Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Apparatus
2.3. Computer Simulation
2.4. Synthesis of PBC
2.5. Construction of PBC/GCE
2.6. Construction of MIP/PBC/GCE
2.7. Electrochemical Measurements
2.8. Preparation of Real Samples
3. Results and Discussion
3.1. Materials Characterization
3.2. Selection of an Appropriate Polymer
3.3. Electrochemical Characterization
3.4. Optimization Conditions
3.4.1. The Effect of PBC Layer Volume
3.4.2. The Effect of the Monomer to Template Ratio
3.4.3. The Effect of PH
3.4.4. The Effect of the MIP Layer Thickness
3.4.5. The Effect of the Elution Time
3.5. Quantitative Detection of Gly
3.6. Selectivity of the Sensor
3.7. Reproducibility, Repeatability, and Stability
3.8. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, L.; Hill, C.; Ross, R.P. Impact of Glyphosate (RoundupTM) on the Composition and Functionality of the Gut Microbiome. Gut Microbes 2023, 15, 2263935. [Google Scholar] [CrossRef]
- Lacroix, R.; Kurrasch, D.M. Glyphosate Toxicity: In Vivo, in Vitro, and Epidemiological Evidence. Toxicol. Sci. 2023, 192, 131–140. [Google Scholar] [CrossRef]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly Imprinted Polypyrrole Nanotubes Based Electrochemical Sensor for Glyphosate Detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef]
- Munoz, J.P.; Silva-Pavez, E.; Carrillo-Beltran, D.; Calaf, G.M. Occurrence and Exposure Assessment of Glyphosate in the Environment and Its Impact on Human Beings. Environ. Res. 2023, 231, 116201. [Google Scholar] [CrossRef]
- Mertens, M.; Höss, S.; Neumann, G.; Afzal, J.; Reichenbecher, W. Glyphosate, a Chelating Agent—Relevant for Ecological Risk Assessment? Environ. Sci. Pollut. Res. 2018, 25, 5298–5317. [Google Scholar] [CrossRef]
- GB 2763—2021; National Food Safety Standard: Maximum Residue Limits for Pesticides in Food. National Health Commission of the People’s Republic of China: Beijing, China, 2021.
- Stanković, V.; Vlahović, F.; Terzić-Jovanović, N.; Stojkovic, P.; Đurđić, S.; Ognjanović, M.; Stanković, D. Electrochemical Approaches to Glyphosate Detection Using Molecularly Imprinted Polymer-Coated Metal-Organic Frameworks. Sens. Actuators B Chem. 2026, 449, 139163. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, Y.; Zhang, L.; Li, C.; Wang, Z.; Liu, Y.; Geng, Z.; Shen, M.; Sun, L.; Wei, F.; et al. Levels and Health Risk of Pesticide Residues in Chinese Herbal Medicines. Front. Pharmacol. 2022, 12, 818268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, G.; Han, K.; Sun, D.; Zhou, N.; Song, Z.; Liu, H.; Li, J.; Li, G. Applications of Molecular Imprinting Technology in the Study of Traditional Chinese Medicine. Molecules 2022, 28, 301. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of Exposure to Pesticide Residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 365, 857–867. [Google Scholar] [CrossRef]
- Arkan, T.; Molnár-Perl, I. The Role of Derivatization Techniques in the Analysis of Glyphosate and Aminomethyl-Phosphonic Acid by Chromatography. Microchem. J. 2015, 121, 99–106. [Google Scholar] [CrossRef]
- Pires, N.L.; Passos, C.J.S.; Morgado, M.G.A.; Mello, D.C.; Infante, C.M.C.; Caldas, E.D. Determination of Glyphosate, AMPA and Glufosinate by High Performance Liquid Chromatography with Fluorescence Detection in Waters of the Santarém Plateau, Brazilian Amazon. J. Environ. Sci. Health Part B 2020, 55, 794–802. [Google Scholar] [CrossRef]
- Gauglitz, G.; Wimmer, B.; Melzer, T.; Huhn, C. Glyphosate Analysis Using Sensors and Electromigration Separation Techniques as Alternatives to Gas or Liquid Chromatography. Anal. Bioanal. Chem. 2018, 410, 725–746. [Google Scholar] [CrossRef]
- Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.J.; Class, T.J.; Costa Pinheiro, N. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2016, 64, 1414–1421. [Google Scholar] [CrossRef]
