Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SAS Experimental Setup and Test Procedure
2.3. Photocatalysts Preparation
2.4. Characterization Methods
2.5. Non-Thermal Plasma Experimental Setup
2.6. Analytical Measurements
3. Results and Discussion
3.1. Catalyst Characterization Results
3.1.1. Physicochemical Characterizations
3.1.2. Spectroscopic Characterizations
3.2. Optimization of Only-Plasma Operating Parameters for Acid Yellow 36 Decolorization
3.2.1. Effect of Feeding Gas
3.2.2. Effect of Input Voltage
3.2.3. Effect of Gas Flowrate
3.2.4. Effect of AY36 Initial Concentration
3.3. Plasma and CeO2 Synergistic Effect Results
3.3.1. Results of Experiments with Acid Yellow 36 Solution
3.3.2. Results of Experiments with Crystal Violet Solution
3.3.3. Scavenger Test
3.3.4. Energy Efficiency
3.3.5. Degradation Efficiency in the Mixed Dye Solution (CV and MB)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Castillo-Suárez, L.A.; Sierra-Sánchez, A.G.; Linares-Hernández, I.; Martínez-Miranda, V.; Teutli-Sequeira, E.A. A critical review of textile industry wastewater: Green technologies for the removal of indigo dyes. Int. J. Environ. Sci. Technol. 2023, 20, 10553–10590. [Google Scholar] [CrossRef]
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced oxidation processes for water and wastewater treatment—Guidance for systematic future research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef] [PubMed]
- Surra, E.; Paíga, P.; Baptista, I.; Jorge, R.; Marinheiro, L.; Löblich, S.; Delerue-Matos, C. Comparative life cycle assessment of non-thermal plasma for the removal of pharmaceuticals from wastewater. J. Environ. Manag. 2024, 370, 122728. [Google Scholar] [CrossRef]
- Giardina, A.; Lofrano, G.; Libralato, G.; Siciliano, A.; Marotta, E.; Paradisi, C. Air non-thermal plasma, a green approach for the treatment of contaminated water: The case of sulfamethoxazole. Front. Environ. Chem. 2024, 5, 1416702. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Shen, C.; Wang, Y.; Li, Z.; Cao, B.; Wang, S. Non-thermal plasma degradation of dye wastewater assisted by reverse osmosis process through interfacial mass transfer enhancement. Chem. Eng. Sci. 2023, 282, 119221. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Sun, Y.; Li, K.; Shang, T.; Wan, Y. Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Front. Chem. 2022, 10, 1089708. [Google Scholar] [CrossRef]
- Vaiano, V.; Miranda, L.N.; Pepe, G.; Basilicata, M.G.; Campiglia, P.; Iervolino, G. Catalytic non-thermal plasma process for the degradation of organic pollutants in aqueous solution. J. Environ. Chem. Eng. 2022, 10, 107841. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Palma, V. Enhanced azo dye removal in aqueous solution by H2O2 assisted non-thermal plasma technology. Environ. Technol. Innov. 2020, 19, 100969. [Google Scholar] [CrossRef]
- Belkessa, N.; Assadi, A.A.; Bouzaza, A.; Nguyen-Tri, P.; Amrane, A.; Khezami, L. A review of non-thermal plasma -catalysis: The mutual influence and sources of synergetic effect for boosting volatile organic compounds removal. Environ. Res. 2024, 257, 119333. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.-K.; Liu, W.; Gao, Y. Advancing the Understanding of Oxygen Vacancies in Ceria: Insights into Their Formation, Behavior, and Catalytic Roles. JACS Au 2025, 5, 1549–1569. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Cui, J.; Wang, C.; Zhang, G.; Li, L.; Qu, Y.; Niu, Y. Oxygen Vacancy-Mediated Activates Oxygen to Produce Reactive Oxygen Species (ROS) on Ce-Modified Activated Clay for Degradation of Organic Compounds without Hydrogen Peroxide in Strong Acid. Nanomaterials 2022, 12, 4410. [Google Scholar] [CrossRef]
