Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,191)

Search Parameters:
Keywords = cellular membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 8518 KiB  
Review
Cutting-Edge Sensor Technologies for Exosome Detection: Reviewing Role of Antibodies and Aptamers
by Sumedha Nitin Prabhu and Guozhen Liu
Biosensors 2025, 15(8), 511; https://doi.org/10.3390/bios15080511 - 6 Aug 2025
Abstract
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have [...] Read more.
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have a distinct bilipid protein structure and can be as small as 30–150 nm in diameter. They may transport and exchange multiple cellular messenger cargoes across cells and are used as a non-invasive biomarker for various illnesses. Due to their unique features, exosomes are recognized as the most effective biomarkers for cancer and other disease detection. We give a review of the most current applications of exosomes derived from various sources in the prognosis and diagnosis of multiple diseases. This review also briefly examines the significance of exosomes and their applications in biomedical research, including the use of aptamers and antibody–antigen functionalized biosensors. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

24 pages, 30723 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 - 6 Aug 2025
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

15 pages, 17231 KiB  
Article
ArfGAP with Dual Pleckstrin Homology Domains 2 Promotes Hypertrophy of Cultured Neonatal Cardiomyocytes
by Jonathan Berthiaume, Audrey-Ann Dumont, Lauralyne Dumont, Marie-Frédérique Roy, Hugo Giguère and Mannix Auger-Messier
Int. J. Mol. Sci. 2025, 26(15), 7588; https://doi.org/10.3390/ijms26157588 - 6 Aug 2025
Abstract
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed [...] Read more.
Cardiomyocyte hypertrophy is regulated by several factors, including the ADP-ribosylation factor (Arf) family of small G proteins, among others. For instance, ArfGAP with dual pleckstrin homology domains 1 (Adap1) exerts an anti-hypertrophic effect in cultured cardiomyocytes. Its homologous protein, Adap2, is also expressed in the heart but its role remains elusive. To elucidate its function, we investigated the effects of adenoviral-mediated overexpression of Adap2 in cultured neonatal rat ventricular myocytes under both basal and pro-hypertrophic conditions, employing a range of microscopy and biochemical techniques. Despite minimal detection in neonatal rat hearts, Adap2 was found to be well expressed in adult rat hearts, being predominantly localized at the membrane fraction. In contrast to Adap1, overexpression of Adap2 provokes the robust accumulation of β1-integrin at the cellular surface of cultured cardiomyocytes. Interestingly, overexpressed Adap2 relocalizes at the sarcolemma and increases the size of cardiomyocytes upon phenylephrine stimulation, despite attenuating Erk1/2 phosphorylation and Nppa gene expression. Under these same conditions, cardiomyocytes overexpressing Adap2 also express higher level of detyrosinated tubulin, a marker of hypertrophic response. These findings provide new insights into the pro-hypertrophic function of Adap2 in cardiomyocytes. Full article
Show Figures

Figure 1

20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

17 pages, 6254 KiB  
Article
Pro-Apoptotic Effects of Unsymmetrical Bisacridines in 3D Pancreatic Multicellular Tumor Spheroids
by Agnieszka Kurdyn, Ewa Paluszkiewicz and Ewa Augustin
Int. J. Mol. Sci. 2025, 26(15), 7557; https://doi.org/10.3390/ijms26157557 - 5 Aug 2025
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity [...] Read more.
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity under more physiologically relevant conditions. Ultra-low attachment plates were used to form spheroids from three PC cell lines (Panc-1, MIA PaCa-2, and AsPC-1) with different genotypes and phenotypes. The effects of UA derivatives (C-2028, C-2045, and C-2053) were evaluated using microscopy and flow cytometry (7-AAD for viability and annexin V-FITC/PI for membrane integrity). UAs altered the morphology of the spheroids and reduced their growth. Notably, Panc-1 spheroids exhibited compromised integrity. The increase in 7-AAD+ cells confirmed diminished cell viability, and annexin V-FITC assays showed apoptosis as the dominant death pathway. Interestingly, the exact derivative was most active against a given cell line regardless of culture conditions. These results confirm that UAs maintain anticancer activity in 3D cultures and induce apoptosis, with varying efficacy across different cell lines. This underscores the value of diverse cellular models in compound evaluation and supports UAs as promising candidates for pancreatic cancer therapy. Full article
Show Figures

