3390/inorganics14010010 - 26 Dec 2025
Viewed by 452
Abstract
Redox mediators are central to electrochemical biosensors, enabling electron transfer between deeply buried enzymatic cofactors and electrode surfaces when direct electron transfer is kinetically inaccessible. Among all design parameters, the reversibility of mediator redox cycling remains the most decisive yet under-examined factor governing [...] Read more.
Redox mediators are central to electrochemical biosensors, enabling electron transfer between deeply buried enzymatic cofactors and electrode surfaces when direct electron transfer is kinetically inaccessible. Among all design parameters, the reversibility of mediator redox cycling remains the most decisive yet under-examined factor governing biosensor stability, drift and long-term reproducibility. This review establishes reversibility as a unifying framework grounded in inorganic and organometallic redox chemistry, with particular emphasis on coordination environments, ligand-field effects and outer-sphere electron-transfer pathways. Recent advances (2010–2025) in ruthenium and osmium polypyridyl complexes, cobalt macrocycles, hexacyanoferrates and Prussian Blue analogues are examined alongside ferrocene derivatives and other organometallic mediators, which together define the upper limits of reversible behaviour. Organic mediator families, including quinones, phenazines, indophenols, aminophenols and viologens, are discussed as mechanistic contrasts that highlight the structural and thermodynamic constraints that limit long-term cycling in aqueous media. Mechanistic indicators of reversibility, including peak separation, current ratios and heterogeneous electron-transfer rate constants, are linked to mediator architecture, coordination chemistry and immobilisation environment. By integrating molecular electrochemistry with applied sensor engineering, this review provides a mechanistically grounded basis for selecting or designing redox mediators that sustain efficient electron transfer, minimal fouling and calibration stability across diverse sensing platforms. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Show Figures

Figure 1

14 pages, 2668 KB  
Article
Flexible Cu Nanostructured Laser-Induced Graphene Electrodes for Highly Sensitive and Non-Invasive Lactate Detection in Saliva
by Anju Joshi and Gymama Slaughter
Biosensors 2026, 16(1), 19; https://doi.org/10.3390/bios16010019 - 25 Dec 2025
Viewed by 301
Abstract
A scalable and facile fabrication strategy is presented for developing a flexible, nanostructured, non-enzymatic electrochemical sensor for lactate detection based on copper-modified laser-induced graphene (CuNPs/LIG). A one-step electrodeposition process was employed to uniformly decorate the porous LIG framework with copper nanostructures, offering a [...] Read more.
A scalable and facile fabrication strategy is presented for developing a flexible, nanostructured, non-enzymatic electrochemical sensor for lactate detection based on copper-modified laser-induced graphene (CuNPs/LIG). A one-step electrodeposition process was employed to uniformly decorate the porous LIG framework with copper nanostructures, offering a cost-effective and reproducible approach for constructing enzyme-free sensing platforms. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed dense Cu nanostructure loading and efficient interfacial integration across the conductive LIG surface. The resulting CuNPs/LIG electrode exhibited excellent electrocatalytic performance, achieving a sensitivity of 8.56 μA µM−1 cm−2 with a low detection limit of 42.65 μM and a linear response toward lactate concentrations ranging from 100 to 1100 μM in artificial saliva under physiological conditions. The sensor maintained high selectivity in the presence of physiologically relevant interferents. Practical applicability was demonstrated through recovery studies, where recovery rates exceeding 104% showcase the sensor’s analytical reliability in complex biological matrices. Overall, this work establishes a robust, sensitive, and cost-efficient Cu-nanostructured LIG sensing platform, offering strong potential for non-invasive lactate monitoring in real-world biomedical and wearable applications. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics—2nd Edition)
Show Figures

