Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (885)

Search Parameters:
Keywords = curved displays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 278
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 440
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

33 pages, 15108 KiB  
Article
Effect of Matric Suction on Shear Strength and Elastic Modulus of Unsaturated Soil in Reconstituted and Undisturbed Samples
by Jorge Erazo, Carlos Solórzano-Blacio, Guillermo Realpe and Jorge Albuja-Sánchez
Appl. Sci. 2025, 15(15), 8309; https://doi.org/10.3390/app15158309 - 25 Jul 2025
Viewed by 297
Abstract
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus [...] Read more.
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus and shear strength of unsaturated soils under total stress conditions using undisturbed and reconstituted samples of silty soil from Quito, Ecuador. Techniques for suction measurement, soil water characteristic curve (SWCC), and predictive models for shear strength and stiffness in partially saturated soils were reviewed. Unconfined compression tests were performed, and the SWCC was determined using the filter paper method. A three-dimensional (3D) plot was generated to correlate the matric suction, shear strength, and normal stress across varying suction levels. In the reconstituted samples, the shear strength and elastic modulus exhibited nonlinear increases in the low suction range (≤500 kPa). In the high-suction range, the strength declined beyond 2228 kPa (40.23% saturation), whereas the elastic modulus stabilized. Undisturbed samples displayed greater variability owing to their heterogeneity, macrostructure, and hysteresis. The results suggest that matric suction enhances the shear strength and stiffness of the surface layers, whereas a higher saturation at depth reduces these properties. This paper further discusses the limitations and practical applicability of the proposed methodology. Full article
(This article belongs to the Special Issue Geotechnical Engineering: Principles and Applications)
Show Figures

Figure 1

23 pages, 10386 KiB  
Article
Hair Metabolomic Profiling of Diseased Forest Musk Deer (Moschus berezovskii) Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS)
by Lina Yi, Han Jiang, Yajun Li, Zongtao Xu, Haolin Zhang and Defu Hu
Animals 2025, 15(14), 2155; https://doi.org/10.3390/ani15142155 - 21 Jul 2025
Viewed by 443
Abstract
Hair, as a non-invasive biospecimen, retains metabolic deposits from sebaceous glands and capillaries, reflecting substances from the peripheral circulation, and provides valuable biochemical information linked to phenotypes, yet its application in animal disease research remains limited. This work applied ultra-high-performance liquid chromatography–tandem mass [...] Read more.
Hair, as a non-invasive biospecimen, retains metabolic deposits from sebaceous glands and capillaries, reflecting substances from the peripheral circulation, and provides valuable biochemical information linked to phenotypes, yet its application in animal disease research remains limited. This work applied ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) to compare the hair metabolomic characteristics of healthy forest musk deer (FMD, Moschus berezovskii) and those diagnosed with hemorrhagic pneumonia (HP), phytobezoar disease (PD), and abscess disease (AD). A total of 2119 metabolites were identified in the FMD hair samples, comprising 1084 metabolites in positive ion mode and 1035 metabolites in negative ion mode. Differential compounds analysis was conducted utilizing the orthogonal partial least squares–discriminant analysis (OPLS-DA) model. In comparison to the healthy control group, the HP group displayed 85 upregulated and 92 downregulated metabolites, the PD group presented 124 upregulated and 106 downregulated metabolites, and the AD group exhibited 63 upregulated and 62 downregulated metabolites. Functional annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the differential metabolites exhibited significant enrichment in pathways associated with cancer, parasitism, energy metabolism, and stress. Receiver operating characteristic (ROC) analysis revealed that both the individual and combined panels of differential metabolites exhibited area under the curve (AUC) values exceeding 0.7, demonstrating good sample discrimination capability. This research indicates that hair metabolomics can yield diverse biochemical insights and facilitate the development of non-invasive early diagnostic techniques for diseases in captive FMD. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