- Angelina; Cullen, P.J.; Prescott, S.W.; Leslie, G.L.; Rao, N.R.H.; Henderson, R.K. A critical review on the application of non-thermal plasma bubbles for oxidation in water treatment. Chem. Eng. J. 2025, 505, 159667. [Google Scholar] [CrossRef]
- Mancuso, A.; Iervolino, G. Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022, 12, 1074. [Google Scholar] [CrossRef]
- Mancuso, A.; Mottola, S.; Sacco, O.; Vaiano, V.; De Marco, I. Photocatalytic Degradation of Ceftriaxone Using TiO2 Coupled with ZnO Micronized by Supercritical Antisolvent Route. Nanomaterials 2023, 13, 3130. [Google Scholar] [CrossRef] [PubMed]
- García-Casas, I.; Montes, A.; Valor, D.; Pereyra, C.; De La Ossa, E.J.M. Precipitation of cerium oxide nanoparticles by SAS process. Chem. Eng. Trans. 2021, 86, 799–804. [Google Scholar]
- Hama Aziz, K.H.; Mustafa, F.S.; Omer, K.M.; Shafiq, I. Recent advances in water falling film reactor designs for the removal of organic pollutants by advanced oxidation processes: A review. Water Resour. Ind. 2023, 30, 100227. [Google Scholar] [CrossRef]
- Iannaco, M.C.; Mottola, S.; Vaiano, V.; Iervolino, G.; De Marco, I. CeO2-CuO composites prepared via supercritical antisolvent precipitation for photocatalytic hydrogen production from lactic acid aqueous solution. J. CO2 Util. 2024, 85, 102878. [Google Scholar] [CrossRef]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef] [PubMed]
- Saranya, J.; Sreeja, B.; Padmalaya, G.; Radha, S.; Manikandan, T. Ultrasonic assisted cerium oxide/graphene oxide hybrid: Preparation, anti-proliferative, apoptotic induction and G2/M cell cycle arrest in HeLa cell lines. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2666–2676. [Google Scholar] [CrossRef]
- Ramjeyanthi, N.; Alagar, M.; Muthuraman, D.J.J.A.S.C. Effect of calcination temperature on the structural and optical properties of synthesized CeO2 nanoparticles via chemical method. JASC J. Appl. Sci. Comput. 2018, 5, 577–583. [Google Scholar]
- Mokkelbost, T.; Kaus, I.; Grande, T.; Einarsrud, M.-A. Combustion Synthesis and Characterization of Nanocrystalline CeO2-Based Powders. Chem. Mater. 2004, 16, 5489–5494. [Google Scholar] [CrossRef]
- Safat, S.; Buazar, F.; Albukhaty, S.; Matroodi, S. Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci. Rep. 2021, 11, 14734. [Google Scholar] [CrossRef]
- Khouchaf, L.; Oufakir, A. Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method. Crystals 2022, 12, 531. [Google Scholar] [CrossRef]
- Jayakumar, G.; Albert Irudayaraj, A.; Dhayal Raj, A. A comprehensive investigation on the properties of nanostructured cerium oxide. Opt. Quantum Electron. 2019, 51, 312. [Google Scholar] [CrossRef]
- Muscatello, A.; Iervolino, G.; Vaiano, V.; Esposito, S. High-performance ceria via supramolecular metal-organic gel precursors for visible-light-driven hydrogen evolution from aqueous glucose. Chem. Commun. 2025, 61, 15830–15833. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-H.; Qu, J.-R.; Zhao, Y.-Q.; Sun, Y.-T.; Gao, W.-T.; Han, B.; Lu, Y. Visible-light-driven photocatalysis degradation of antibiotic pollutants by La-doped CeO2 nanorods: Synergy of La doping and oxygen vacancy. Rare Met. 2024, 43, 3134–3145. [Google Scholar] [CrossRef]
- Mohades, S.; Lietz, A.M.; Kushner, M.J. Generation of reactive species in water film dielectric barrier discharges sustained in argon, helium, air, oxygen and nitrogen. J. Phys. D Appl. Phys. 2020, 53, 435206. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Q.; Liu, F.; Xiao, Y.; Wang, X.; Li, M.; Tan, M.; Chen, W. Insights into Mixed Dye Pollutants Degradation by Oxygen and Air Plasma Bubbling Array. J. Phys. D Appl. Phys. 2024, 58, 45204. [Google Scholar] [CrossRef]