Figure 1

38 pages, 6568 KB  
Review
Advances in MXene-Based Hybrids for Electrochemical Health Monitoring
by Kandaswamy Theyagarajan and Young-Joon Kim
Chemosensors 2026, 14(1), 6; https://doi.org/10.3390/chemosensors14010006 - 23 Dec 2025
Viewed by 443
Abstract
The growing demand for advanced health-monitoring technologies has intensified the need for early diagnosis of incurable diseases and timely detection of life-threatening conditions. Among various detection modalities, electrochemical sensing has emerged as a particularly promising approach due to its simplicity, cost-effectiveness, high sensitivity, [...] Read more.
The growing demand for advanced health-monitoring technologies has intensified the need for early diagnosis of incurable diseases and timely detection of life-threatening conditions. Among various detection modalities, electrochemical sensing has emerged as a particularly promising approach due to its simplicity, cost-effectiveness, high sensitivity, rapid response, ease of miniaturization, and compatibility with portable, wearable, and implantable platforms. The performance of electrochemical sensors is strongly governed by the morphology and physicochemical properties of electrode materials. In this context, MXenes, 2D transition-metal carbides, nitrides, and carbonitrides have attracted increasing attention for sensing applications owing to their high electrical conductivity, large surface area, hydrophilicity, and rich surface chemistry. However, their practical implementation is hindered by oxidation and environmental instability, while surface modification strategies, although improving stability, may compromise intrinsic electrochemical activity and biocompatibility. Notably, MXene-based hybrids consistently demonstrate enhanced sensing performance, underscoring their potential for flexible and wearable electrochemical devices. Despite rapid progress in this field, a comprehensive review addressing the significance of MXene hybrids, their structure–property–performance relationships, and their role in electrochemical detection remains limited. Therefore, this review summarizes recent advances in MXene-based hybrid materials for electrochemical sensing and biosensing of biologically relevant analytes, with an emphasis on design strategies, functional enhancements, and their prospects for next-generation health-monitoring technologies. Full article
(This article belongs to the Special Issue Electrochemical Sensors Based on Various Materials)
Show Figures

Graphical abstract

16 pages, 12456 KB  
Article
Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines
by Xin Wang, Delai Zhou, Xuxia Liu, Guodi Lu, Jia Hou, Jian Xu and Fude Yang
Polymers 2026, 18(1), 21; https://doi.org/10.3390/polym18010021 - 22 Dec 2025
Viewed by 424
Abstract
A molecularly imprinted electrochemical sensor was developed for the selective and sensitive detection of glyphosate in Traditional Chinese Medicine samples. An excellent conductive hierarchical porous carbon substrate made from sodium alginate and ammonium chloride co-carbonization was used to build the sensor. The molecularly [...] Read more.
A molecularly imprinted electrochemical sensor was developed for the selective and sensitive detection of glyphosate in Traditional Chinese Medicine samples. An excellent conductive hierarchical porous carbon substrate made from sodium alginate and ammonium chloride co-carbonization was used to build the sensor. The molecularly imprinted polymer layer was systematically designed using Density Functional Theory calculations, which identified nicotinamide as the optimal functional monomer. A deep eutectic solvent was utilized as an effective green eluent for template removal. Under optimized conditions, the sensor demonstrated a wide linear detection range from 1.0 × 10−9 to 1.0 × 10−6 M with an exceptionally low detection limit of 8.8 × 10−10 M. The sensor exhibited satisfactory reproducibility (RSD = 3.35%, n = 6), repeatability (RSD = 5.0% over 6 cycles), and robust stability (retaining >90% initial response after 10 days). The sensor displayed satisfactory recovery rates of 94.47–112.23% and RSD values ranging from 1.37–3.01% when applied to real traditional Chinese medicine samples, thereby confirming its accuracy and practical utility for glyphosate residue analysis in complex matrices. This study introduces an effective sensing platform that integrates rational design principles with environmentally friendly synthesis strategies for quality control in traditional medicine applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2434 KB  
Article
Highly Sensitive Electrochemical Detection of Levofloxacin Using a Mn (III)-Porphyrin Modified ITO Electrode
by Fatma Rejab, Nour Elhouda Dardouri, Nicole Jaffrezic-Renault and Hamdi Ben Halima
Chemosensors 2026, 14(1), 2; https://doi.org/10.3390/chemosensors14010002 - 19 Dec 2025
Viewed by 316
Abstract
This work presents the design of a novel electrochemical sensor for highly sensitive determination of LEV, utilizing a sensing platform based on a newly synthesized, high-purity manganese (III) porphyrin complex [5,10,15,20-tetrayltetrakis(2-methoxybenzene-4,1-diyl) tetraisonicotinateporphyrinato] manganese (III) porphyrin (MnTMIPP). The successful synthesis of the MnTMIPP complex [...] Read more.
This work presents the design of a novel electrochemical sensor for highly sensitive determination of LEV, utilizing a sensing platform based on a newly synthesized, high-purity manganese (III) porphyrin complex [5,10,15,20-tetrayltetrakis(2-methoxybenzene-4,1-diyl) tetraisonicotinateporphyrinato] manganese (III) porphyrin (MnTMIPP). The successful synthesis of the MnTMIPP complex was verified using ultraviolet–visible (UV–Vis) and infrared spectroscopy (IR). The sensing electrode was fabricated by depositing the synthesized material onto an indium tin oxide (ITO) electrode via a drop-coating method. Under optimized experimental conditions, the proposed sensor demonstrated a wide dynamic range, from 10−9 M to 10−3 M, with a low calculated detection limit of 4.82 × 10−10 M. Furthermore, the MnTMIPP/ITO electrode displayed interesting metrological performance: high selectivity, reproducibility, and stability. Successful application in spiked river water and saliva samples with satisfactory recovery rates confirms the sensor’s potential as a reliable and cost-effective platform for monitoring LEV in real-world environments. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrochemical Sensing)
Show Figures

