Semiconductor-Based Nanomaterials for Catalytic Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 3649

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, Via Giovanni Paolo 2 132, I-84084 Fisciano, Salerno, Italy
Interests: photocatalysis for sustainable chemistry; photocatalytic and photo-Fenton processes for pollutants removal in wastewater; catalytic combustion of sewage sludge; decomposition and oxidative decomposition of H2S; hydrolysis of COS in the liquid phase
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, via Giovanni Paolo 2 132, I-84084 Fisciano, SA, Italy
Interests: photocatalysis; polymeric aerogel; wastewater treatment; polymeric films; organic synthesis; carbon dioxide reduction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, semiconductor-based nanomaterials have been the object of extensive research. These types of nanomaterials can be employed as catalysts in a number of applications of heterogeneous photocatalysis, such as air and water treatment, the synthesis of organic compounds in mild conditions, hydrogen production from water splitting, and CO2 transformation.

This Special Issue is devoted to the formulation of new semiconductor-based nanomaterials, their chemical–physical characterization via traditional and innovative experimental techniques, and their performances in photocatalytic reactions. Research and review papers related to the preparation and characterization of nanomaterials with semiconductor properties and their applications in UV-, visible-, or solar light-driven photocatalytic reactions are welcome in this Special Issue.

Dr. Vincenzo Vaiano
Dr. Antonietta Mancuso
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semiconductor nanomaterials
  • preparation methods
  • chemical–physical characterization
  • heterogeneous photocatalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 4595 KB  
Article
Non-Thermal Plasma-Driven Degradation of Organic Dyes Using CeO2 Prepared by Supercritical Antisolvent Precipitation
by Qayam Ud Din, Maria Chiara Iannaco, Iolanda De Marco, Vincenzo Vaiano and Giuseppina Iervolino
Nanomaterials 2025, 15(23), 1831; https://doi.org/10.3390/nano15231831 - 4 Dec 2025
Viewed by 404
Abstract
Non-thermal plasma (NTP) is a fast, reagent-free technology for dye removal, yet its performance is highly dependent on the operating conditions and on plasma–catalyst interactions. In this work, a coaxial falling-film dielectric barrier discharge (DBD) reactor was optimized for the degradation and decolorization [...] Read more.
Non-thermal plasma (NTP) is a fast, reagent-free technology for dye removal, yet its performance is highly dependent on the operating conditions and on plasma–catalyst interactions. In this work, a coaxial falling-film dielectric barrier discharge (DBD) reactor was optimized for the degradation and decolorization of organic dyes, with ceria (CeO2) employed as a catalyst. For the first time, CeO2 prepared via a supercritical antisolvent (SAS) micronization route was tested in plasma-assisted dye decolorization and directly compared with its non-micronized counterpart. Optimization of plasma parameters revealed that oxygen feeding, an input voltage of 12 kV, a gas flow of 0.2 NL·min−1, and an initial dye concentration of 20 mg·L−1 resulted in the fastest decolorization kinetics. While the anionic dye Acid Yellow 36 exhibited electrostatic repulsion and negligible plasma–ceria synergy, the cationic dyes Crystal Violet and Methylene Blue showed strong adsorption on the negatively charged CeO2 surface and pronounced plasma–catalyst synergy, with SAS-derived CeO2 consistently outperforming the non-micronized powder. The SAS catalyst, characterized by a narrow particle size distribution (DLS) and spherical morphology (SEM), ensured improved dispersion and interaction with plasma-generated species, leading to significantly shorter decolorization radiation times compared to the literature benchmarks. Importantly, this enhancement translated into higher energy efficiency, with complete dye removal achieved at a lower specific energy input than both plasma-only operation and non-micronized CeO2. Scavenger tests confirmed •OH radicals as the dominant oxidants, while O3, O2, and ea played secondary roles. Tests on binary dye mixtures (CV + MB) revealed synergistic decolorization under plasma-only conditions, and the CeO2-SAS catalyst maintained high overall efficiency despite competitive adsorption effects. These findings demonstrate that SAS micronization of CeO2 is an effective material-engineering strategy to unlock plasma–catalyst synergy and achieve rapid, energy-efficient dye abatement for practical wastewater treatment. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Graphical abstract

29 pages, 12765 KB  
Article
Linking Structure to Electrocatalytic Performance: Graphene Nanoplatelets-Derived Novel Mixed Oxide–Carbon Composites as Supports for Pt Electrocatalysts with Enhanced Stability
by Ilgar Ayyubov, Emília Tálas, Irina Borbáth, Zoltán Pászti, László Trif, Ágnes Szegedi, Catia Cannilla, Giuseppe Bonura, Tamás Szabó, Erzsébet Dodony and András Tompos
Nanomaterials 2025, 15(23), 1753; https://doi.org/10.3390/nano15231753 - 22 Nov 2025
Viewed by 575
Abstract
The lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is significantly influenced by the degradation of their catalysts. A composite-type electrocatalyst support with the formula Ti(1−x)MoxO2-C (x: 0–0.2, C: carbon) has been found to provide higher stability [...] Read more.
The lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is significantly influenced by the degradation of their catalysts. A composite-type electrocatalyst support with the formula Ti(1−x)MoxO2-C (x: 0–0.2, C: carbon) has been found to provide higher stability for the Pt active metal than carbon alone. Non-traditional carbon materials such as graphene nanoplatelets (GNPs) and graphite oxide (GO) offer new possibilities for supports. This work aims to explore whether it is possible to combine the advantageous properties of GNP and GO in composite-supported Pt electrocatalysts. Composites prepared using the modified sol–gel method and Pt catalysts supported on them were characterized by physicochemical methods. Electrochemical behavior in terms of CO tolerance, activity and stability was studied. Although GO transformed into a mainly graphitic material during composite synthesis, its addition still increased the functional group content of the carbonaceous backbone. The electrical conductivity was significantly higher when GNPs-GO mixtures were used as the starting carbon material compared to the use of pure GNPs. Increased CO oxidation activity was achieved due to the incorporated Mo. Stability of the composite-supported Pt catalyst was significantly higher than that of commercial Pt/C. Increased stability of the GNPs-GO-derived catalyst compared to the GNP-derived one was obtained. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Figure 1