- Attri, P.; Tochikubo, F.; Park, J.H.; Choi, E.H.; Koga, K.; Shiratani, M. Impact of Gamma rays and DBD plasma treatments on wastewater treatment. Sci. Rep. 2018, 8, 2926. [Google Scholar] [CrossRef]
- Wu, L.; Xie, Q.; Lv, Y.; Zhang, Z.; Wu, Z.; Liang, X.; Lu, M.; Nie, Y. Degradation of methylene blue by dielectric barrier discharge plasma coupled with activated carbon supported on polyurethane foam. RSC Adv. 2019, 9, 25967–25975. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Su, Y.; Yang, X.; Wang, Y.; Li, Z.; Wu, Y.; Ren, J. Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review. Catalysts 2023, 13, 10. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, Z.; Xv, T.; Dai, X.; Liu, Y.; Sun, Y.; Zhao, T.; Zhang, Y. Investigation of Dielectric Barrier Discharge Plasma for the Degradation of Erythromycin Solution. Molecules 2025, 30, 625. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Y.; Fu, L.; Yu, Q.; Gong, T.; Tan, M.; Luo, Q.; Li, M.; Tao, Y.; Xu, W.; et al. Sustainable Degradation of Methyl Violet by Plasma Bubbling Array: Performance, Degradation Pathway, and Potential Toxicity. Sustainability 2024, 16, 10568. [Google Scholar] [CrossRef]
- Belkessa, N.; Bouzaza, A.; Assadi, A.A. Understanding of the synergy effect of DBD plasma discharge combined to photocatalysis in the case of Ethylbenzene removal: Interaction between plasma reactive species and catalyst. J. Environ. Chem. Eng. 2023, 11, 110640. [Google Scholar] [CrossRef]
- Kim, H.K.; Yang, G.W.; Hong, Y.C. Methylene Blue Degradation Using Non-Thermal Plasma. Plasma 2024, 7, 767–779. [Google Scholar] [CrossRef]
- Nawaz, M.I.; Yi, C.; Asilevi, P.J.; Geng, T.; Aleem, M.; Zafar, A.M.; Azeem, A.; Wang, H. A Study of the Performance of Dielectric Barrier Discharge under Different Conditions for Nitrobenzene Degradation. Water 2019, 11, 842. [Google Scholar] [CrossRef]
- Sanito, R.C.; You, S.-J.; Wang, Y.-F. Degradation of contaminants in plasma technology: An overview. J. Hazard. Mater. 2022, 424, 127390. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Fang, Y.; Guo, Y.; Xu, M. Degradation of methylene blue using a novel gas-liquid hybrid DDBD reactor: Performance and pathways. Chemosphere 2023, 336, 139172. [Google Scholar] [CrossRef]
- Jin, Y.; Li, X.; Ma, L.; Tian, W.; Zhang, L.; Liu, A. Experimental study on the performance of the dielectric barrier discharge technique in the treatment of simulated groundwater with high iron and manganese content. Water Supply 2023, 23, 4320–4332. [Google Scholar] [CrossRef]
- Kumar, A.; Škoro, N.; Gernjak, W.; Povrenović, D.; Puač, N. Direct and indirect treatment of organic dye (Acid blue 25) solutions by using cold atmospheric plasma jet. Front. Phys. 2022, 10, 835635. [Google Scholar] [CrossRef]
- Russo, M.; Iervolino, G.; Vaiano, V.; Palma, V. Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020, 10, 1438. [Google Scholar] [CrossRef]
- Iannaco, M.C.; Mancuso, A.; Mottola, S.; Pipolo, A.; Vaiano, V.; De Marco, I. Visible-Light-Driven Degradation of Chloramphenicol Using CeO2 Nanoparticles Prepared by a Supercritical CO2 Route: A Proof of Concept. Nanomaterials 2025, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Aghdasinia, H.; Bagheri, R.; Vahid, B.; Khataee, A. Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye. Environ. Technol. 2016, 37, 2703–2712. [Google Scholar] [CrossRef]