Figure 1

24 pages, 2330 KB  
Review
Analytical Determination of Heavy Metals in Water Using Carbon-Based Materials
by Zhazira Mukatayeva, Diana Konarbay, Yrysgul Bakytkarim, Nurgul Shadin and Yerbol Tileuberdi
Molecules 2026, 31(1), 5; https://doi.org/10.3390/molecules31010005 - 19 Dec 2025
Viewed by 481
Abstract
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents [...] Read more.
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents has led to persistent contamination of aquatic environments by toxic metals, creating an urgent need for sensitive, rapid, and field-deployable analytical technologies. Carbon-based nanomaterials, including graphene, carbon nanotubes (CNTs), and MXene, have emerged as key functional components in modern electrochemical sensors due to their high electrical conductivity, large surface area, and tunable surface chemistry. Based on reported studies, typical detection limits for Pb2+ and Cd2+ using differential pulse voltammetry (DPV) on glassy carbon and thin-film electrodes are in the range of 0.4–1.2 µg/L. For integrated thin-film sensing systems, limits of detection of 0.8–1.2 µg/L are commonly achieved. MXene-based platforms further enhance sensitivity and enable Hg2+ detection with linear response ranges typically between 1 and 5 µg/L, accompanied by clear electrochemical or optical signals. Beyond conventional electrochemical detection, this review specifically highlights self-sustaining visual sensors based on MXene integrated with enzyme-driven bioelectrochemical systems, such as glucose oxidase (GOD) and Prussian blue (PB) assembled on ITO substrates. These systems convert chemical energy into measurable colorimetric signals without external power sources, enabling direct visual identification of Hg2+ ions. Under optimized conditions (e.g., 5 mg/mL GOD and 5 mM glucose), stable and distinguishable color responses are achieved for rapid on-site monitoring. Overall, this review not only summarizes current performance benchmarks of carbon-based sensors but also identifies key challenges, including long-term stability, selectivity under multi-ion interference, and large-scale device integration, while outlining future directions toward portable multisensor water-quality monitoring systems. Full article
Show Figures

Graphical abstract

18 pages, 970 KB  
Review
CRISPR-Based Biosensing for Genetically Modified Organism Detection: Current Applications and Future Perspectives
by Jingying Yan, Yuan Zhou, Junhui Sun, Sanling Wu, Zhongjie Ding, Liang Ni and Jianjun Wang
Agronomy 2025, 15(12), 2912; https://doi.org/10.3390/agronomy15122912 - 18 Dec 2025
Viewed by 574
Abstract
The rapid global expansion of genetically modified (GM) crops requires fast, on-site detection methods. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas) systems offer a promising platform for decentralized GM organism (GMO) monitoring. This review focuses specifically on the application of this technology in [...] Read more.
The rapid global expansion of genetically modified (GM) crops requires fast, on-site detection methods. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas) systems offer a promising platform for decentralized GM organism (GMO) monitoring. This review focuses specifically on the application of this technology in agriculture and food supply chains, diverging from previous reviews centered on clinical diagnostics. We examine the mechanisms of key CRISPR effectors (e.g., Cas12a, Cas13a) and their integration into diagnostic platforms (e.g., DETECTR, SHERLOCK) for detecting transgenic elements (e.g., CaMV35S promoter). A dedicated comparison of signal readout modalities, including fluorescence, lateral flow, and electrochemical sensing, highlights their suitability for different GMO detection scenarios, from field screening to laboratory confirmation. Finally, we discuss current challenges, including multiplexing and standardization, and outline future directions, such as the engineering of novel Cas variants and integration with smartphone technology. CRISPR-based diagnostics are poised to become indispensable tools for decentralized, efficient, and reliable GMO detection. Full article
(This article belongs to the Special Issue Genetically Modified (GM) Crops and Pests Management)
Show Figures