18 pages, 1553 KiB  
Article
Prognostic Impact of KRAS-TP53 Co-Mutations in Patients with Early-Stage Non-Small Cell Lung Cancer: A Single-Center Retrospective Study
by Lucia Motta, Francesca Molinari, Jana Pankovics, Benjamin Pedrazzini, Alexandra Valera, Samantha Epistolio, Luca Giudici, Stefania Freguia, Miriam Patella, Martina Imbimbo, Giovanna Schiavone, Milo Frattini and Patrizia Froesch
J. Clin. Med. 2025, 14(14), 5135; https://doi.org/10.3390/jcm14145135 - 19 Jul 2025
Viewed by 365
Abstract
Background/Objectives: The clinical value of KRAS mutations in lung adenocarcinoma, alone or in combination with other mutations, has been assessed especially in advanced stages. This study evaluates how KRAS and the presence of co-mutations could affect survival in early-stage lung. Methods: [...] Read more.
Background/Objectives: The clinical value of KRAS mutations in lung adenocarcinoma, alone or in combination with other mutations, has been assessed especially in advanced stages. This study evaluates how KRAS and the presence of co-mutations could affect survival in early-stage lung. Methods: We analyzed a real-world cohort including all staged NSCLC patients diagnosed and treated from 2018 to 2022 at our Institute with availability of NGS molecular data. Statistical analyses were made using log-rank test, the two-tailed Fisher’s exact test and Kaplan-Meier survival curves. Results: KRAS mutations were observed in 179/464 cases (38.6%). The majority of KRAS co-mutations were in TP53 (74%) and STK11 (14.3%) genes. KRAS+TP53 co-mutations were more frequent compared to KRAS-only tumors in stage IV NSCLC (p = 0.01). In early stage and locally advanced cases (stage I-III), better prognosis was associated to KRAS-only mutated NSCLC and to KRAS+STK11 mutated cases compared to KRAS+TP53 (p = 0.008). In particular, patients carrying KRAS+TP53 in stage I and II displayed a shorter survival, similar to patients diagnosed at stage III. Conclusions: Routine NGS provides important information for potential actionable mutations but also for the prognostic and predictive role of the presence of co-occurring mutations. In particular, the presence of KRAS+TP53 in stage I and II NSCLC may be considered an unfavorable prognostic marker possibly leading to adapt the perioperative chemo-immunotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 14423 KiB  
Article
The Influence of the Dispersion and Covalent Functionalization of CNTs on Electrical Conduction Under an Electric Field in LDPE/CNT Composites
by Xiaoli Wu, Ting Yin, Yi Yang, Wenyan Liu, Danping Wang, Libo Wan and Yijun Liao
Polymers 2025, 17(14), 1940; https://doi.org/10.3390/polym17141940 - 15 Jul 2025
Viewed by 344
Abstract
In this study, we comprehensively compare electrical conduction behavior under an applied electric field and electrical conductivity variation with temperature in low-density polyethylene (LDPE)/CNT composites with different dispersions and covalent functionalizations. Composites with different dispersions were prepared using solution and melt mixing processes. [...] Read more.
In this study, we comprehensively compare electrical conduction behavior under an applied electric field and electrical conductivity variation with temperature in low-density polyethylene (LDPE)/CNT composites with different dispersions and covalent functionalizations. Composites with different dispersions were prepared using solution and melt mixing processes. The solution-mixed composites exhibited better dispersion and higher electrical conductivity compared to the melt-mixed composites. At a high critical content (beyond the percolation threshold), the current–voltage (I–V) curve of the solution-mixed composites exhibited linear conduction behavior due to the formation of a continuous conductive network. In contrast, the melt-mixed composites exhibited nonlinear conduction behavior, with the conductive mechanism attributed to the field emission effect caused by poor interfacial contact between the CNTs. Additionally, LDPE/CNT-carboxyl (LDPE/CNT-COOH) and LDPE/CNT-hydroxy (LDPE/CNT-OH) composites demonstrated better dispersion but displayed lower electrical conductivity and similar nonlinear conduction behavior when compared to unmodified ones. This is attributed to the surface defects caused by the modification process, which lead to an increased energy barrier and a decreased transition frequency in the field emission effect. Furthermore, the temperature-dependent electrical conductivity results indicate that the variation trend in current with temperature differed among LDPE/CNT composites with different dispersions and covalent functionalizations. These differences were mainly influenced by the gap width between CNTs (mainly affected by dispersion and aspect ratio of CNTs), as well as the electrical conductivity of CNTs (mainly influenced by surface modification and intrinsic electrical conductivity of CNTs). Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Composites)
Show Figures