- Shlapa, Y.; Solopan, S.; Sarnatskaya, V.; Siposova, K.; Garcarova, I.; Veltruska, K.; Timashkov, I.; Lykhova, O.; Kolesnik, D.; Musatov, A.; et al. Cerium dioxide nanoparticles synthesized via precipitation at constant pH: Synthesis, physical-chemical and antioxidant properties. Colloids Surf. B Biointerfaces 2022, 220, 112960. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH dependent surface charging and points of zero charge. IX. Update. Adv. Colloid Interface Sci. 2021, 296, 102519. [Google Scholar] [CrossRef]
- Van Turnhout, J.; Rouwenhorst, K.; Lefferts, L.; Bogaerts, A. Plasma catalysis: What is needed to create synergy? EES Catal. 2025, 3, 669–693. [Google Scholar] [CrossRef] [PubMed]
- Quezada-Urbina, J.; Vázquez-Vélez, E.; Martinez, H.; Torres-Islas, A.; Huerta, L. Plasma-modified cerium oxide nanocatalyst for atmospheric pressure plasma degradation of methylene blue. J. Water Process Eng. 2024, 66, 105942. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Cheng, X.; Duan, C.; Yang, P.; Pi, Y.; Qi, H.; Sun, Z.; Chen, S. Effective adsorption of crystal violet onto magnetic nanoparticles decorated bacteria: Kinetic and site energy distribution analysis. Process Saf. Environ. Prot. 2023, 173, 837–846. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, M.J.; Busquets, R.; Nematollahi, M.J. Cross-Linked Starch as Media for Crystal Violet Elimination from Water: Modeling Batch Adsorption with Fuzzy Regression. Molecules 2024, 29, 3894. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Abbasi, A.; Ghorbani, P.; Zamani, S. Synergistically enhanced selective adsorption of cationic dyes from aqueous solutions using porphyrin-confined zeolitic imidazolate framework. J. Solid State Chem. 2025, 347, 125329. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A.; Dolinski, O. A comprehensive insight on plasma-catalytic degradation of organic pollutants in water: Comparison between ZnO and TiO2. Chemosphere 2024, 347, 140667. [Google Scholar] [CrossRef]
- Tampieri, F.; Ginebra, M.-P.; Canal, C. Quantification of plasma-produced hydroxyl radicals in solution and their dependence on the pH. Anal. Chem. 2021, 93, 3666–3670. [Google Scholar] [CrossRef]
- Vital-Grappin, A.D.; Ariza-Tarazona, M.C.; Luna-Hernández, V.M.; Villarreal-Chiu, J.F.; Hernández-López, J.M.; Siligardi, C.; Cedillo-González, E.I. The Role of the Reactive Species Involved in the Photocatalytic Degradation of HDPE Microplastics Using C,N-TiO2 Powders. Polymers 2021, 13, 999. [Google Scholar] [CrossRef]
- Conrad, J.K.; Lisouskaya, A.; Bartels, D.M.J.A.o. Pulse Radiolysis and Transient Absorption of Aqueous Cr (VI) Solutions up to 325 °C. ACS Omega 2022, 7, 39071–39077. [Google Scholar] [CrossRef]
- Meher, P.; Deshmukh, N.; Mashalkar, A.; Kumar, D. Ozone (O3) generation and its applications: A review. AIP Conf. Proc. 2023, 2764, 70011. [Google Scholar] [CrossRef]
- Song, M.-Y.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J.; Faure, A.; Mason, N.J.; Itikawa, Y. Cross sections for electron collisions with H2O. J. Phys. Chem. Ref. Data 2021, 50, 23103. [Google Scholar] [CrossRef]
- Gorfinkiel, J.; Morgan, L.; Tennyson, J. Electron impact dissociative excitation of water within the adiabatic nuclei approximation. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 543. [Google Scholar] [CrossRef]
- Dunlea, E.J.; Ravishankara, A.R. Measurement of the rate coefficient for the reaction of O(1D) with H2O and re-evaluation of the atmospheric OH production rate. Phys. Chem. Chem. Phys. 2004, 6, 3333–3340. [Google Scholar] [CrossRef]
- Buehler, R.E.; Staehelin, J.; Hoigne, J. Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. J. Phys. Chem. 1984, 88, 2560–2564. [Google Scholar] [CrossRef]