Figure 1

29 pages, 8564 KB  
Review
Comprehensive Review on DNA Hydrogels and DNA Origami-Enabled Wearable and Implantable Biosensors
by Man Li and Joonho Bae
Biosensors 2025, 15(12), 819; https://doi.org/10.3390/bios15120819 - 18 Dec 2025
Viewed by 938
Abstract
DNA nanoparticles have emerged as potent platforms for wearable and implantable biosensors owing to their molecular programmability, biocompatibility, and structural precision. This study delineates two principal categories of DNA-based sensing materials, DNA hydrogels and DNA origami, and encapsulates their fabrication methodologies, sensing mechanisms, [...] Read more.
DNA nanoparticles have emerged as potent platforms for wearable and implantable biosensors owing to their molecular programmability, biocompatibility, and structural precision. This study delineates two principal categories of DNA-based sensing materials, DNA hydrogels and DNA origami, and encapsulates their fabrication methodologies, sensing mechanisms, and applications at the device level. DNA hydrogels serve as pliable, aqueous signal transduction mediums exhibiting stimulus-responsive characteristics, facilitating applications such as sweat-based cytokine detection with limits of detection as low as pg·mL−1 and microneedle-integrated hydrogels for femtomolar miRNA sensing. DNA origami offers nanometer-scale spatial precision that improves electrochemical, optical, and plasmonic biosensing, as shown by origami-facilitated luminous nucleic acid detection and ultrasensitive circulating tumor DNA assays with fM-level sensitivity. Emerging integration technologies, such as flexible electronics, microfluidics, and wireless readout, are examined, alongside prospective developments in AI-assisted DNA design and materials produced from synthetic biology. This study offers a thorough and practical viewpoint on the progression of DNA nanotechnology for next-generation wearable and implantable biosensing devices. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

11 pages, 1586 KB  
Article
Toward Detection of Inert PFAS: Single/Few-CNT Devices for Sensing PFOA
by Collins Dormena, Obed Appiah and Taher Ghomian
Sensors 2025, 25(24), 7653; https://doi.org/10.3390/s25247653 - 17 Dec 2025
Viewed by 447
Abstract
Electron transport in carbon nanotubes (CNTs) is highly sensitive to interactions with their local environment, making them promising candidates for sensing applications. Specifically, this could allow detection of electrochemically and optically inert compounds that typically require complex and expensive analytical techniques. In this [...] Read more.
Electron transport in carbon nanotubes (CNTs) is highly sensitive to interactions with their local environment, making them promising candidates for sensing applications. Specifically, this could allow detection of electrochemically and optically inert compounds that typically require complex and expensive analytical techniques. In this study, we examine how single-walled carbon nanotubes (SWCNTs) respond to perfluorooctanoic acid (PFOA), a common per- and polyfluoroalkyl substance (PFAS). To improve sensitivity, we employ a single/few-CNT device setup where a small number of SWCNTs were aligned across nanogaps between gold electrodes with the dielectrophoresis method. This structure addresses the challenges of large CNT networks, such as inter-CNT interactions, drift, and degradation, resulting in improved stability for practical applications. Results showed that device resistance drops as a function of PFOA concentrations. Additionally, positive gate voltage enhances sensitivity by attracting negatively charged PFOA molecules to the SWCNT surface. Specifically, we report that the sensitivity increases by nearly an order of magnitude under a 0.3 V gate bias. Impedance spectroscopy reveals distinct amplitude and phase signatures, enabling selective detection of PFOA among different analytes. Applying gate voltage further enhances sensor selectivity, highlighting the potential of gated SWCNT devices for accurate and selective environmental monitoring. The device demonstrates promising performance as a robust platform for creating single/few-CNT nanosensors for detecting electrochemically and optically inert substances like PFAS molecules. Full article
(This article belongs to the Special Issue Bio & Chem Sensors: Young Scientists in the Americas)
Show Figures

Figure 1

Back to TopTop