Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (789)

Search Parameters:
Keywords = crystal size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5710 KB  
Article
Acetone Sensor Based on a Composite of Calcium Itaconate and Graphene Oxide
by Igor E. Uflyand, Anastasiya O. Zarubina, Aleksandr A. Shcherbatykh and Vladimir A. Zhinzhilo
Analytica 2026, 7(1), 8; https://doi.org/10.3390/analytica7010008 - 9 Jan 2026
Viewed by 219
Abstract
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: [...] Read more.
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: from 3.6 to 6.2 μm in length and from 0.7 to 1.1 μm in width. Thin-film-based acetone sensor made of a nanocomposite was fabricated by spin coating of calcium itaconate–GO nanoparticles on glass plates. The thin-film acetone sensor was characterized using FTIR, XRD, SEM, TEM, and the low-temperature nitrogen sorption–desorption method. The sensor response time is 7.66 ± 0.07 s (sr = 0.92%), and the relaxation time when blowing the surface with clean air or inert gas (nitrogen, argon) is 9.26 ± 0.12 s (sr = 1.28%). The sensing mechanism of the sensor for detecting acetone at room temperature was also is proposed based on phenomenological understanding due to the absence of direct electronic/charge-transport evidence. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

21 pages, 7512 KB  
Article
Controlled Synthesis and Formation Mechanism of Uniformly Sized Spherical CeO2 Nanoparticles
by Jiayue Xie, Kai Feng, Rui Ye, Maokui Wang, Yunci Wang, Xing Fan and Renlong Liu
Materials 2026, 19(1), 211; https://doi.org/10.3390/ma19010211 - 5 Jan 2026
Viewed by 314
Abstract
As the core abrasive in chemical mechanical polishing (CMP) processes, the morphology, size uniformity, and chemical reactivity of CeO2 nanoparticles (NPs) are crucial factors determining the surface precision and yield of devices. In this work, a KNO3–LiNO3 eutectic molten [...] Read more.
As the core abrasive in chemical mechanical polishing (CMP) processes, the morphology, size uniformity, and chemical reactivity of CeO2 nanoparticles (NPs) are crucial factors determining the surface precision and yield of devices. In this work, a KNO3–LiNO3 eutectic molten salt was used as the reaction medium. By systematically adjusting key processing parameters (such as the type of cerium source, the species and dosage of surfactants, and calcination conditions), the regulatory effects of these factors on particle growth mechanisms were clarified. This adjustment enabled the controlled synthesis of spherical CeO2 NPs with customized morphology, particle size, and surface defect states. The multi-stage reaction process of the precursor during calcination was identified by applying thermal analysis techniques, including TG-DSC and TG-FTIR. This process includes dehydration, ion exchange, and thermal decomposition. Microstructural analysis shows that the type and dosage of the cerium source and template agent significantly affect the uniformity of particle size and spherical morphology. Moreover, by using an optimized process with a heating rate of 6 °C/min and maintaining at 400 °C for 3 h, spherical CeO2 NPs with an average particle size of 60 nm, uniform size distribution, and high sphericity were successfully synthesized via a single-step calcination process. Based on these findings, a further proposal was put forward regarding a crystal growth mechanism mediated by micelle-directed assembly and oriented attachment. This method only requires a single calcination step, has mild reaction conditions, and involves a simple process without the need for specialized equipment—features that show great potential for scalable production. It provides both a theoretical basis and experimental support for the controlled preparation of high-performance CeO2 abrasives. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 8184 KB  
Article
Study on Influencing Factors and Mechanism of Activated MgO Carbonation Curing of Tidal Mudflat Sediments
by Hui Lu, Qiyao Zhang, Zhixiao Bai, Liwei Guo, Zeyu Shao and Erbing Li
Geotechnics 2026, 6(1), 4; https://doi.org/10.3390/geotechnics6010004 - 4 Jan 2026
Viewed by 214
Abstract
Offshore wind farm construction faces significant geotechnical challenges posed by tidal mudflat sediments, including high moisture content, low bearing capacity, and high sensitivity to disturbance. Utilizing MgO—a material characterized by abundant raw materials, low embodied energy, and environmental compatibility—for the stabilization of such [...] Read more.
Offshore wind farm construction faces significant geotechnical challenges posed by tidal mudflat sediments, including high moisture content, low bearing capacity, and high sensitivity to disturbance. Utilizing MgO—a material characterized by abundant raw materials, low embodied energy, and environmental compatibility—for the stabilization of such soft soils represents a promising and sustainable approach worthy of further investigation. This study elucidates the carbonation-induced stabilization mechanism of coastal mucky soil from Ningbo, Zhejiang Province, through systematic monitoring of reaction temperature and unconfined compressive strength (UCS) testing under varying levels of reactive MgO content, carbonation duration, and initial moisture content. Microstructural characterization was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) to reveal the evolution of mineralogical and pore structure features associated with carbonation. The results indicate that increasing MgO content leads to higher peak reaction temperatures and shorter time-to-peak values. However, the rate of reduction in time-to-peak diminishes beyond 20% MgO. A secondary temperature rise is commonly observed between 3–3.5 h of carbonation in most specimens. When the MgO content is below 30%, UCS peaks within 6–10 h, with the peak time decreasing as MgO content increases. When MgO exceeds 45%, strength deterioration occurs due to structural damage. The correlation between deformation modulus and UCS is found to be comparable to that of conventional cement-stabilized soils. Microstructural analysis reveals that, with increased MgO dosage and prolonged carbonation, carbonation products progressively fill voids and bind soil particles, resulting in reduced total porosity and a refinement of pore size distribution—evidenced by a leftward shift in the most probable pore diameter. Nevertheless, at excessively high MgO levels (e.g., 50%), crystallization pressure from rapid product formation may generate macro-pores, compromising soil fabric integrity. This study presents a low-carbon and efficient ground improvement approach for access road construction in tidal mudflat wind farm developments. Full article
Show Figures

