Synergizing Crystallography, Mineral Materials Science and Solid Waste Upcycling for Sustainable Materials Innovation

A special issue of Crystals (ISSN 2073-4352).

Deadline for manuscript submissions: 15 August 2026 | Viewed by 1117

Special Issue Editors


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Interests: low dimensional materials; condensed matter physics; material science; atomic and molecular nanostructures; spintronics and magnetronics

E-Mail Website
Guest Editor
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Interests: mineral materials; computational materials science; environmental materials; catalytic materials

E-Mail Website
Guest Editor
School of Gemology, China University of Geosciences, Beijing 100083, China
Interests: luminescence materials; crystal structure; gemology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Crystals, characterized by their highly ordered atomic structures, serve as foundational units for deciphering the properties and applications of materials. In mineralogy, crystallographic analysis remains indispensable for mineral identification and classification, as well as the elucidation of formation mechanisms, stability fields, and structure–property relationships. Beyond natural mineral systems, rationally designed crystalline materials, including zeolites, perovskites, metal–organic frameworks (MOFs), and their derivatives, are redefining frontiers in functional materials science, enabling breakthroughs in catalysis, renewable energy technologies, and environmental applications such as carbon capture and pollutant sequestration. Particularly, integrating artificial intelligence with crystal structure prediction and design can accelerate the R&D cycle, reduce trial-and-error costs, and significantly expedite the development of novel crystal materials. Equally transformative is the role of crystalline phases in sustainable waste management. Industrial byproducts (e.g., metallurgical slags, fly ash, and construction residues) are increasingly recognized as secondary resource reservoirs. By transforming waste into valuable crystalline materials, we can reduce environmental impacts and promote circular economy principles. This Special Issue explores the synergistic convergence of crystallography, mineral materials science, and solid waste valorization. We welcome contributions that highlight the potential of crystals to drive technological and environmental progress, leading to a paradigm shift in materials innovation and waste-to-resource transitions

Prof. Dr. Limei Wu
Dr. Xin Liu
Dr. Qingfeng Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mineral crystallography
  • mineral materials
  • solid waste valorization
  • AI-driven material design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 7253 KB  
Article
Effects of Total Calcium and Iron(II) Concentrations on Heterogeneous Nucleation and Crystal Growth of Struvite
by Pengcheng Wei, Kaiyu Deng, Yang Huang, Jiayu Yang, Fujiang Hui, Dunqiu Wang and Kun Dong
Crystals 2026, 16(2), 80; https://doi.org/10.3390/cryst16020080 - 23 Jan 2026
Viewed by 105
Abstract
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different [...] Read more.
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different Ca2+ and Fe2+ concentrations were systematically characterized using XRD, SEM, FTIR, and XPS, while real-time pH and redox potential (Eh) monitoring was employed to elucidate reaction dynamics and thermodynamic speciation and saturation indices were calculated, and classical nucleation theory (CNT) was applied to interpret nucleation behavior. The results show that Ca2+ primarily suppresses struvite formation through bulk-phase competition with Mg2+ for phosphate, diverting phosphate into Ca–P phases and progressively reducing struvite supersaturation, which leads to decreased crystallinity and distorted Crystal habit. In contrast, Fe2+ does not form detectable crystalline Fe-P phases but inhibits struvite crystallization mainly through surface-mediated processes. Surface analyses indicate that Fe-bearing species adsorb onto struvite surfaces and promote amorphous Fe-P deposition, increasing interfacial resistance to nucleation and growth. CNT analysis further reveals that Ca2+ inhibition is governed by reduced thermodynamic driving force, whereas Fe2+ inhibition is dominated by surface-related kinetic barriers. This study provides mechanistic insight into ion-specific interference during struvite crystallization and offers guidance for optimizing phosphorus recovery in ion-rich wastewater systems. Full article
Show Figures

Figure 1

14 pages, 3220 KB  
Article
Effect of Stone Powder Content on the Properties and Microstructure of Nuclear Power-Manufactured Sand Concrete
by Xiangqin Du, Zhilong Liu, Rongfei Chen, Zhenhua Zhao, Xiaobo Hao, Xiaofan Peng and Hongmei Wu
Crystals 2026, 16(1), 66; https://doi.org/10.3390/cryst16010066 - 19 Jan 2026
Viewed by 198
Abstract
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone [...] Read more.
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone powder (GP) to nuclear power concrete by replacing manufactured sand, investigating its effect on the workability, compressive strength, splitting tensile strength, impermeability, and freezing resistance of nuclear power concrete. The mechanism was further elucidated through thermogravimetric (TG), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) techniques. The results show that with the increase in GP content, the slump, compressive strength, and splitting tensile strength of concrete increase first and then decrease, and the seepage height under pressure water decreases first and then increases. The workability, strength, and impermeability of concrete are optimal when GP content is 11.0%. Reasonable GP content improves the compactness of concrete by filling pores and optimizing aggregate gradation, resulting in decreases in porosity, with the size being the most probable and average pore size. Full article
Show Figures