Graphical abstract

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Viewed by 148
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Viewed by 166
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1624 KiB  
Article
Cytotoxicity Evaluation of Cyprodinil, Potentially Carcinogenic Chemical Micropollutant, for Oxidative Stress, Apoptosis and Cell Membrane Interactions
by Agata Jabłońska-Trypuć, Nina Wiśniewska, Gabriela Sitko, Urszula Wydro, Elżbieta Wołejko, Rafał Krętowski, Monika Naumowicz, Joanna Kotyńska, Marzanna Cechowska-Pasko, Bożena Łozowicka, Piotr Kaczyński and Adam Cudowski
Appl. Sci. 2025, 15(15), 8631; https://doi.org/10.3390/app15158631 - 4 Aug 2025
Viewed by 136
Abstract
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes [...] Read more.
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes in the A-375 and DLD-1 cell lines was examined. The cell lines were selected because they can be an excellent in vitro model of neoplastic changes occurring in the skin and large intestine after exposure to a fungicide. The fungicide selected for the study is commonly used in Poland to protect crops against fungi. Our results showed that the tested compound increased cell viability and proliferation, probably activated by mechanisms related to oxidative stress. Cyprodinil caused an increase in glutathione level (in A-375 by about 37% and in DLD-1 by about 28%) and oxidative stress enzymes activity, but not in apoptosis level. Its membrane interactions and its penetration into cells was concentration dependent. It is worth emphasizing that the novelty of our work lies in the use of non-traditional toxicological methods based on molecular analyses using human cell lines. This allowed us to demonstrate not only the toxicity of a single substance but also its behavior within cellular structures. Our findings suggest that cyprodinil may have tumor-promoting properties in skin and colorectal cancer cells. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

24 pages, 2171 KiB  
Review
Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives
by Yanke Liu, Mingkang Zhang and Yazhi Wang
Biology 2025, 14(8), 989; https://doi.org/10.3390/biology14080989 - 4 Aug 2025
Viewed by 272
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological mechanisms underlying NAFLD remain unclear, and effective therapeutic strategies are still under investigation. Autophagy, a vital intracellular process in eukaryotic cells, enables the degradation and recycling of cytoplasmic components through a membrane trafficking pathway. Recent studies have demonstrated a strong association between impaired or deficient autophagy and the development and progression of NAFLD. Restoring autophagic function may represent a key approach to mitigating hepatocellular injury. Nevertheless, due to the complexity of autophagy regulation and its context-dependent effects on cellular function, therapeutic strategies targeting autophagy in NAFLD remain limited. This review aims to summarise the relationship between autophagy and NAFLD, focusing on autophagy as a central mechanism. We discuss the latest research advances regarding interventions such as diet and exercise, pharmacological therapies (including modern pharmacological therapy and plant-derived compounds), and other approaches (such as hormones, nanoparticles, gut microbiota, and vitamins). Furthermore, we briefly highlight potential autophagy-related molecular targets that may offer novel therapeutic insights for NAFLD management. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Transcriptional Analysis of Spodoptera frugiperda Sf9 Cells Infected with Daphnis nerii Cypovirus-23
by Wendong Kuang, Jian Yang, Jinchang Wang, Chenghua Yan, Junhui Chen, Xinsheng Liu, Chunhua Yang, Zhigao Zhan, Limei Guan, Jianghuai Li, Tao Deng, Feiying Yang, Guangqiang Ma and Liang Jin
Int. J. Mol. Sci. 2025, 26(15), 7487; https://doi.org/10.3390/ijms26157487 - 2 Aug 2025
Viewed by 126
Abstract
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. [...] Read more.
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. To determine the replication characteristics of DnCPV-23 in Sf9 cells, uninfected Sf9 cells and Sf9 cells at 24 and 72 h after DnCPV-23 infection were collected for transcriptome analysis. Compared to uninfected Sf9 cells, a total of 188 and 595 differentially expressed genes (DEGs) were identified in Sf9 cells collected at 24 hpi and 72 h, respectively. KEGG analyses revealed that 139 common DEGs in two treatment groups were related to nutrition and energy metabolism-related processes, cell membrane integrity and function-related pathways, detoxification-related pathways, growth and development-related pathways, and so on. We speculated that these cellular processes might be manipulated by viruses to promote replication. This study provides an important basis for further in-depth research on the mechanism of interaction between viruses and hosts. It provides additional basic information for the future exploitation of DnCPV-23 as a biological insecticide. Full article
Show Figures