19 pages, 6729 KB  
Article
High-Entropy (Ce0.2Pr0.2Zn0.2Nd0.2Tb0.2)2Zr2O7 Zirconate Pyrochlore: A Promising Photocatalyst for Diverse Environmental Applications
by Mariappan Anandkumar, Shanmugavel Sudarsan, Venkata Ramesh Naganaboina, Naveen Kumar Bandari, Ksenia Sergeevna Litvinyuk, Shiv Govind Singh and Evgeny Alekseevich Trofimov
Nanomaterials 2025, 15(21), 1668; https://doi.org/10.3390/nano15211668 - 2 Nov 2025
Viewed by 716
Abstract
Although fast-paced ongoing industrial growth, on the one hand, enhances the lifestyle of the population, on the other hand, it affects human health and the environment as a result of the discharge of pollutants. To address this, designing a novel and effective photocatalyst [...] Read more.
Although fast-paced ongoing industrial growth, on the one hand, enhances the lifestyle of the population, on the other hand, it affects human health and the environment as a result of the discharge of pollutants. To address this, designing a novel and effective photocatalyst is necessary to mitigate increasing environmental pollutants. In the present work, we aim to synthesize a single-phase high-entropy zirconate pyrochlore oxide (Ce0.2Pr0.2Zn0.2Nd0.2Tb0.2)2Zr2O7 using a modified Pechini method. The physicochemical properties of the prepared nanoparticles were investigated using X-ray diffraction, UV-visible spectroscopy, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic properties were examined using cationic dye (methylene blue), anionic dye (Congo red), and Cr(VI). Photocatalytic degradation experiments demonstrate exceptional efficiency in the removal of persistent organic pollutants. The photocatalytic results indicate that the prepared high-entropy (Ce0.2Pr0.2Zn0.2Nd0.2Tb0.2)2Zr2O7 zirconate pyrochlore oxide could effectively degrade dyes and reduce Cr(VI). Radical trapping experiments indicate that the degradation of dyes was driven by the hydroxyl radicals, superoxide radicals, and holes. Furthermore, the position of the valence band and conduction band promoted efficient photocatalytic reaction kinetics. The prepared photocatalyst remains structurally stable and can be reused three times without losing activity. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Graphical abstract

14 pages, 4138 KB  
Article
First-Principles Study on the CO2 Reduction Reaction (CO2RR) Performance of h-BN-Based Single-Atom Catalysts Modified with Transition Metals
by Xiansheng Yu, Can Zhao, Qiaoyue Chen, Lai Wei, Xucai Zhao, Lili Zhang, Liqian Wu and Yineng Huang
Nanomaterials 2025, 15(8), 628; https://doi.org/10.3390/nano15080628 - 20 Apr 2025
Cited by 2 | Viewed by 1576
Abstract
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped [...] Read more.
The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped defect-type hexagonal boron nitride (h-BN) SACs TM@B−1N (B vacancy) and TM@BN−1 (N vacancy) in both CO2RR and the hydrogen evolution reaction (HER). Integrated crystal orbital Hamiltonian population (ICOHP) analysis reveals that these catalysts weaken the sp orbital hybridization of CO2, which promotes the formation of radical-state intermediates and significantly reduces the energy barrier for the hydrogenation reaction. Therefore, these theoretical calculations indicate that the Mn, Fe, Co@B−1N, and Co@BN−1 systems demonstrate excellent CO2 chemical adsorption properties. In the CO2RR pathway, Mn@B−1N exhibits the lowest limiting potential (UL = −0.524 V), and its higher d-band center (−0.334 eV), which aligns optimally with the adsorbate orbitals, highlights its excellent catalytic activity. Notably, Co@BN−1 exhibits the highest activity in HER, while UL is −0.217 V. Furthermore, comparative analysis reveals that Mn@B−1N shows 16.4 times higher selectivity for CO2RR than for HER. This study provides a theoretical framework for designing bifunctional SACs with selective reaction pathways. Mn@B−1N shows considerable potential for selective CO2 conversion, while Co@BN−1 demonstrates promising prospects for efficient hydrogen production. Full article
(This article belongs to the Special Issue Semiconductor-Based Nanomaterials for Catalytic Applications)
Show Figures

Figure 1

Back to TopTop