Figure 1

18 pages, 4965 KB  
Article
Research on Activation of Solid Waste Through Microbial Desilification
by Yuming Bai, Xiao Li, Limei Wu and Haiyang Qiao
Crystals 2026, 16(1), 54; https://doi.org/10.3390/cryst16010054 - 12 Jan 2026
Viewed by 149
Abstract
To investigate the biosilicification capabilities of Bacillus mucilaginosus and Bacillus polymyxa, silicon concentrations in supernatants from quartz and calcium silicate cultures were monitored over a 12-day period using inductively coupled plasma optical emission spectrometry (ICP-OES). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), [...] Read more.
To investigate the biosilicification capabilities of Bacillus mucilaginosus and Bacillus polymyxa, silicon concentrations in supernatants from quartz and calcium silicate cultures were monitored over a 12-day period using inductively coupled plasma optical emission spectrometry (ICP-OES). Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to evaluate changes in the absorption intensity of Si–O–Si characteristic peaks, crystalline phase transformations in the reaction products, and the microstructural morphology of quartz and calcium silicate before and after microbial leaching. The results show that after leaching with B. mucilaginosus, the dissolved silicon concentration in the quartz supernatant reached a maximum of 73.868 mg/L on day 8. In contrast, following treatment with B. polymyxa, the silicon concentration in the calcium silicate supernatant peaked earlier, at 149.153 mg/L on day 4. After microbial leaching, both substrates exhibited marked changes in the intensity of the infrared absorption peaks at 1071 cm−1 and 1083 cm−1, suggesting the formation of Si–O–R type organosilicon complexes. Iron tailings (containing inert silica) and fly ash (containing active silica) were selected for experimental validation. Following treatment with B. mucilaginosus for desilication over an 8-day period, the activity index of iron tailings increased from 77.83% to 90.51%, while that of fly ash rose from 66.32% to 85.01%. ICP-OES analysis confirmed that under the action of B. mucilaginosus, the trends in silicon concentration and activity index in the supernatant of silica-containing solid wastes, such as iron tailings and fly ash, were consistent with those observed in quartz, thereby demonstrating effective biological desilication. These findings provide novel insights into the development of environmentally sound disposal methods for a wider range of solid waste types. Full article
Show Figures

Figure 1

15 pages, 5335 KB  
Article
Autoclave Expansion and Compressive Strength of MgO-Admixed RCC with Partial Fly Ash Replacement by Phosphorus Slag
by Rongfei Chen and Changli Chen
Crystals 2025, 15(12), 1048; https://doi.org/10.3390/cryst15121048 - 11 Dec 2025
Viewed by 305
Abstract
High-volume fly ash (FA) mitigates the expansion of magnesium oxide (MgO), and the uneven regional distributions of high-quality FA collectively limit the application of roller-compacted concrete admixed with MgO (M-RCC). This study evaluated the autoclave expansion and compressive strength of MgO-admixed cement paste [...] Read more.
High-volume fly ash (FA) mitigates the expansion of magnesium oxide (MgO), and the uneven regional distributions of high-quality FA collectively limit the application of roller-compacted concrete admixed with MgO (M-RCC). This study evaluated the autoclave expansion and compressive strength of MgO-admixed cement paste and mortar, wherein phosphorus slag (PS) was used to partially or fully replace FA. The expansion mechanism within the MgO-FA-PS system was explored. Results show that the autoclave expansion of the mortar increased as the proportion of PS replacing FA rose. At a replacement ratio of 33% (i.e., 20% of the total mass of cementitious materials), the mortar maintained the same ultimate MgO dosage (8%) as the control specimen, yet exhibited a 12.7% increase in expansion and an 8.8% decrease in strength. The mechanism is that PS is less efficient than FA in reducing the pore solution alkalinity, thereby promoting the formation of more brucite. The growth pressure of brucite crystals expands the internal gaps in the matrix and coarsens the pore size, resulting in greater expansion and reduced compressive strength. The results of this study can provide theoretical and technical insights for the application of PS in M-RCC. Full article
Show Figures

Figure 1

Back to TopTop