Figure 1

20 pages, 4708 KB  
Article
Different Varieties of Water Caltrop (Trapa bispinosa) Starch: Physicochemical Properties and Digestibility Modulated by Its Multi-Scale Structure
by Tengfei Ma, Qiong Wu, Yuyang Yuan, Xiaoxin Chen, Qinlu Lin, Huaxi Xiao, Jiangtao Li and Wenfang Han
Foods 2025, 14(24), 4304; https://doi.org/10.3390/foods14244304 - 14 Dec 2025
Cited by 1 | Viewed by 353
Abstract
This study assessed the physicochemical properties and digestibility of starches derived from five varieties of water caltrop, focusing on their multi-scale structure. Water caltrop starch granules exhibited round, oval, or polygonal shapes with smooth surfaces, exhibiting unimodal particle size distributions and A-, C-, [...] Read more.
This study assessed the physicochemical properties and digestibility of starches derived from five varieties of water caltrop, focusing on their multi-scale structure. Water caltrop starch granules exhibited round, oval, or polygonal shapes with smooth surfaces, exhibiting unimodal particle size distributions and A-, C-, or C/A-type crystal patterns. T.qR‘Green’ exhibited the highest amylose content (30.93%), the lowest peak viscosity and breakdown, and the highest setback. T.bR‘Green’ had the highest crystallinity (29.04%) and endothermic enthalpy (15.39 J/g), with a more ordered internal structure. T.bR‘Red’ had the lowest crystallinity (24.94%), gelatinization temperature, and endothermic enthalpy (8.08 J/g), while showing the highest peak viscosity and breakdown, the lowest setback, and the highest resistant starch content (47.2%), thus possessing stronger resistance to digestion. Pearson correlation analysis revealed that the thermal properties of water caltrop starches were mainly influenced by the amylopectin B-chains and short-range order, while pasting properties were mainly affected by amylopectin B-chains and crystallinity. Amylose content positively influenced solubility but negatively affected swelling power. Additionally, water caltrop starch digestibility showed a negative correlation with granule size and short-range order. These findings indicated the significant impact of starch multi-scale structure on physicochemical properties and digestibility. Full article
(This article belongs to the Special Issue Starch: Properties and Functionality in Food Systems)
Show Figures

