Mechanical Structure Damage of Metallic Materials

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Failure Analysis".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1350

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Interests: fatigue assessment; failure analysis; damage mechanics; fatigue modeling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

You are invited to contribute to this upcoming Special Issue of Metals, entitled “Mechanical Structure Damage of Metallic Materials”. This Special Issue aims to compile articles focused on theoretical and experimental research progress in the static and fatigue damage of metallic materials and mechanical structures, with potential topics ranging from the damage evolution to performance optimization of metallic materials and mechanical structures.

In the field of industrial equipment, the damage evolution and performance optimization of materials and mechanical structures are the core issues for ensuring equipment reliability and extending service life. With the rapid development of materials science, computational mechanics, and intelligent monitoring technology, how to accurately diagnose structural damage, reveal failure mechanisms, and improve performance through multi-scale optimization design have become the focuses of common concerns in both the academic and engineering fields. We focus on theoretical methods and technologies related to the damage mechanism of mechanical structures, life prediction methods, and structural performance optimization and encourage interdisciplinary exchanges of recent achievements. Our goal is to provide theoretical support and technical solutions for mechanical equipment in fields such as aerospace, energy equipment, and rail transportation.

We look forward to receiving your contributions to this Special Issue.

Prof. Dr. Guoqin Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • damage assessment
  • damage mechanism
  • mechanical structure
  • mechanical property
  • failure analysis
  • performance optimization
  • life prediction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1293 KiB  
Article
DOE-Based Investigation of Microstructural Factors Influencing Residual Stress in Aluminum Alloys
by Nawon Kwak and Eunkyung Lee
Metals 2025, 15(7), 816; https://doi.org/10.3390/met15070816 - 21 Jul 2025
Viewed by 231
Abstract
Residual stresses generated during the casting process significantly affect the reliability of the final product, making accurate prediction and analysis of these stresses crucial. In particular, to minimize the difference between simulation results and actual measurements, it is essential to develop predictive simulations [...] Read more.
Residual stresses generated during the casting process significantly affect the reliability of the final product, making accurate prediction and analysis of these stresses crucial. In particular, to minimize the difference between simulation results and actual measurements, it is essential to develop predictive simulations that incorporate microstructural characteristics. Therefore, in this study, residual stress prediction simulations were conducted for aluminum components manufactured by high-pressure die casting (HPDC), and measurement locations were selected based on the simulation results. Subsequently, the microstructural characteristics at each location (Si and intermetallic compounds) were quantitatively analyzed, and significant factors affecting residual stress were identified through design of experiments (DOE). As a result, Si sphericity (p-value ≤ 0.05) was observed to be the most significant factor among Si area fraction, IMC area fraction, and Si sphericity, and the residual stress and Si sphericity showed a positive interaction due to the rapid cooling rate and inhomogeneous microstructure distribution. Furthermore, the study demonstrated the effectiveness of DOE in clearly distinguishing the significance of variables with strong interdependencies. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

16 pages, 3348 KiB  
Article
Response and Failure Behavior of Square Tubes with Varying Outer Side Lengths Under Cyclic Bending in Different Directions
by Chin-Mu Lin, Min-Cheng Yu and Wen-Fung Pan
Metals 2025, 15(7), 792; https://doi.org/10.3390/met15070792 - 13 Jul 2025
Viewed by 177
Abstract
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer [...] Read more.
This paper primarily investigates the response and failure behavior of 6063-T5 aluminum alloy square tubes with varying outer side lengths under symmetric curvature-controlled cyclic bending in different bending directions. The response is characterized by the moment–curvature relationship and the variation in the outer side length with respect to curvature, whereas failure is characterized by the relationship between the controlled curvature and the number of cycles required to initiate buckling. The outer side lengths studied are 20 mm, 30 mm, 40 mm, and 50 mm, and the bending directions considered are 0°, 22.5°, and 45°. The moment–curvature curves exhibited cyclic hardening, and stable loops were formed for all outer side lengths and bending directions. An increase in the outer side length resulted in a higher peak bending moment, while a greater bending direction led to a slight increase in the peak bending moment. For a fixed bending direction, the curves representing the variation of the outer side length (defined as the change in length divided by the original length) with respect to curvature displayed symmetry, serrated features, and an overall increasing trend as the number of cycles increased, irrespective of the specific outer side length. In addition, increasing either the outer side length or altering the bending direction led to a larger variation in the outer side length. As for the relationship between curvature and the number of cycles required to initiate buckling, the data for each bending direction and each of the four outer side lengths formed distinct straight lines on a double-logarithmic plot. Based on the experimental observations, empirical equations were developed to characterize these relationships. These equations were then used to predict the experimental data and showed excellent agreement with the measured results. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