Graphical abstract

27 pages, 11290 KiB  
Article
Experimental Study on Compressive Capacity Behavior of Helical Anchors in Aeolian Sand and Optimization of Design Methods
by Qingsheng Chen, Wei Liu, Linhe Li, Yijin Wu, Yi Zhang, Songzhao Qu, Yue Zhang, Fei Liu and Yonghua Guo
Buildings 2025, 15(14), 2480; https://doi.org/10.3390/buildings15142480 - 15 Jul 2025
Viewed by 262
Abstract
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear [...] Read more.
The compressive capacity of helical anchors constitutes a pivotal performance parameter in geotechnical design. To precisely predict the compressive bearing behavior of helical anchors in aeolian sand, this study integrates in situ testing with finite element numerical analysis to systematically elucidate the non-linear evolution of its load-bearing mechanisms. The XGBoost algorithm enabled the rigorous quantification of the governing geometric features of compressive capacity, culminating in a computational framework for the bearing capacity factor (Nq) and lateral earth pressure coefficient (Ku). The research findings demonstrate the following: (1) Compressive capacity exhibits significant enhancement with increasing helix diameter yet displays limited sensitivity to helix number. (2) Load–displacement curves progress through three distinct phases—initial quasi-linear, intermediate non-linear, and terminal quasi-linear stages—under escalating pressure. (3) At embedment depths of H < 5D, tensile capacity diminishes by approximately 80% relative to compressive capacity, manifesting as characteristic shallow anchor failure patterns. (4) When H ≥ 5D, stress redistribution transitions from bowl-shaped to elliptical contours, with ≤10% divergence between uplift/compressive capacities, establishing 5D as the critical threshold defining shallow versus deep anchor behavior. (5) The helix spacing ratio (S/D) governs the failure mode transition, where cylindrical shear (CS) dominates at S/D ≤ 4, while individual bearing (IB) prevails at S/D > 4. (6) XGBoost feature importance analysis confirms internal friction angle, helix diameter, and embedment depth as the three parameters exerting the most pronounced influence on capacity. (7) The proposed computational models for Nq and Ku demonstrate exceptional concordance with numerical simulations (mean deviation = 1.03, variance = 0.012). These outcomes provide both theoretical foundations and practical methodologies for helical anchor engineering in aeolian sand environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3348 KiB  
Article
Response and Failure Behavior of Square Tubes with Varying Outer Side Lengths Under Cyclic Bending in Different Directions
by Chin-Mu Lin, Min-Cheng Yu and Wen-Fung Pan
Metals 2025, 15(7), 792; https://doi.org/10.3390/met15070792 - 13 Jul 2025
Viewed by 189
Abstract
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer [...] Read more.
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer side length with respect to curvature, whereas failure is characterized by the relationship between the controlled curvature and the number of cycles required to initiate buckling. The outer side lengths studied are 20 mm, 30 mm, 40 mm, and 50 mm, and the bending directions considered are 0°, 22.5°, and 45°. The moment–curvature curves exhibited cyclic hardening, and stable loops were formed for all outer side lengths and bending directions. An increase in the outer side length resulted in a higher peak bending moment, while a greater bending direction led to a slight increase in the peak bending moment. For a fixed bending direction, the curves representing the variation of the outer side length (defined as the change in length divided by the original length) with respect to curvature displayed symmetry, serrated features, and an overall increasing trend as the number of cycles increased, irrespective of the specific outer side length. In addition, increasing either the outer side length or altering the bending direction led to a larger variation in the outer side length. As for the relationship between curvature and the number of cycles required to initiate buckling, the data for each bending direction and each of the four outer side lengths formed distinct straight lines on a double-logarithmic plot. Based on the experimental observations, empirical equations were developed to characterize these relationships. These equations were then used to predict the experimental data and showed excellent agreement with the measured results. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