Figure 1

15 pages, 2803 KB  
Article
Analysis of the Regulatory Effect of Semi-Solid Isothermal Treatment Time on Crystallization and Plasticity of Amorphous Composites
by Xinhua Huang, Guang Wang, Bin Chen, Chenghao Wei, Jintao Zhao, Longguang Wu, Qi Li and Yuejun Ouyang
Metals 2025, 15(12), 1363; https://doi.org/10.3390/met15121363 - 11 Dec 2025
Viewed by 240
Abstract
Ti48Zr27Cu6Nb5Be14 amorphous composites were prepared by copper mold suction casting to obtain as-cast specimens. Subsequently, the as-cast specimens were held at 900 °C for different durations (5, 10, 20, 30, and 40 min) and [...] Read more.
Ti48Zr27Cu6Nb5Be14 amorphous composites were prepared by copper mold suction casting to obtain as-cast specimens. Subsequently, the as-cast specimens were held at 900 °C for different durations (5, 10, 20, 30, and 40 min) and then water quenched to cool, yielding treated specimens. Room-temperature compression tests were conducted to characterize the mechanical properties of the materials before and after the treatment. X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM) were used to detect and observe the microstructure of the specimens (before and after treatment) as well as the morphology of the side surface of compressed fractured specimens. Results show that the as-cast specimens are amorphous matrix composites, with dendrites (identified as β-Ti) predominantly distributed in the amorphous matrix. When the treatment duration increased from 5 to 40 min, two key phenomena were observed. The dendrites gradually disappeared and evolved into curved crystals first; subsequently, the curved crystals transformed into elongated crystals. Finally, the elongated crystals evolved into short and thick rod-like crystals, which further transformed into near-spherical crystals or spherical crystals. Furthermore, as the treatment duration prolonged, the average equivalent size of the crystals increased continuously, reaching 23.1 μm. Additionally, the plasticity of the specimens first increased, reached a maximum value of 16.2% when held for 30 min, and then decreased. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Figure 1

15 pages, 5335 KB  
Article
Autoclave Expansion and Compressive Strength of MgO-Admixed RCC with Partial Fly Ash Replacement by Phosphorus Slag
by Rongfei Chen and Changli Chen
Crystals 2025, 15(12), 1048; https://doi.org/10.3390/cryst15121048 - 11 Dec 2025
Viewed by 292
Abstract
High-volume fly ash (FA) mitigates the expansion of magnesium oxide (MgO), and the uneven regional distributions of high-quality FA collectively limit the application of roller-compacted concrete admixed with MgO (M-RCC). This study evaluated the autoclave expansion and compressive strength of MgO-admixed cement paste [...] Read more.
High-volume fly ash (FA) mitigates the expansion of magnesium oxide (MgO), and the uneven regional distributions of high-quality FA collectively limit the application of roller-compacted concrete admixed with MgO (M-RCC). This study evaluated the autoclave expansion and compressive strength of MgO-admixed cement paste and mortar, wherein phosphorus slag (PS) was used to partially or fully replace FA. The expansion mechanism within the MgO-FA-PS system was explored. Results show that the autoclave expansion of the mortar increased as the proportion of PS replacing FA rose. At a replacement ratio of 33% (i.e., 20% of the total mass of cementitious materials), the mortar maintained the same ultimate MgO dosage (8%) as the control specimen, yet exhibited a 12.7% increase in expansion and an 8.8% decrease in strength. The mechanism is that PS is less efficient than FA in reducing the pore solution alkalinity, thereby promoting the formation of more brucite. The growth pressure of brucite crystals expands the internal gaps in the matrix and coarsens the pore size, resulting in greater expansion and reduced compressive strength. The results of this study can provide theoretical and technical insights for the application of PS in M-RCC. Full article
Show Figures