22 pages, 4441 KiB  
Article
Understanding Shock Response of Body-Centered Cubic Molybdenum from a Specific Embedded Atom Potential
by Yichen Jiang, Yanchun Leng, Xiaoli Chen and Chaoping Liang
Metals 2025, 15(6), 685; https://doi.org/10.3390/met15060685 - 19 Jun 2025
Viewed by 269
Abstract
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and [...] Read more.
Extreme conditions induced by shock exert unprecedented force on crystal lattice and push atoms away from their equilibrium positions. Nonequilibrium molecular dynamics (MD) simulations are one of the best ways to describe material behavior under shock but are limited by the availability and reliability of potential functions. In this work, a specific embedded atom (EAM) potential of molybdenum (Mo) is built for shock and tested by quasi-isentropic and piston-driven shock simulations. Comparisons of the equation of state, lattice constants, elastic constants, phase transitions under pressure, and phonon dispersion with those in the existing literature validate the reliability of our EAM potential. Quasi-isentropic shock simulations reveal that critical stresses for the beginning of plastic deformation follow a [111] > [110] > [100] loading direction for single crystals, and then polycrystal samples. Phase transitions from BCC to FCC and BCC to HCP promote plastic deformation for single crystals loading along [100] and [110], respectively. Along [111], void directly nucleates at the stress concentration area. For polycrystals, voids always nucleate on the grain boundary and lead to early crack generation and propagation. Piston-driven shock loading confirms the plastic mechanisms observed from quasi-isentropic shock simulation and provides further information on the spall strength and spallation process. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Graphical abstract

23 pages, 5327 KiB  
Article
Optimized ANN Model for Predicting Buckling Strength of Metallic Aerospace Panels Under Compressive Loading
by Shahrukh Khan, Saiaf Bin Rayhan, Md Mazedur Rahman, Jakiya Sultana and Gyula Varga
Metals 2025, 15(6), 666; https://doi.org/10.3390/met15060666 - 15 Jun 2025
Viewed by 506
Abstract
The present research proposes an Artificial Neural Network (ANN) model to predict the critical buckling load of six different types of metallic aerospace grid-stiffened panels: isogrid type I, isogrid type II, bi-grid, X-grid, anisogrid, and waffle, all subjected to compressive loading. Six thousand [...] Read more.
The present research proposes an Artificial Neural Network (ANN) model to predict the critical buckling load of six different types of metallic aerospace grid-stiffened panels: isogrid type I, isogrid type II, bi-grid, X-grid, anisogrid, and waffle, all subjected to compressive loading. Six thousand samples (one thousand per panel type) were generated using the Latin Hypercube Sampling method to ensure a diverse and comprehensive dataset. The ANN model was systematically fine-tuned by testing various batch sizes, learning rates, optimizers, dense layer configurations, and activation functions. The optimized model featured an eight-layer architecture (200/100/50/25/12/6/3/1 neurons), used a selu–relu–linear activation sequence, and was trained using the Nadam optimizer (learning rate = 0.0025, batch size = 8). Using regression metrics, performance was benchmarked against classical machine learning models such as CatBoost, XGBoost, LightGBM, random forest, decision tree, and k-nearest neighbors. The ANN achieved superior results: MSE = 2.9584, MAE = 0.9875, RMSE = 1.72, and R2 = 0.9998, significantly outperforming all other models across all metrics. Finally, a Taylor Diagram was plotted to assess the model’s reliability and check for overfitting, further confirming the consistent performance of the ANN model across both training and testing datasets. These findings highlight the model’s potential as a robust and efficient tool for predicting the buckling strength of metallic aerospace grid-stiffened panels. Full article
(This article belongs to the Special Issue Mechanical Structure Damage of Metallic Materials)
Show Figures

Figure 1

Back to TopTop