- Canseco-Caballero, D.; Ledezma-Pérez, A.; Alvarado-Canché, C.; Castillo-Campohermoso, M.A.; Gallardo-Vega, C.; Díaz Barriga-Castro, E.; Herrera-May, A.L.; Saucedo-Salazar, E.; de León, A. ZnO Nanorods Functionalized with Silver Nanoparticles for Electrochemiluminescence Sensors in Glyphosate Detection. Opt. Mater. 2023, 142, 114101. [Google Scholar] [CrossRef]
- Lach, P.; Garcia-Cruz, A.; Canfarotta, F.; Groves, A.; Kalecki, J.; Korol, D.; Borowicz, P.; Nikiforow, K.; Cieplak, M.; Kutner, W.; et al. Electroactive Molecularly Imprinted Polymer Nanoparticles for Selective Glyphosate Determination. Biosens. Bioelectron. 2023, 236, 115381. [Google Scholar] [CrossRef] [PubMed]
- Neres, L.C.D.S.; Khan, S.; Zeb, S.; Sotomayor, M.D.P.T.; Calvo-Marzal, P. Molecularly Imprinted Polymers for Illicit Drug Detection: A Review of Computational and Synthesis Methods. Talanta 2025, 294, 128220. [Google Scholar] [CrossRef]
- Yashwant; Shukla, A.; Pattanayek, S.K. Molecularly Imprinted Polymer Based Electrochemical Sensor for the Detection of Acetylcholine. Electrochim. Acta 2025, 541, 147384. [Google Scholar] [CrossRef]
- Xing, Y.; Ding, X.; Liang, X.; Liu, G.; Hou, S.; Hou, S. Magnetic MXene–Based Molecularly Imprinted Electrochemical Sensor for Methylmalonic Acid. Microchim. Acta 2023, 190, 208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, P.; Dong, S.; Yu, W.; Liu, T.; Luo, B.; Li, A. Ultrasensitive Molecularly Imprinted Electrochemical Sensor for in Situ Determination of Serine in Plants. Talanta 2025, 295, 128361. [Google Scholar] [CrossRef]
- Lian, W.; Zhang, X.; Han, Y.; Li, X.; Liu, H. A Molecularly Imprinted Electrochemical Sensor for Carbendazim Detection Based on Synergy Amplified Effect of Bioelectrocatalysis and Nanocomposites. Polymers 2025, 17, 92. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Spina, S.; Magnaghi, L.R.; Biesuz, R. Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors 2023, 11, 144. [Google Scholar] [CrossRef]
- Afsharara, H.; Asadian, E.; Mosta, B.; Banan, K.; Bigdeli, S.A.; Hatamabadi, D.; Keshavarz, A.; Hussain, C.M.; Kecili, R.; Ghorbani-Bidkorpeh, F. Molecularly Imprinted Polymer-Modified Carbon Paste Electrodes (MIP-CPE): A Review on Sensitive Electrochemical Sensors for Pharmaceutical Determinations. Trac-Trends Anal. Chem. 2023, 160, 116949. [Google Scholar] [CrossRef]
- Panneer Selvam, S.; Cho, S. Silver Chalcogenide Loaded V2CTx MXene-Molecularly Imprinted Polymer-Based Novel Ratiometric Sensor for the Early Predictive Cancer Marker: L-Fucose. Chem. Eng. J. 2023, 469, 144016. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Jia, X.; Mao, J.; Wu, H.; Wang, S.; Guo, H. Molecularly Imprinted Electrochemical Sensor for Ultrasensitive Determination of Chloramphenicol in Milk and Egg Samples. Food Chem. 2025, 489, 145024. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, M.; Zhang, X.; Zhang, C.; Ren, B.; Ma, J. Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety. Crit. Rev. Anal. Chem. 2025, 1–19. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent Advances in Molecular Imprinting Technology: Current Status, Challenges and Highlighted Applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Z.; Li, K.; Wang, Y.; Li, Z.; Zhu, Z. MXene Fibers-Based Molecularly Imprinted Disposable Electrochemical Sensor for Sensitive and Selective Detection of Hydrocortisone. Talanta 2024, 266, 125100. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, K.; Ma, H.; Duan, R.; Sun, M.; Zou, P.; Yin, J.; Wang, X.; Wang, Y.; Wu, C.; et al. Bimetallic MOF Synergy Molecularly Imprinted Ratiometric Electrochemical Sensor Based on MXene Decorated with Polythionine for Ultra-Sensitive Sensing of Catechol. Anal. Chim. Acta 2023, 1251, 340983. [Google Scholar] [CrossRef]
- Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. A Bifunctional Polycentric-Affinity MOF/MXene Heterojunction-Based Molecularly Imprinted Photoelectrochemical Organophosphorus-Sensing Platform. Chem. Eng. J. 2023, 469, 143888. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Jia, X.; Wu, H.; Mao, J.; Huo, M.; Guo, H. Rapid and Sensitive Detection of Chloramphenicol Using Polyaniline Nanorods/Reduced Graphene Oxide-Based Molecularly Imprinted Electrochemical Sensor. Microchem. J. 2025, 209, 112687. [Google Scholar] [CrossRef]
- Shao, Y.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z.; An, J. Highly Sensitive and Selective Surface Molecularly Imprinted Polymer Electrochemical Sensor Prepared by Au and MXene Modified Glassy Carbon Electrode for Efficient Detection of Tetrabromobisphenol A in Water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Wu, P.-H.; Chen, Y.-K.; Hsieh, Y.-T.; Lu, S.-I. A Green Synthesis Approach Using Deep Eutectic Solvents to Synthesize the MIP-AuAg/rGO as an Electrochemical Sensor for Acetaminophen: Experimental and Theoretical Studies. Electrochim. Acta 2025, 523, 145934. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.Å.; Eklund, P.; Hultman, L.; Li, M.; et al. A General Lewis Acidic Etching Route for Preparing MXenes with Enhanced Electrochemical Performance in Non-Aqueous Electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance. Adv. Funct. Mater. 2018, 28, 1704195. [Google Scholar] [CrossRef]
- Zhang, L.; He, L.; Wang, Q.; Tang, Q.; Liu, F. Theoretical and Experimental Studies of a Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer and GQDs-PtNPs Nanocomposite. Microchem. J. 2020, 158, 105196. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Zhu, Z.; Wang, Y.; Li, P.; Luo, H.; Xiao, Z.; Wang, J.; Tian, Q.; Xue, Y.; et al. Fabrication of an N-Doped Mesoporous Bio-Carbon Electrocatalyst Efficient in Zn–Air Batteries by an in Situ Gas-Foaming Strategy. Chem. Commun. 2019, 55, 15117–15120. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zheng, K.; Tian, X.; Zhou, X.; Zou, X.; Xu, X.; Sun, Z.; Zhang, W. An Advanced Ratiometric Molecularly Imprinted Sensor Based on Metal Ion Reoxidation for Indirect and Ultrasensitive Glyphosate Detection in Fruit. Food Chem. 2023, 429, 136927. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.; Lisyte, V.; Sapauskiene, M.; Ramanavicius, S.; Zukauskas, S.; Slekiene, N.; Baginskiy, I.; Zahorodna, V.; Gogotsi, O.; Kausaite-Minkstimiene, A.; et al. MXene-Based Electrochemical Glucose Biosensors: Comparative Enhancement with Aquivion and Nafion. Mater. Today Nano 2025, 32, 100712. [Google Scholar] [CrossRef]
- Deng, L.; Liu, J.; Huang, H.; Deng, C.; Lu, L.; Wang, L.; Wang, X. A Molecularly Imprinted Electrochemical Sensor Based on TiO2@Ti3C2Tx for Highly Sensitive and Selective Detection of Chlortetracycline. Molecules 2023, 28, 7475. [Google Scholar] [CrossRef]
- Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Ben Halima, H.; Gallardo-Gonzalez, J.; El Hassani, N.E.A.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical Impedance Spectroscopy Determination of Glyphosate Using a Molecularly Imprinted Chitosan. Sens. Actuators B Chem. 2020, 309, 127753. [Google Scholar] [CrossRef]
- Yang, S.; Gao, H.; Tong, Y.; Chai, F.; Tian, M. Development of a ZnNiMOF@CNT-Based MIP Electrochemical Sensor: Toward the Selective Detection of Creatinine in Urine and Saliva. Electrochim. Acta 2025, 514, 145665. [Google Scholar] [CrossRef]
- Geana, E.-I.; Ciucure, C.T.; Soare, A.; Enache, S.; Ionete, R.E.; Dinu, L.A. Electrochemical Detection of Glyphosate in Surface Water Samples Based on Modified Screen-Printed Electrodes. Nanomaterials 2024, 14, 948. [Google Scholar] [CrossRef]
- Thimoonnee, S.; Somnet, K.; Ngaosri, P.; Chairam, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Fast, Sensitive and Selective Simultaneous Determination of Paraquat and Glyphosate Herbicides in Water Samples Using a Compact Electrochemical Sensor. Anal. Methods 2022, 14, 820–833. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Liu, C.; Zhang, D.; Wang, D.; Ispas, A.; Bund, A.; Du, B.; Zhang, Z.; Schaaf, P.; et al. Plasma-Assisted Fabrication of Molecularly Imprinted NiAl-LDH Layer on Ni Nanorod Arrays for Glyphosate Detection. ACS Appl. Mater. Interfaces 2022, 14, 35704–35715. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zeng, H.; Zhang, Q.; Cai, H.; Yang, W. Electrochemical Sensor Based on Molecularly Imprinted Polymer and Graphene Oxide Nanocomposite for Monitoring Glyphosate Content in Corn. Int. J. Electrochem. Sci. 2022, 17, 221292. [Google Scholar] [CrossRef]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole-Modified Gold Electrode for the Determination of Glyphosate in Cucumber and Tap Water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wu, K.; Zhang, L.; Ge, S.; Yu, J. A Molecularly Imprinted Polypyrrole for Ultrasensitive Voltammetric Determination of Glyphosate. Microchim. Acta 2017, 184, 1959–1967. [Google Scholar] [CrossRef]







| Electrodes | Modified | Technique | Linear Range (M) | LOD (M) | Sensor Application | Year/Ref. |
|---|---|---|---|---|---|---|
| GCE | MIP/Y-BDC-NH2@GO 1 | DPV | 1 × 10−9–1.65 × 10−5 | 4.2 × 10−10 | Tap water, agricultural water, and agricultural soil samples | 2026 [7] |
| SPE | MIPPy 2/Au | CV | 3 × 10−11–3 × 10−10 | 9.5 × 10−12 | Water | 2024 [43] |
| Pt-SPE | MIP nanoparticles | DPV | 2.5 × 10−11–5.0 × 10−10 | 1.8 × 10−11 | River water | 2023 [16] |
| GCE | MIP/MWCNTs-Au | CV | 1.0 × 10−8–2.4 × 10−6 | 1.4 × 10−9 | Fruits | 2023 [38] |
| GSPE 3 | MSN-PtNPs@MIP 4 | DPV | 2.5 × 10−8–5.0 × 10−4 | 4.0 × 10−9 | Reservoir water, pond water, waste water | 2022 [44] |
| NRAs 5 | Ni/MIP-NiAl-LDH | DPV | 1 × 10−8–1 × 10−6 | 3.1 × 10−9 | Pond water | 2022 [45] |
| GCE | MIP@GO | DPV | 0–1.8 × 10−3 | 1.1 × 10−5 | Corn | 2022 [46] |
| Au | MIPPy | DPV | 2.9 × 10−8–4.7 × 10−6 | 1.6 × 10−9 | Cucumber and tap water | 2017 [47] |
| ITO 6 | AuNp/MIP | PV | 2.4 × 10−9–7.1 × 10−9 | 5.4 × 10−10 | Corn | 2017 [48] |
| GCE | MIP/PBC | DPV | 1.0 × 10−9–1.0 × 10−6 | 8.8 × 10−10 | TCM samples | This study |
| Real Sample | Added (M) | Found (M) | Recovery (%) | RSD(%, n = 3) |
|---|---|---|---|---|
| Radix angelicae sinensis | 5.00 × 10−7 | 4.86 × 10−7 | 97.17% | 1.37 |
| 5.00 × 10−8 | 5.23 × 10−8 | 104.60% | 2.20 | |
| 5.00 × 10−9 | 5.27 × 10−9 | 105.37% | 2.52 | |
| Manyinflorescenced Sweetvetch Root | 5.00 × 10−7 | 4.72 × 10−7 | 94.47% | 2.03 |
| 5.00 × 10−8 | 5.61 × 10−8 | 112.23% | 2.52 | |
| 5.00 × 10−9 | 5.31 × 10−9 | 106.27% | 1.69 | |
| Licorice root | 5.00 × 10−7 | 5.18 × 10−7 | 103.67% | 0.69 |
| 5.00 × 10−8 | 4.76 × 10−8 | 95.17% | 2.65 | |
| 5.00 × 10−9 | 5.43 × 10−9 | 108.63% | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Zhou, D.; Liu, X.; Lu, G.; Hou, J.; Xu, J.; Yang, F. Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines. Polymers 2026, 18, 21. https://doi.org/10.3390/polym18010021
Wang X, Zhou D, Liu X, Lu G, Hou J, Xu J, Yang F. Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines. Polymers. 2026; 18(1):21. https://doi.org/10.3390/polym18010021
Chicago/Turabian StyleWang, Xin, Delai Zhou, Xuxia Liu, Guodi Lu, Jia Hou, Jian Xu, and Fude Yang. 2026. "Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines" Polymers 18, no. 1: 21. https://doi.org/10.3390/polym18010021
APA StyleWang, X., Zhou, D., Liu, X., Lu, G., Hou, J., Xu, J., & Yang, F. (2026). Rational Design of a Molecularly Imprinted Sensor on a Biomass Carbon Platform for Glyphosate Monitoring in Traditional Chinese Medicines. Polymers, 18(1), 21. https://doi.org/10.3390/polym18010021