Figure 1

18 pages, 4195 KB  
Article
Silymarin PlantCrystals for Improved Dermal Drug Delivery
by Tehseen Sehra, Muzn Alkhaldi and Cornelia M. Keck
Bioengineering 2025, 12(12), 1331; https://doi.org/10.3390/bioengineering12121331 - 5 Dec 2025
Viewed by 490
Abstract
Background/Objectives: PlantCrystals (PCs) are submicron particles derived from plants or parts of plants that can be produced by bead milling and/or high-pressure homogenization. Previous studies suggested improved dermal drug delivery of lipophilic active ingredients (API), which was explained by the formation of extracellular [...] Read more.
Background/Objectives: PlantCrystals (PCs) are submicron particles derived from plants or parts of plants that can be produced by bead milling and/or high-pressure homogenization. Previous studies suggested improved dermal drug delivery of lipophilic active ingredients (API), which was explained by the formation of extracellular vesicles (EVs) during the production of PCs. The aim of this study was to investigate the suitability of PCs for enhancing the dermal penetration efficacy of different types of APIs. Methods: For this purpose, hydrophilic, lipophilic, and poorly water-soluble API-surrogates were loaded into PCs, and the dermal penetration efficacy, as well as the skin hydrating properties, were determined with an ex vivo porcine ear model. The penetration efficacy of the API surrogates from the PCs was compared to other formulation principles, e.g., simple API solutions, API loaded into classical EVs, and API added to the PCs after preparation. Silymarin-PCs—unloaded and loaded with API—were obtained by milling milk thistle seeds using small-scale bead milling. The PCs were characterized by size, size distribution, and zeta potential. Results: Milling of milk thistle seeds resulted in the formation of submicron particles with sizes of about 300 nm. Loaded PCs had a slightly larger size. Loading API into PCs resulted in improved dermal penetration when compared to the other formulation principles. The effect was most pronounced for the lipophilic API-surrogate (+90%, p < 0.001) and least pronounced for the hydrophilic API-surrogate (+2%, p > 0.05). The improved penetration of API from PCs can be explained by the formation of EVs during the production of the PCs in which the API is encapsulated. The encapsulation seemed to be highly efficient for the lipophilic API-surrogate, moderate for the poorly soluble API-surrogate, and very limited for the hydrophilic API-surrogate. All formulations increased the skin hydration significantly by about 30–40%. Conclusions: Milk thistle seeds are suitable for the production of PCs. These PCs improve skin hydration and enhance the dermal penetration of poorly water soluble and lipophilic APIs. However, they have limited effects on the dermal penetration efficacy of hydrophilic APIs. Full article
(This article belongs to the Special Issue Advances in Drug Delivery in Cancer Treatment)
Show Figures

Graphical abstract

23 pages, 4646 KB  
Article
Synthesis and Application of Thiourea–Poly(Acrylic Acid)–Formaldehyde Composites for Removal of Crystal Violet Dye
by Adel Elamri, Khmais Zdiri, Kamila Bourkaib, Mahjoub Jabli, Adnane Labed, Sophie Bistac and Omar Anis Harzallah
Materials 2025, 18(23), 5462; https://doi.org/10.3390/ma18235462 - 4 Dec 2025
Viewed by 454
Abstract
Textile dye effluents, particularly cationic dyes, pose a major environmental challenge, demanding efficient and sustainable adsorbent materials to remove harmful synthetic dyes. In this study, a reference thiourea–formaldehyde (TU/FA) composite and a series of thiourea–poly(acrylic acid)–formaldehyde (TU/PAA/FA) composites were synthesized and systematically characterized. [...] Read more.
Textile dye effluents, particularly cationic dyes, pose a major environmental challenge, demanding efficient and sustainable adsorbent materials to remove harmful synthetic dyes. In this study, a reference thiourea–formaldehyde (TU/FA) composite and a series of thiourea–poly(acrylic acid)–formaldehyde (TU/PAA/FA) composites were synthesized and systematically characterized. The composites were prepared by varying the volume of poly(acrylic acid) PAA (from 1 to 7.5 mL) to assess how PAA incorporation influences morphology, crystallinity, surface chemistry, charge, and thermal stability. Analytical techniques including SEM, XRD, FT-IR, particle size distribution, zeta potential, and TGA/DTG revealed that increasing PAA content induced more porous and amorphous microstructures, intensified carbonyl absorption, reduced particle size (optimal at 2.5–5 mL PAA), and shifted the zeta potential from near-neutral to highly negative values (−37 to −41 mV). From TU/PAA/FA composite analysis, it was depicted that the TU/PAA-5/FA material has the better characteristics as a potential cationic dye absorbent. Thus, the adsorption performance of this composite toward crystal violet dye was subsequently investigated and compared to the reference material thiourea–formaldehyde (TU/FA). The TU/PAA-5/FA material exhibited the highest capacity (145 mg/g), nearly twice that of TU/FA (74 mg/g), due to the higher density of carboxylic groups facilitating electrostatic attraction. Adsorption was pH-dependent, maximized at pH 6, and decreased with temperature, confirming an exothermic process. Kinetic data followed a pseudo-second-order model (R2 = 0.99), implying chemisorption as the rate-limiting step, while Langmuir isotherms (R2 > 0.97) indicated monolayer adsorption. Thermodynamic analysis (ΔH° < 0, ΔS° < 0, ΔG° > 0) further supported an exothermic, non-spontaneous mechanism. Overall, the TU/PAA-5/FA composite combines enhanced structural stability with high adsorption efficiency, highlighting its potential as a promising, low-cost material for the removal of cationic dyes from textile effluents. Full article
Show Figures