Figure 1

16 pages, 1652 KiB  
Review
Lipid−lncRNA Crossroads: An Overview of Interactions Between Lipids and lncRNA
by Andrea Bayona-Hernandez, Ana Miladinović, Ludovica Antiga, Pavel Hozak, Martin Sztacho and Enrique Castano
Cells 2025, 14(15), 1193; https://doi.org/10.3390/cells14151193 - 2 Aug 2025
Viewed by 217
Abstract
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in [...] Read more.
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in cellular regulation, and growing evidence reveals a complex interplay between these molecules. These interactions contribute to key biological functions, such as cancer progression, lipid droplet transport, autophagy, liquid−liquid phase separation, and the formation of organelles without membranes. Understanding the lipid−lncRNA interface opens new avenues for unraveling cellular regulation and disease mechanisms, holding great potential not only for elucidating the fundamental aspects of cellular biology but also for identifying innovative therapeutic targets for metabolic disorders and cancer. This review highlights the biological relevance of lipid–lncRNA interactions by exploring their roles in cellular organization, regulation, and diseases, including metabolic and cancer-related disorders. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

10 pages, 868 KiB  
Article
The Response of Cell Cultures to Nutrient- and Serum-Induced Changes in the Medium
by Marijana Leventić, Katarina Mišković Špoljarić, Karla Vojvodić, Nikolina Kovačević, Marko Obradović and Teuta Opačak-Bernardi
Sci 2025, 7(3), 105; https://doi.org/10.3390/sci7030105 - 2 Aug 2025
Viewed by 206
Abstract
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial [...] Read more.
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial function and autophagy are investigated in four human cell lines: MRC-5, HeLa, Caco-2 and SW-620. Cells were cultured in defined media for 72 h, and viability was assessed by LDH release, mitochondrial membrane potential using Rhodamine 123, ATP content by luminescence and autophagy activity by dual fluorescence staining. The results showed that HeLa and SW-620 cancer cells exhibited increased proliferation and mitochondrial activity under high glucose conditions, while low glucose media resulted in decreased ATP content and increased membrane permeability in HeLa cells. MRC-5 fibroblasts and Caco-2 cells showed greater resilience to nutrient stress, with minimal changes in LDH release and consistent proliferation. Autophagy was activated under all conditions, with a significant increase only in selected cell-medium combinations. These results highlight the importance of medium composition in influencing cellular bioenergetics and stress responses, which has implications for cancer research, metabolic disease modelling and the development of serum-free culture systems for regenerative medicine. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

19 pages, 10564 KiB  
Article
Comparing Nanomechanical Properties and Membrane Roughness Along the Aging of Human Erythrocytes
by Giovanni Longo, Simone Dinarelli, Federica Collacchi and Marco Girasole
Methods Protoc. 2025, 8(4), 86; https://doi.org/10.3390/mps8040086 - 1 Aug 2025
Viewed by 168
Abstract
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using [...] Read more.
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using Atomic Force Microscopy, we investigated morphology, membrane roughness, and nanomechanical properties on the very same RBCs under dehydrated (air) and hydrated (physiological buffer) conditions. The cells were studied at different stages of in vitro aging: one, seven, and 12 days. Our results quantitatively show that across dehydration, as well as along the aging pathway, RBCs become progressively more rigid while their membrane roughness decreases, a trend observed in both environments. Notably, the differences between the hydrated and dehydrated states were large in young cells but diminished when erythrocytes aged. Despite these parallel trends, high-resolution mapping on the nanoscale revealed that roughness and Young’s modulus do not correlate, indicating that these parameters are linked to different properties. In conclusion, this work provides a comprehensive protocol for a biophysical description of RBC aging and establishes that the simultaneous measurement of membrane roughness and nanomechanical properties offers a complementary approach, yielding a more complete characterization of cellular properties. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

12 pages, 3890 KiB  
Article
Visualization of Film Formation Process of Copolyesteramide Containing Phthalazine Moieties During Interfacial Polymerization
by Zeyuan Liu, Hailong Li, Qian Liu, Zhaoqi Wang, Danhui Wang, Peiqi Xu, Xigao Jian and Shouhai Zhang
Membranes 2025, 15(8), 233; https://doi.org/10.3390/membranes15080233 - 1 Aug 2025
Viewed by 201
Abstract
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct [...] Read more.
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct copolyesteramide containing phthalazine moiety films, rigid monomer 4-(4′-hydroxyphenyl)-2,3-phthalazin-1-one (DHPZ) and flexible monomer piperazine (PIP) were used as aqueous phase monomers, and trimesoyl chloride (TMC) served as the organic phase monomer. Multilayer cellular structures were observed for the copolyesteramide films during the IP process. The effects of multiple factors including the ratio between flexible and rigid monomers, co-solvents, and the addition of phase transfer catalysts on the film growth and the morphologies were investigated. This research aims to deepen our understanding of the IP process, especially for the principles which govern polymer film growth and morphology, to promote new methodologies for regulating interfacial polymerization in composite membrane preparation. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

Back to TopTop