- Rumbach, P.; Bartels, D.M.; Sankaran, R.M.; Go, D.B. The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 2015, 6, 7248. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.; Graham, W.; Graves, D.B.; Hofman-Caris, R.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Lamichhane, P.; Acharya, T.R.; Dahal, R.; Dhakal, O.B.; Khanam, S.; Lim, J.S.; Choi, E.H. Efficient degradation of Amoxicillin in contaminated water using a dielectric barrier discharge throughput reactor. J. Environ. Manag. 2025, 394, 127240. [Google Scholar] [CrossRef]
- Wu, L.; Xie, Q.; Lv, Y.; Wu, Z.; Liang, X.; Lu, M.; Nie, Y. Degradation of Methylene Blue via Dielectric Barrier Discharge Plasma Treatment. Water 2019, 11, 1818. [Google Scholar] [CrossRef]
- Iqbal, Z.; Amsalu, K.; Mumtaz, S.; Rana, J.N.; Javed, R.; Din, Q.U.; Choi, E.H. Efficient degradation and cytotoxicity assessment of carbamazepine using non-thermal atmospheric pressure plasma jets. J. Environ. Chem. Eng. 2025, 13, 117644. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, J.; Ouyang, W.; Ding, C.; Wu, Z.; Ostrikov, K. Cold plasma turns mixed-dye-contaminated wastewater bio-safe. Environ. Res. 2024, 246, 118125. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Bisht, B.; Kumar, V.; Joshi, N.C.; Tomar, M.S.; Pathak, B. Cold plasma technology: Advanced and sustainable approach for wastewater treatment. Environ. Sci. Pollut. Res. 2021, 28, 65062–65082. [Google Scholar] [CrossRef]
- Maybin, J.-A.; McClenaghan, L.A.; Gilmore, B.F.; Thompson, T.P. Cold plasma for enhanced water purification. Sustain. Microbiol. 2024, 1, qvae032. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Shen, Z.; Li, X.; Zhou, Q.; Sun, Y.; Wang, T.; Liu, Y.; Gao, Q. Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium. ACS Omega 2020, 5, 28382–28392. [Google Scholar] [CrossRef]
- Yang, P.; Lu, Y.; Zhang, H.; Li, R.; Hu, X.; Shahab, A.; Elnaggar, A.Y.; Alrefaei, A.F.; AlmutairiI, M.H.; Ali, E. Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation. Environ. Technol. Innov. 2024, 33, 103459. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Boffito, D.C.; Ramavandi, B. Sono-Photocatalytic Activity of Cloisite 30B/ZnO/Ag2O Nanocomposite for the Simultaneous Degradation of Crystal Violet and Methylene Blue Dyes in Aqueous Media. Nanomaterials 2022, 12, 3103. [Google Scholar] [CrossRef]















| Photocatalyst | Specific Surface Area (m2/g) | Hydrodynamic Diameter (nm) | Polydisperse Index (-) |
|---|---|---|---|
| CeO2 NM | 46 | 618 | 0.6620 |
| CeO2 SAS | 47 | 387 | 0.6470 |
| Photocatalyst | IOH/ICe-O (-) | Ov/F2g Intensity Ratio (-) | Band Gap (eV) |
|---|---|---|---|
| CeO2 NM | 1.77 | 0.0260 | 2.60 |
| CeO2 SAS | 2.62 | 0.0280 | 2.68 |
| Plasma Type | kd (min−1) | (min) |
|---|---|---|
| Air | 0.067 | 10.3 |
| Oxygen | 0.135 | 5.1 |
| Input Voltage | kd (min−1) | (min) |
|---|---|---|
| 10 kV | 0.110 | 6.32 |
| 12 kV | 0.094 | 7.36 |
| 16 kV | 0.128 | 5.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, Q.U.; Iannaco, M.C.; De Marco, I.; Vaiano, V.; Iervolino, G. Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation. Nanomaterials 2025, 15, 1831. https://doi.org/10.3390/nano15231831
Din QU, Iannaco MC, De Marco I, Vaiano V, Iervolino G. Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation. Nanomaterials. 2025; 15(23):1831. https://doi.org/10.3390/nano15231831
Chicago/Turabian StyleDin, Qayam Ud, Maria Chiara Iannaco, Iolanda De Marco, Vincenzo Vaiano, and Giuseppina Iervolino. 2025. "Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation" Nanomaterials 15, no. 23: 1831. https://doi.org/10.3390/nano15231831
APA StyleDin, Q. U., Iannaco, M. C., De Marco, I., Vaiano, V., & Iervolino, G. (2025). Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation. Nanomaterials, 15(23), 1831. https://doi.org/10.3390/nano15231831