Figure 1

26 pages, 4595 KB  
Article
Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation
by Qayam Ud Din, Maria Chiara Iannaco, Iolanda De Marco, Vincenzo Vaiano and Giuseppina Iervolino
Nanomaterials 2025, 15(23), 1831; https://doi.org/10.3390/nano15231831 - 4 Dec 2025
Viewed by 536
Abstract
Non-thermal plasma (NTP) is a fast, reagent-free technology for dye removal, yet its performance is highly dependent on the operating conditions and on plasma–catalyst interactions. In this work, a coaxial falling-film dielectric barrier discharge (DBD) reactor was optimized for the degradation and decolorization [...] Read more.
Non-thermal plasma (NTP) is a fast, reagent-free technology for dye removal, yet its performance is highly dependent on the operating conditions and on plasma–catalyst interactions. In this work, a coaxial falling-film dielectric barrier discharge (DBD) reactor was optimized for the degradation and decolorization of organic dyes, with ceria (CeO2) employed as a catalyst. For the first time, CeO2 prepared via a supercritical antisolvent (SAS) micronization route was tested in plasma-assisted dye decolorization and directly compared with its non-micronized counterpart. Optimization of plasma parameters revealed that oxygen feeding, an input voltage of 12 kV, a gas flow of 0.2 NL·min−1, and an initial dye concentration of 20 mg·L−1 resulted in the fastest decolorization kinetics. While the anionic dye Acid Yellow 36 exhibited electrostatic repulsion and negligible plasma–ceria synergy, the cationic dyes Crystal Violet and Methylene Blue showed strong adsorption on the negatively charged CeO2 surface and pronounced plasma–catalyst synergy, with SAS-derived CeO2 consistently outperforming the non-micronized powder. The SAS catalyst, characterized by a narrow particle size distribution (DLS) and spherical morphology (SEM), ensured improved dispersion and interaction with plasma-generated species, leading to significantly shorter decolorization radiation times compared to the literature benchmarks. Importantly, this enhancement translated into higher energy efficiency, with complete dye removal achieved at a lower specific energy input than both plasma-only operation and non-micronized CeO2. Scavenger tests confirmed •OH radicals as the dominant oxidants, while O3, O2, and ea played secondary roles. Tests on binary dye mixtures (CV + MB) revealed synergistic decolorization under plasma-only conditions, and the CeO2-SAS catalyst maintained high overall efficiency despite competitive adsorption effects. These findings demonstrate that SAS micronization of CeO2 is an effective material-engineering strategy to unlock plasma–catalyst synergy and achieve rapid, energy-efficient dye abatement for practical wastewater treatment. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Graphical abstract

24 pages, 4899 KB  
Article
Crystallization Process Optimization Using Hybrid Tomographic Imaging and Deep Reinforcement Learning for Sustainable Energy Systems
by Konrad Niderla, Tomasz Rymarczyk, Grzegorz Kłosowski, Monika Kulisz, Grzegorz Bartnik, Paweł Kaleta, Emanuel Józefacki and Dariusz Dudek
Energies 2025, 18(23), 6193; https://doi.org/10.3390/en18236193 - 26 Nov 2025
Viewed by 500
Abstract
Crystallization is a fundamental unit operation in chemical, pharmaceutical, and energy industries, where strict control of crystal size distribution (CSD) is essential for ensuring product quality and process efficiency. However, the nonlinear dynamics of crystallization and the absence of explicit functional relationships between [...] Read more.
Crystallization is a fundamental unit operation in chemical, pharmaceutical, and energy industries, where strict control of crystal size distribution (CSD) is essential for ensuring product quality and process efficiency. However, the nonlinear dynamics of crystallization and the absence of explicit functional relationships between process variables make effective control a significant challenge. This study proposes a hybrid approach that integrates process tomography with deep reinforcement learning (RL) for adaptive crystallization control. A dedicated hybrid tomographic system, combining Electrical Impedance Tomography (EIT) and Ultrasound Tomography (UST), was developed to provide complementary real-time spatial information, while a ResNet neural network enabled accurate image reconstruction. These data were used as input to a reinforcement learning agent operating in a Simulink-based simulation environment, where temperature was selected as the primary controlled variable. To evaluate the applicability of RL in this context, four representative algorithms: Actor–Critic, Asynchronous Advantage Actor–Critic, Proximal Policy Optimization (PPO), and Trust Region Policy Optimization, were implemented and compared. The results demonstrate that PPO achieved the most stable and effective performance, ensuring improved control of CSD and improved control proxies consistent with potential energy savings. The findings confirm that hybrid tomographic imaging combined with RL-based control provides a promising pathway toward sustainable, intelligent crystallization processes with enhanced product quality and energy efficiency. Full article
Show Figures

Figure 1

14 pages, 1352 KB  
Article
Influence of CA-Modified Hβ on Methane-Assisted Hydroconversion of Polycyclic Aromatics to Monocyclic Aromatics
by Zhibing Shen, Ruiyuan Tang, Shengrong Liang, Juntao Zhang, Leyuan Li and Shangli Zhang
Fuels 2025, 6(4), 89; https://doi.org/10.3390/fuels6040089 - 26 Nov 2025
Viewed by 326
Abstract
The conversion of polycyclic aromatic hydrocarbons (PAHs) to monocyclic aromatic hydrocarbons holds significant importance in the petrochemical and coal chemical industries, as it enables the production of high-value-added chemicals. In this study, we investigated the methane-assisted hydroconversion of PAHs to monocyclic aromatic hydrocarbons [...] Read more.
The conversion of polycyclic aromatic hydrocarbons (PAHs) to monocyclic aromatic hydrocarbons holds significant importance in the petrochemical and coal chemical industries, as it enables the production of high-value-added chemicals. In this study, we investigated the methane-assisted hydroconversion of PAHs to monocyclic aromatic hydrocarbons with methyl side chains over Zn-based catalysts from Hβ zeolites treated with citric acid (CA) at different concentrations. The CA-modified Hβ catalysts were characterized using X-ray diffraction (XRD), N2 adsorption–desorption, pyridine–Fourier transform infrared spectroscopy (Py-FTIR), and ammonia temperature-programmed desorption (NH3-TPD). The results show that low CA concentrations facilitate the removal of amorphous aluminum from the zeolite framework, thereby increasing the specific surface area, pore volume, and pore diameter of the Zn/Hβ catalyst, as well as improving its Lewis/Brønsted (L/B) acid ratio. In contrast, excessive CA treatment causes the undesirable removal of framework aluminum and leads to structural collapse in the mesoporous regions formed at the interfaces between certain crystal aggregates. This, in turn, has a negative impact on the catalyst’s specific surface area, pore volume, pore size distribution, total acidity, and L/B ratio. Experimental data further indicate that the optimal Zn/Hβ catalyst, prepared using Hβ treated with 0.08 M CA, achieves a naphthalene conversion rate of up to 99% and a benzene–toluene–xylene (BTX) selectivity of 60% in the liquid product over a 10 h reaction period. These findings confirm that CA treatment not only enhances the catalytic activity of Zn/Hβ but also significantly improves its operational stability. This work provides new insights into the rational design of catalysts for the efficient conversion of PAHs to monocyclic aromatic hydrocarbons and the utilization of methane resources. Full article
Show Figures

Figure 1

11 pages, 3270 KB  
Communication
The Inhibitory Effect of Hafnium Oxide on Grain Growth in Yttrium Aluminum Garnet Composite Fiber
by Ke Gai, Qian Wang, Ketian Guan, Xiaohu Li, Weisen Liu, Yuan Li, Hongwei Zhao and Tong Zhao
Materials 2025, 18(23), 5272; https://doi.org/10.3390/ma18235272 - 21 Nov 2025
Viewed by 451
Abstract
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. [...] Read more.
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. In this work, YAG-HfO2 composite ceramic fibers were obtained by the solution blow spinning of YAG-HfO2 composite precursor and sintering in steam. The effect of HfO2 on the crystal phase transition and grain growth of YAG-HfO2 fibers was further studied by in situ X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The results show that the HfO2 addition increased the crystallization temperature of the YAG phase from 900 °C to 950 °C and reduced the crystal size at 1400 °C from 41.9 nm to 31.8 nm. The HfO2 grains were distributed at the boundary of YAG grains, which enabled the fiber to maintain its dense structure and uniform grain size even at 1500 °C, exhibiting excellent high-temperature grain size stability of composite fibers. Full article
(This article belongs to the Special Issue Advances in High-Temperature Ceramics and Refractory Materials)
Show Figures

Figure 1

22 pages, 8956 KB  
Article
Preparation of High-Energy Activated SiC Particles and Their Dispersion and Reaction Behavior in Hypoeutectic Gray Cast-Iron Melt
by Chunfeng Wang, Zhejun Li, Chuangang Huang, Runze Li, Qingyan Liang, Kebin Li, Jie Hu and Feng Jiang
Materials 2025, 18(23), 5264; https://doi.org/10.3390/ma18235264 - 21 Nov 2025
Viewed by 399
Abstract
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the [...] Read more.
This study addresses the issues of coarse primary austenite dendrites and uneven graphite distribution in hypoeutectic gray cast iron. High-energy mechanical activation technology was used to prepare high-energy activated SiC particles (EASiCp), and the regulatory mechanisms of trace additions (0–0.15 wt.%) on the solidification process and microstructure properties of hypoeutectic gray cast iron were systematically investigated. The results indicate that high-energy activation treatment reduced the average particle size of SiC particles from 26.53 μm to 9.51 μm and increased their specific surface area from 0.35 m2/g to 1.78 m2/g. X-ray diffraction (XRD) analysis revealed that the grain size was refined from 55.5 nm to 17.4 nm, with significant lattice distortion. The absorption rate of EASiCp in the melt stabilized between 68–72%, with particles predominantly dispersed within the grains (78.12%) and at grain boundaries (21.88%) in sizes ranging from 0.3 to 2 μm. The addition of EASiCp enhanced the solidification undercooling from 5.3 °C to 8.4 °C and reduced the latent heat of crystallization from 162.6 J/g to 99.96 J/g due to its endothermic reaction in the melt (SiC + Fe → FeSi + C) and heterogeneous nucleation effects. In terms of microstructure, the addition of 0.15 wt.% EASiCp increased the primary austenite dendrite content by 35.29%, reduced the secondary dendrite arm spacing by 57.98%, shortened the graphite length from 0.46 mm to 0.20 mm, and refined the eutectic colony size from over 500 μm to 180 μm. The final material achieved a tensile strength of 308 MPa, an improvement of 12.82% compared to the unadded group. Mechanistic analysis showed that EASiCp facilitated direct nucleation, reaction-induced “micro-area carbon enrichment,” and a synergistic effect in suppressing grain growth, thereby optimizing the solidification microstructure and enhancing performance. This study provides a new method for the efficient nucleation control of hypoeutectic gray cast iron. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 1977 KB  
Article
Structural, Up-Conversion Luminescence, and Electron Paramagnetic Resonance Investigations of Yb3+/Er3+-Doped LiGdF4 Nanocrystals Dispersed in Silica Glassy Matrix
by Corina Secu, Cristian Radu, Arpad Rostas and Mihail Secu
Inorganics 2025, 13(11), 378; https://doi.org/10.3390/inorganics13110378 - 19 Nov 2025
Viewed by 592
Abstract
We have investigated the structural, morphological, magnetic, and up-conversion luminescence properties of the Yb3+/Er3+-doped LiGdF4 nanocrystals precipitated in the silica glassy matrix. Morphological analysis showed uniform distribution of LiGdF4 nanocrystals (tens of nm in size), embedded in [...] Read more.
We have investigated the structural, morphological, magnetic, and up-conversion luminescence properties of the Yb3+/Er3+-doped LiGdF4 nanocrystals precipitated in the silica glassy matrix. Morphological analysis showed uniform distribution of LiGdF4 nanocrystals (tens of nm in size), embedded in silica glass matrix. FTIR spectroscopy analysis showed trifluoracetates thermolysis with silica lattice formation and structural analysis by XRD is consistent with the LiGdF4 crystallization process, most likely through an autocatalytic reaction. The stress and crystalline lattice distortion are assigned to the doping and glass matrix environment where the growth process occurs. The EPR spectra associated with the Gd3+ ions have shown a well-defined spectrum in the xerogel, associated with the trifluoroacetate ligand environment. In the LiGdF4 nanocrystals, the broad and unresolved spectrum is due to an envelope of unresolved anisotropic fine structure and a high dipole–dipole interaction between the Gd3+/Yb3+/Er3+ paramagnetic ions. Under 980 nm laser light pumping, we observed the characteristic “blue”, “green” and “red” up-conversion luminescences of the Er3+ ions through Yb → Er energy transfer process, that imply three and two-photon process; near UV up-conversion luminescence of Gd3+ is observed at about 280–300 nm where Yb → Er and Er → Gd energy transfer is involved. The UC luminescence properties can be improved up to two times by additional Yttrium co-doping due to the induced crystal field distortion. Full article
(This article belongs to the Special Issue Feature Papers in Inorganic Solid-State Chemistry 2025)
Show Figures

Figure 1

10 pages, 1110 KB  
Article
Far-Infrared Imaging Lens Based on Dual-Plane Diffractive Optics
by Chao Yan, Zhongzhou Tian, Xiaoli Gao, Xuezhou Yang, Qingshan Xu, Ligang Tan, Kai Li, Xiuzheng Wang and Yi Zhou
Photonics 2025, 12(11), 1117; https://doi.org/10.3390/photonics12111117 - 13 Nov 2025
Viewed by 457
Abstract
Far-infrared imaging is a powerful tool in night vision and temperature measurement, with broad applications in military, astronomy, meteorology, industrial, and medical fields. However, conventional imaging lenses face challenges such as large size, heavy weight, and difficulties in miniaturization, which hinder their integration [...] Read more.
Far-infrared imaging is a powerful tool in night vision and temperature measurement, with broad applications in military, astronomy, meteorology, industrial, and medical fields. However, conventional imaging lenses face challenges such as large size, heavy weight, and difficulties in miniaturization, which hinder their integration and use in applications with strict requirements for mass and volume, such as drone-based observation and imaging. To address these limitations, we designed a dual-plane diffractive optical lens optimized for the 10.9–11.1 μm wavelength band with a 0.2 μm bandwidth. By optimizing parameters including focal length, spot size, and field of view, we derived the phase distribution of the lens and converted it into the surface sag. To enhance diffraction efficiency and minimize energy loss, the lens was fabricated using a continuous phase surface on single-crystal Germanium. Finally, an imaging system was constructed to achieve clear imaging of various samples, demonstrating the feasibility of both the device and the system. This approach shows great potential for applications requiring lightweight and miniaturized solutions, such as infrared imaging, machine vision, remote sensing, biological imaging, and materials science. Full article
(This article belongs to the Special Issue Advancements in Optical Metrology and Imaging)
Show Figures

Figure 1

Back to TopTop