19 pages, 2353 KiB  
Article
A Novel Bimodal Hydro-Mechanical Coupling Model for Evaluating Rainfall-Induced Unsaturated Slope Stability
by Tzu-Hao Huang, Ya-Sin Yang and Hsin-Fu Yeh
Geosciences 2025, 15(7), 265; https://doi.org/10.3390/geosciences15070265 - 9 Jul 2025
Viewed by 256
Abstract
The soil water characteristic curve (SWCC) is a key foundation in unsaturated soil mechanics describing the relationship between matric suction and water content, which is crucial for studies on effective stress, permeability coefficients, and other soil properties. In natural environments, colluvial and residual [...] Read more.
The soil water characteristic curve (SWCC) is a key foundation in unsaturated soil mechanics describing the relationship between matric suction and water content, which is crucial for studies on effective stress, permeability coefficients, and other soil properties. In natural environments, colluvial and residual soils typically exhibit high pore heterogeneity, and previous studies have shown that the SWCC is closely related to the distribution of pore sizes. The SWCC of soils may display either a unimodal or bimodal distribution, leading to different hydraulic behaviors. Past unsaturated slope stability analyses have used the unimodal SWCC model, but this assumption may result in evaluation errors, affecting the accuracy of seepage and slope stability analyses. This study proposes a novel bimodal hydro-mechanical coupling model to investigate the influence of bimodal SWCC representations on rainfall-induced seepage behavior and stability of unsaturated slopes. By fitting the unimodal and bimodal SWCCs with experimental data, the results show that the bimodal model provides a higher degree of fit and smaller errors, offering a more accurate description of the relationship between matric suction and effective saturation, thus improving the accuracy of soil hydraulic property assessment. Furthermore, the study established a hypothetical slope model and used field data of landslides to simulate the collapse of Babaoliao in Chiayi County, Taiwan. The results show that the bimodal model predicts slope instability 1 to 3 h earlier than the unimodal model, with the rate of change in the safety factor being about 16.6% to 25.1% higher. The research results indicate the superiority of the bimodal model in soils with dual-porosity structures. The bimodal model can improve the accuracy and reliability of slope stability assessments. Full article
Show Figures

