Semiconductor-Based Nanomaterials for Catalytic Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 172

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, Via Giovanni Paolo 2 132, I-84084 Fisciano, SA, Italy
Interests: photocatalysis for sustainable chemistry; photocatalytic and photo-Fenton processes for pollutants removal in wastewater; catalytic combustion of sewage sludge; decomposition and oxidative decomposition of H2S; hydrolysis of COS in the liquid phase
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, via Giovanni Paolo 2 132, I-84084 Fisciano, SA, Italy
Interests: preparation and characterization of nanophotocatalysts for environmental remediation and organic synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, semiconductor-based nanomaterials have been the object of extensive research. These types of nanomaterials can be employed as catalysts in a number of applications of heterogeneous photocatalysis, such as air and water treatment, the synthesis of organic compounds in mild conditions, hydrogen production from water splitting, and CO2 transformation.

This Special Issue is devoted to the formulation of new semiconductor-based nanomaterials, their chemical–physical characterization via traditional and innovative experimental techniques, and their performances in photocatalytic reactions. Research and review papers related to the preparation and characterization of nanomaterials with semiconductor properties and their applications in UV-, visible-, or solar light-driven photocatalytic reactions are welcome in this Special Issue.

Dr. Vincenzo Vaiano
Dr. Antonietta Mancuso
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semiconductor nanomaterials
  • preparation methods
  • chemical–physical characterization
  • heterogeneous photocatalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4138 KiB  
Article
First-Principles Study on the CO2 Reduction Reaction (CO2RR) Performance of h-BN-Based Single-Atom Catalysts Modified with Transition Metals
by Xiansheng Yu, Can Zhao, Qiaoyue Chen, Lai Wei, Xucai Zhao, Lili Zhang, Liqian Wu and Yineng Huang
Nanomaterials 2025, 15(8), 628; https://doi.org/10.3390/nano15080628 - 20 Apr 2025
Viewed by 173
Abstract
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped [...] Read more.
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped defect-type hexagonal boron nitride (h-BN) SACs TM@B−1N (B vacancy) and TM@BN−1 (N vacancy) in both CO2RR and the hydrogen evolution reaction (HER). Integrated crystal orbital Hamiltonian population (ICOHP) analysis reveals that these catalysts weaken the sp orbital hybridization of CO2, which promotes the formation of radical-state intermediates and significantly reduces the energy barrier for the hydrogenation reaction. Therefore, these theoretical calculations indicate that the Mn, Fe, Co@B−1N, and Co@BN−1 systems demonstrate excellent CO2 chemical adsorption properties. In the CO2RR pathway, Mn@B−1N exhibits the lowest limiting potential (UL = −0.524 V), and its higher d-band center (−0.334 eV), which aligns optimally with the adsorbate orbitals, highlights its excellent catalytic activity. Notably, Co@BN−1 exhibits the highest activity in HER, while UL is −0.217 V. Furthermore, comparative analysis reveals that Mn@B−1N shows 16.4 times higher selectivity for CO2RR than for HER. This study provides a theoretical framework for designing bifunctional SACs with selective reaction pathways. Mn@B−1N shows considerable potential for selective CO2 conversion, while Co@BN−1 demonstrates promising prospects for efficient hydrogen production. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Figure 1

Back to TopTop