Figure 1

15 pages, 6704 KiB  
Article
Assessment of Habitat Suitability and Identification of Conservation Priority Areas for Endangered Marco Polo Sheep Throughout Khunjerab National Park (Pakistan) and Tashkurgan Natural Reserve (China)
by Ishfaq Karim, Xiaodong Liu, Babar Khan and Tahir Kazmi
Animals 2025, 15(13), 1907; https://doi.org/10.3390/ani15131907 - 28 Jun 2025
Viewed by 558
Abstract
This study assesses habitat suitability and identifies conservation priority areas for the endangered Marco Polo sheep throughout Khunjerab National Park (Pakistan) and Tashkurgan Natural Reserve (China). We analyzed species occurrence records against environmental variables (elevation, slope, climate, land cover) using MaxEnt modeling. Model [...] Read more.
This study assesses habitat suitability and identifies conservation priority areas for the endangered Marco Polo sheep throughout Khunjerab National Park (Pakistan) and Tashkurgan Natural Reserve (China). We analyzed species occurrence records against environmental variables (elevation, slope, climate, land cover) using MaxEnt modeling. Model performance was validated through AUC-ROC analysis and response curves, generating spatial predictions of suitable habitats to inform conservation strategies. Spatial predictions were generated to map potential distribution zones, aiding conservation planning for this endangered species. The model’s predictive performance was evaluated using the Area Under the Curve (AUC) of the Receiver Operating Characteristic curve, yielding an AUC of 0.919, indicating strong discriminatory capability. Elevation (43.9%), slope (25.9%), and September precipitation (15.9%) emerged as the most influential environmental predictors, collectively contributing 85.7% to the model. The total percentage contribution and permutation significance values were 98.6% and 77.8%, respectively. Jackknife analysis identified elevation (bio-1), slope (bio-7), hillshade (bio-2), and the maximum July temperature (bio-9) as the most significant factors influencing the distribution of Marco Polo sheep, Conversely, variables such as viewshade (bio-14), land cover (bio-3), and precipitation in August (bio-4) contributed a minimal gain, suggesting that they had little impact on accurately predicting species distribution. The habitat suitability map reveals varying conditions across the study area, with the highest suitability (yellow zones) found in the northern and western regions, particularly along the Wakhan Corridor ridgelines. The southern regions, including Khunjerab Pass, show predominantly low suitability, marked by purple zones, suggesting poor habitat conditions. The eastern region displays moderate to low suitability, with fragmented patches of green and yellow, indicating seasonal habitats. The survival of transboundary Marco Polo sheep remains at risk due to poaching activities and habitat destruction and border fence barriers. This study recommends scientific approaches to habitat restoration together with improved China–Pakistan cooperation in order to establish sustainable migratory patterns for this iconic species. Full article
Show Figures

Figure 1

19 pages, 5413 KiB  
Article
A Dual-Signal Ratiometric Optical Sensor Based on Natural Pine Wood and Platinum(II) Octaethylporphyrin with High Performance for Oxygen Detection
by Zhongxing Zhang, Yujie Niu, Hongbo Mu, Jingkui Li, Jinxin Wang and Ting Liu
Sensors 2025, 25(13), 3967; https://doi.org/10.3390/s25133967 - 26 Jun 2025
Viewed by 282
Abstract
Optical oxygen sensors have attracted considerable attention owing to their high sensitivity, rapid response, and broad applicability. However, their test results may be affected by fluctuations in the pump light source and instability of the detection equipment. In this study, the intrinsic luminescence [...] Read more.
Optical oxygen sensors have attracted considerable attention owing to their high sensitivity, rapid response, and broad applicability. However, their test results may be affected by fluctuations in the pump light source and instability of the detection equipment. In this study, the intrinsic luminescence of pine wood was utilized as the reference signal, and the luminescence of platinum(II) octaethylporphyrin (PtOEP) was employed as the oxygen indication signal, to fabricate a dual-signal ratiometric oxygen sensor PtOEP/PDMS@Pine. The ratio of the luminescence of pine wood to that of PtOEP was defined as the optical parameter (OP). OP increased linearly with oxygen concentration ([O2]) in the range of 10–100 kPa, and a calibration curve was obtained. The sensor exhibits excellent anti-interference capabilities, effectively resisting fluctuations from laser sources and detection equipment. It also displays stable hydrophobicity with a contact angle of 118.3° and maintains excellent photostability under continuous illumination. The sensor exhibited long-term stability within 90 days and robust recovery performance during cyclic tests, wherein the response time and recovery time were determined to be 1.4 s and 1.7 s, respectively. Finally, the effects of temperature fluctuations and photobleaching on the sensor’s performance have been effectively corrected, enabling accurate oxygen concentration measurements in complex environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

25 pages, 4737 KiB  
Article
Fractal Analysis of Pore–Throat Structures in Triassic Yanchang Formation Tight Sandstones, Ordos Basin, China: Implications for Reservoir Permeability and Fluid Mobility
by Pan Li
Fractal Fract. 2025, 9(7), 415; https://doi.org/10.3390/fractalfract9070415 - 26 Jun 2025
Viewed by 414
Abstract
Microscopic pore–throat structures, known for their complexity and heterogeneity, significantly influence the characteristics of tight sandstone reservoirs. Despite the advances in geological research, studies leveraging fractal theory to elucidate differences across pore scales are limited, and conventional testing methods often fail to effectively [...] Read more.
Microscopic pore–throat structures, known for their complexity and heterogeneity, significantly influence the characteristics of tight sandstone reservoirs. Despite the advances in geological research, studies leveraging fractal theory to elucidate differences across pore scales are limited, and conventional testing methods often fail to effectively characterize these complex structures. This gap poses substantial challenges for the exploration and evaluation of tight oil reservoirs, highlighting the need for refined analytical approaches. This study addresses these challenges by applying fractal analysis to the pore–throat structures of the Triassic Yanchang Formation tight sandstones in the Wuqi Area of the Ordos Basin. Employing a combination of experimental techniques—including pore-casted thin sections, scanning electron microscopy, high-pressure mercury intrusion, constant-rate mercury intrusion, and nuclear magnetic resonance (NMR)—this study analyzes the fractal dimensions of pore–throats. Findings reveal that tight sandstone reservoirs are predominantly composed of micron-scale pore–throats, displaying complex configurations and pronounced heterogeneity. Fractal curves feature distinct inflection points, effectively categorizing the pore–throats into large and small scales based on their mercury intrusion pressures. By linearly fitting slopes of fractal curves, we calculate variable fractal dimensions across these scales. Notably, NMR-derived fractal dimensions exhibit a two-segment distribution; smaller-scale pore–throats show less heterogeneity and spatial deformation, resulting in lower fractal dimensions, while larger-scale pore–throats, associated with extensive storage capacity and significant deformation, display higher fractal dimensions. Full article
Show Figures

Figure 1

11 pages, 752 KiB  
Article
Impact of the Presence of Chronic Total Occlusions on the Survival of Patients Treated with Coronary Artery Bypass Grafting
by Albi Fagu, Joseph Kletzer, Franziska Marie Ernst, Laurin Micek, Stoyan Kondov, Maximilian Kreibich, Clarence Pingpoh, Matthias Siepe, Martin Czerny and Tim Berger
J. Cardiovasc. Dev. Dis. 2025, 12(7), 243; https://doi.org/10.3390/jcdd12070243 - 25 Jun 2025
Viewed by 276
Abstract
Although chronic total occlusions (CTO) are a common finding in patients treated with coronary artery bypass grafting (CABG), it is still not clear how their presence impacts the long-term outcomes achieved with surgery. We aimed to investigate the impact of CTO on the [...] Read more.
Although chronic total occlusions (CTO) are a common finding in patients treated with coronary artery bypass grafting (CABG), it is still not clear how their presence impacts the long-term outcomes achieved with surgery. We aimed to investigate the impact of CTO on the long-term results of patients with coronary artery disease who underwent CABG. Patients from 2005 to 2023 operated on at the University Hospital Freiburg-Bad Krozingen were analyzed. The primary outcome was all-cause mortality after 3-, 5-, and 10 years. The secondary outcome was the need for coronary reintervention in the follow-up period. Propensity score matching and multivariable Cox regression were performed, and Kaplan–Meier curves were used to graphically display the outcomes for the two groups. Of the 3424 patients included in the analysis, 1784 (52%) were categorized as CTO and 1640 (48%) were categorized as no-CTO. After propensity scoring, 1232 pairs were successfully matched. The 3-, 5-, and 10-year all-cause mortality was significantly higher in patients with CTO (p = 0.028; p < 0.001; p < 0.001). The need for coronary reintervention after 3-, 5-, and 10 years was comparable in both groups. In addition, multivariable Cox Regression showed that CTO presence (HR 1.220, 95% CI 1.047–1.420, p = 0.010) was an independent predictor of 10-year mortality. Full article
(This article belongs to the Special Issue Risk Factors and Outcomes in Cardiac Surgery)
Show Figures

Figure 1

15 pages, 1204 KiB  
Article
A Comparative Performance Analysis of Load Cell and Hall-Effect Brake Sensors in Sim Racing
by John M. Joyce, Adam J. Toth and Mark J. Campbell
Sensors 2025, 25(13), 3872; https://doi.org/10.3390/s25133872 - 21 Jun 2025
Viewed by 778
Abstract
Alongside the general growth in gaming and esports, competitive simulated (sim) racing has specifically surged in popularity in recent years, leading to an increased demand for understanding performance. In recent work, braking-related metrics were identified among the key indicators of successful sim racing [...] Read more.
Alongside the general growth in gaming and esports, competitive simulated (sim) racing has specifically surged in popularity in recent years, leading to an increased demand for understanding performance. In recent work, braking-related metrics were identified among the key indicators of successful sim racing performance. While load cell sensors currently serve as the industry standard for brake hardware, sensors like the Hall sensor may provide another viable option. No study to date has compared the performance of these braking sensors. The aim of this study was to investigate whether sim racing performance differed when racing using a load cell or Hall brake sensor. Twenty (N = 20) experienced sim racers raced with both the load cell and Hall brake sensors (with load cell behaviour mimicked on the Hall sensor) in a repeated measures design. Paired samples t-tests, Wilcoxon-signed rank tests, and chi-square goodness-of-fit tests were used to test for differences in lap time, driving behaviour metrics, and subjective responses between the two sensors. Results showed that participants achieved faster lap times using the load cell brake sensor (average lap time (p = 0.071); fastest lap time (p = 0.052)) and displayed braking behaviour more aligned with that of a “faster racer”. The differences observed may be potentially attributed to differences in in-game response curves between two brake sensors, which specifically may impact both the initial, and trail braking, phases. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2568 KiB  
Article
Effects of Wood Vinegar as a Coagulant in Rubber Sheet Production: A Sustainable Alternative to Acetic Acid and Formic Acid
by Visit Eakvanich, Putipong Lakachaiworakun, Natworapol Rachsiriwatcharabul, Wassachol Wattana, Wachara Kalasee and Panya Dangwilailux
Polymers 2025, 17(13), 1718; https://doi.org/10.3390/polym17131718 - 20 Jun 2025
Viewed by 414
Abstract
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the [...] Read more.
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the potential of three types of wood vinegar—derived from para-rubber wood, bamboo, and eucalyptus—obtained through biomass pyrolysis under anaerobic conditions, as sustainable alternatives to formic and acetic acids in the production of ribbed smoked sheets (RSSs). The organic constituents of each wood vinegar were characterized using gas chromatography and subsequently mixed with fresh natural latex to produce coagulated rubber sheets. The physical and chemical properties, equilibrium moisture content, and drying kinetics of the resulting sheets were then evaluated. The results indicated that wood vinegar derived from para-rubber wood contained a higher concentration of acetic acid compared to that obtained from bamboo and eucalyptus. As a result, rubber sheets coagulated with para-rubber wood and bamboo vinegars exhibited moisture sorption isotherms comparable to those of sheets coagulated with acetic acid, best described by the modified Henderson model. In contrast, sheets coagulated with eucalyptus-derived vinegar and formic acid followed the Oswin model. In terms of physical and chemical properties, extended drying times led to improved tensile strength in all samples. No statistically significant differences in tensile strength were observed between the experimental and reference samples. The concentration of acid was found to influence Mooney viscosity, the plasticity retention index (PRI), the thermogravimetric curve, and the overall coagulation process more significantly than the acid type. The drying kinetics of all five rubber sheet samples displayed similar trends, with the drying time decreasing in response to increases in drying temperature and airflow velocity. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop