Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives
Simple Summary
Abstract
1. Introduction
2. Autophagy
3. Impaired Autophagy Aggravates NAFLD
4. Restoration of Autophagy Ameliorates NAFLD
4.1. Diet and Exercise
4.2. Modern Pharmacological Therapy
4.2.1. SGLT-2i
4.2.2. GLP1-RA
4.2.3. Biguanides
4.2.4. Lipid-Modifying Drugs
4.3. Plant-Derived Compounds
4.3.1. Autophagy Involved in the AMPK Signalling Pathway
4.3.2. Autophagy Involved in the TFEB Signalling Pathway
4.3.3. Autophagy Involved in Oxidative Stress and Endoplasmic Reticulum Stress (ERS) Pathways
4.3.4. Autophagy Involved in Inflammatory Pathways
4.3.5. Mitophagy
Items | Medicines/Plant Extracts | Sources/Properties | NAFLD Models | Mechanisms for Improving NAFLD | Years | Ref |
---|---|---|---|---|---|---|
AMPK-related | Icaritin | Herba Epimedii | Huh-7/L02 cells + sodium oleate | Increasing energy expenditure and regulating autophagy by | 2021 | [89] |
autophagy | activating the AMPK pathway | |||||
Bark and fruit extracts | - | HepG2 cells + FFAs | Activating the AMPK pathway and upregulating | 2019 | [90] | |
of Toona sinensis | the autophagic flux | |||||
Naringenin | Fruits, vegetables and nuts | Sprague-Dawley male rats fed HFD, | Enhancing energy expenditure and regulating autophagy | 2021 | [91] | |
Huh-7/L02 cells + sodium oleate | via AMPK | |||||
Psoralen | Buguzhi | L02 cells + sodium oleate | Alleviating IR and promoting autophagy via AMPK | 2022 | [92] | |
Schisandrin B | Schisandra chinensis | HepG2 cells/MPHs + FFAs | Activation of autophagy through the AMPK/mTOR pathway | 2022 | [93] | |
Pterostilbene | Pterocarpus, blueberry | C57BL/6 male mice injected with tyloxapol, | Activation of the AMPK/mTOR pathway and autophagy | 2023 | [94] | |
and grape plants | HepG2 + FFAs | by promoting Nrf2 | ||||
Mangiferin | Mango | Kunming male mice fed HFD | Regulation of autophagy through the AMPK/mTOR pathway | 2017 | [95] | |
Atractyloside | A diterpenoid glycoside | ICR male mice fed HFD | Activation of autophagy via the ANT-AMPK-mTORC1 pathway | 2021 | [96] | |
Sweroside | Alfalfa buds | C57BL/6J male mice fed HFD, MPHs + PA | Activating AMPK/mTOR-mediated autophagy | 2023 | [97] | |
Thymoquinone | Seeds of Nigella sativa | C57BL/6N mice fed HFD, HepG2 cells + FFAs | Inducing autophagy via AMPK/mTOR/ULK1-dependent | 2023 | [98] | |
signaling pathway | ||||||
Red pepper seed extract | - | C57BL/6 male mice fed HFD, HepG2 cells + OA | Downregulation of hepatic lipids via AMPK/mTOR pathway | 2022 | [99] | |
Ginsenoside Rb2 | Panax ginseng | ob/ob male mice fed NCD, HepG2 cells/MPHs + OA | Restoring autophagy via induction of sirt1 | 2017 | [100] | |
and activation of AMPK | ||||||
Isosteviol sodium | Stevia rebaudiana | Sprague-Dawley male rats fed HFD, LO2 cells + FFAs | Initiating autophagy via the Sirt1/AMPK pathway | 2022 | [101] | |
Apple polyphenol extract | - | HepG2 cells + FFAs | Activation of autophagy mediated by SIRT1/AMPK signalling | 2021 | [102] | |
Catalpol | Rehmannia | C57BL/6 male mice fed HFD, ob/ob male | Through AMPK/TFEB-dependent autophagy | 2019 | [103] | |
mice fed NCD, HepG2 cells + PA | ||||||
Aurantio-obtusin | Cassia semen | C57BL/6J male mice fed HFSW, MPHs + FFAs | Through AMPK/autophagy- and AMPK/TFEB-mediated | 2022 | [104] | |
suppression of lipid accumulation | ||||||
TFEB-related | Phillygenin | Forsythia suspense | C57BL/6J male mice fed HFD,AML-12/MPHs + PA | Through regulating the Ca2+-calcineurin-TFEB axis to | 2022 | [105] |
autophagy | restore lipophagy | |||||
Isopropylidenyl | Chi-Shao | C57BL/6N male mice fed CDAHFD, Sprague- | Through FXR activation and TFEB-mediated autophagy | 2022 | [106] | |
anemosapogenin | Dawley rats induced BDL, LX-2 cells+ | |||||
TGF-β1, Huh7 cells + OA | ||||||
Ajugol | Rehmannia glutinosa | C57BL/6 male mice fed HFD, AML-12 cells + PA | Through the TFEB-mediated autophagy-lysosomal pathway and lipophagy | 2021 | [107] | |
Polydatin | A precursor of resveratrol | db/db mice fed MCD, LO2 cells + PA | Restoring lysosomal function and autophagic flux through TFEB | 2019 | [108] | |
Nuciferine | Lotus leaf | C57BL/6N male mice fed HFD, MPHs/AML12 cells + PA | Activating TFEB-mediated autophagy-lysosomal pathway | 2022 | [109] | |
Formononetin | A natural isoflavone | C57BL/6J mice fed HFD, HepG2 cells/MPHs + FFAs | Through TFEB-mediated lysosome biogenesis and lipophagy | 2019 | [110] | |
Oxidative stress | Quercetin | Flavonoid polyphenols | Sprague-Dawley male rats fed HFD, HepG2 cells + FFA | Promoting VLDL assembly and lipophagy via the IRE1a/XBP1s pathway | 2018 | [112] |
and ERS-related | Scutellarin | Erigeron breviscapus | C57BL/6 male mice fed HFD, HepG2 cells/MPHs + PA | Enhancing autophagy and inhibiting ERS via the IRE1α/XBP1 pathway | 2022 | [113] |
autophagy | Aescin | Aesculus chinensis Bunge | C57BL/6male mice fed HFD,HepG2 cells + FFAs | Activation of antioxidant and autophagy via the Keap1-Nrf2 pathway | 2023 | [114] |
Physalin B | Physalis species | C57BL/6J mice fed MCD,LO2 cells + FFA | Stimulating autophagy and P62-KEAP1-NRF2 antioxidative signalling | 2021 | [115] | |
Inflammation- | Scoparone | Artemisia capillaris | C57BL/6J mice fed MCD,AML-12 cells + PA, | Inhibiting ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway | 2020 | [119] |
related | RAW264.7 cells + LPS | and enhancing autophagic flux in macrophages | ||||
autophagy | Glycyrrhetinic acid | Glycyrrhiza uralensis | C57BL/6 male mice fed HFHFr, RAW264.7 cells + PA | Modulating macrophage STAT3-HIF-1α pathway and | 2022 | [120] |
ameliorating impaired autophagic flux | ||||||
Phloretin | Apple fruits | C57BL/6Jmale mice fed WD, Huh7 cells + FFA | Mitigating oxidative damage, inflammation, and fibrotic responses | 2022 | [121] | |
by restoring autophagic fluxes | ||||||
Resveratrol | A polyphenol | C57BL/6male mice fed MCD, AML12 cells + MCD medium | Lessening hepatic inflammation by modulating autophagy | 2015 | [118] | |
Magnolol | Magnolia officinalis | Wistar male rats injected with tyloxapol, | Inhibition of NLRP3 inflammasome activation | 2020 | [122] | |
HepG2 cells + PA | by restoration of autophagy | |||||
Mitophagy | cyanidin-3-O- | An anthocyanin in | C57BL/6 mice fed HFD, AML-12/HepG2 cells + PA | Promoting PINK1-mediated mitophagy | 2020 | [124] |
glucoside | flavonoids | |||||
Akebia Saponin D | Dipsacus asper Wall | BRL cells + OA | Through BNip3-mediated mitophagy | 2018 | [125] | |
Quercetin | A flavonoid | C57BL/6Jmale mice fed HFD, HepG2 cells + OA/PA | Enhancing frataxin-mediated PINK1/Parkin-dependent mitophagy | 2018 | [127] | |
C57BL/6J male mice fed MCD, HepG2 cells + OA | Through AMPK-mediated hepatic mitophagy | 2023 | [126] |
4.4. Others
4.4.1. Hormones
4.4.2. Nanoparticles
4.4.3. Gut Microbiota
4.4.4. Vitamins
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef]
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San, P.J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. EMBO J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef]
- Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137. [Google Scholar] [CrossRef]
- Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 2010, 90, 1383–1435. [Google Scholar] [CrossRef]
- Qian, H.; Chao, X.; Williams, J.; Fulte, S.; Li, T.; Yang, L.; Ding, W.X. Autophagy in liver diseases: A review. Mol. Aspects Med. 2021, 82, 100973. [Google Scholar] [CrossRef]
- Carotti, S.; Aquilano, K.; Zalfa, F.; Ruggiero, S.; Valentini, F.; Zingariello, M.; Francesconi, M.; Perrone, G.; Alletto, F.; Antonelli-Incalzi, R.; et al. Lipophagy Impairment Is Associated With Disease Progression in NAFLD. Front. Physiol. 2020, 11, 850. [Google Scholar] [CrossRef]
- Jonas, W.; Schwerbel, K.; Zellner, L.; Jahnert, M.; Gottmann, P.; Schurmann, A. Alterations of Lipid Profile in Livers with Impaired Lipophagy. Int. J. Mol. Sci. 2022, 23, 11863. [Google Scholar] [CrossRef]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef]
- Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014, 20, 460–473. [Google Scholar] [CrossRef]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, K.; Hogstrand, C.; Xu, Y.H.; Chen, G.H.; Wei, C.C.; Luo, Z. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARgamma pathways. Cell Mol. Life Sci. 2020, 77, 1987–2003. [Google Scholar] [CrossRef]
- Cai, N.; Zhao, X.; Jing, Y.; Sun, K.; Jiao, S.; Chen, X.; Yang, H.; Zhou, Y.; Wei, L. Autophagy protects against palmitate-induced apoptosis in hepatocytes. Cell Biosci. 2014, 4, 28. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Q.; Song, S.; Liu, F.; He, B.; Gao, X. Protective role of autophagy in methionine-choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. Eur. J. Pharmacol. 2016, 770, 126–133. [Google Scholar] [CrossRef]
- Fukuo, Y.; Yamashina, S.; Sonoue, H.; Arakawa, A.; Nakadera, E.; Aoyama, T.; Uchiyama, A.; Kon, K.; Ikejima, K.; Watanabe, S. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol. Res. 2014, 44, 1026–1036. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, A.; Mayoral, R.; Agra, N.; Valdecantos, M.P.; Pardo, V.; Miquilena-Colina, M.E.; Vargas-Castrillon, J.; Lo, I.O.; Corazzari, M.; Fimia, G.M.; et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014, 5, e1179. [Google Scholar] [CrossRef]
- Kwanten, W.J.; Vandewynckel, Y.P.; Martinet, W.; De Winter, B.Y.; Michielsen, P.P.; Van Hoof, V.O.; Driessen, A.; Timmermans, J.P.; Bedossa, P.; Van Vlierberghe, H.; et al. Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G599–G609. [Google Scholar] [CrossRef]
- Hammoutene, A.; Biquard, L.; Lasselin, J.; Kheloufi, M.; Tanguy, M.; Vion, A.C.; Merian, J.; Colnot, N.; Loyer, X.; Tedgui, A.; et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J. Hepatol. 2020, 72, 528–538. [Google Scholar] [CrossRef]
- Acosta, A.; Streett, S.; Kroh, M.D.; Cheskin, L.J.; Saunders, K.H.; Kurian, M.; Schofield, M.; Barlow, S.E.; Aronne, L. White Paper AGA: POWER—Practice Guide on Obesity and Weight Management, Education, and Resources. Clin. Gastroenterol. Hepatol. 2017, 15, 631–649.e610. [Google Scholar] [CrossRef]
- Lian, C.Y.; Zhai, Z.Z.; Li, Z.F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020, 330, 109199. [Google Scholar] [CrossRef]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, J.; Gu, Q. Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Can. J. Physiol. Pharmacol. 2017, 95, 667–674. [Google Scholar] [CrossRef]
- Zhou, X.; Fouda, S.; Li, D.; Zhang, K.; Ye, J.M. Involvement of the Autophagy-ER Stress Axis in High Fat/Carbohydrate Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2020, 12, 2626. [Google Scholar] [CrossRef]
- Kim, K.E.; Jung, Y.; Min, S.; Nam, M.; Heo, R.W.; Jeon, B.T.; Song, D.H.; Yi, C.O.; Jeong, E.A.; Kim, H.; et al. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci. Rep. 2016, 6, 30111. [Google Scholar] [CrossRef]
- Varady, K.A.; Cienfuegos, S.; Ezpeleta, M.; Gabel, K. Clinical application of intermittent fasting for weight loss: Progress and future directions. Nat. Rev. Endocrinol. 2022, 18, 309–321. [Google Scholar] [CrossRef]
- Rozanski, G.; Pheby, D.; Newton, J.L.; Murovska, M.; Zalewski, P.; Slomko, J. Effect of Different Types of Intermittent Fasting on Biochemical and Anthropometric Parameters among Patients with Metabolic-Associated Fatty Liver Disease (MAFLD)-A Systematic Review. Nutrients 2021, 14, 91. [Google Scholar] [CrossRef]
- Li, D.; Dun, Y.; Qi, D.; Ripley-Gonzalez, J.W.; Dong, J.; Zhou, N.; Qiu, L.; Zhang, J.; Zeng, T.; You, B.; et al. Intermittent fasting activates macrophage migration inhibitory factor and alleviates high-fat diet-induced nonalcoholic fatty liver disease. Sci. Rep. 2023, 13, 13068. [Google Scholar] [CrossRef]
- Elsayed, H.R.H.; El-Nablaway, M.; Khattab, B.A.; Sherif, R.N.; Elkashef, W.F.; Abdalla, A.M.; El, N.E.M.; Abd-Elmonem, M.M.; El-Gamal, R. Independent of Calorie Intake, Short-term Alternate-day Fasting Alleviates NASH, With Modulation of Markers of Lipogenesis, Autophagy, Apoptosis, and Inflammation in Rats. J. Histochem. Cytochem. 2021, 69, 575–596. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Wang, L.; Shi, R.; Chu, C.; Shi, Z.; Liu, P.; Li, Y.; Liu, X.; Liu, Z. Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice. J. Nutr. Biochem. 2022, 110, 109146. [Google Scholar] [CrossRef]
- Wang, M.E.; Singh, B.K.; Hsu, M.C.; Huang, C.; Yen, P.M.; Wu, L.S.; Jong, D.S.; Chiu, C.H. Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Sci. Rep. 2017, 7, 13999. [Google Scholar] [CrossRef]
- Yao, Z.; Li, X.; Wang, W.; Ren, P.; Song, S.; Wang, H.; Xie, Y.; Li, X.; Li, Z. Corn peptides attenuate non-alcoholic fatty liver disease via PINK1/Parkin-mediated mitochondrial autophagy. Food Nutr. Res. 2023, 67, 9547. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Z.; Tu, J.; Wang, Z.; Gao, X.; Deng, K.; El-Samahy, M.A.; You, P.; Fan, Y.; Wang, F. gamma-Linolenic Acid Prevents Lipid Metabolism Disorder in Palmitic Acid-Treated Alpha Mouse Liver-12 Cells by Balancing Autophagy and Apoptosis via the LKB1-AMPK-mTOR Pathway. J. Agric. Food Chem. 2021, 69, 8257–8267. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, S.; Yan, W.; Xia, Y.; Chen, X.; Wang, W.; Zhang, J.; Gao, C.; Peng, C.; Yan, F.; et al. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine 2016, 13, 157–167. [Google Scholar] [CrossRef]
- Lee, J.; Vijayakumar, A.; White, P.J.; Xu, Y.; Ilkayeva, O.; Lynch, C.J.; Newgard, C.B.; Kahn, B.B. BCAA Supplementation in Mice with Diet-induced Obesity Alters the Metabolome Without Impairing Glucose Homeostasis. Endocrinology 2021, 162, bqab062. [Google Scholar] [CrossRef]
- Komorowski, J.R.; Ojalvo, S.P.; Sylla, S.; Tastan, H.; Orhan, C.; Tuzcu, M.; Sahin, N.; Sahin, K. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J. Int. Soc. Sports Nutr. 2020, 17, 26. [Google Scholar] [CrossRef]
- Blair, M.C.; Neinast, M.D.; Jang, C.; Chu, Q.; Jung, J.W.; Axsom, J.; Bornstein, M.R.; Thorsheim, C.; Li, K.; Hoshino, A.; et al. Branched-chain amino acid catabolism in muscle affects systemic BCAA levels but not insulin resistance. Nat. Metab. 2023, 5, 589–606. [Google Scholar] [CrossRef]
- Rosa-Caldwell, M.E.; Lee, D.E.; Brown, J.L.; Brown, L.A.; Perry, R.A., Jr.; Greene, E.S.; Carvallo, C.F.R.; Washington, T.A.; Greene, N.P. Moderate physical activity promotes basal hepatic autophagy in diet-induced obese mice. Appl. Physiol. Nutr. Metab. 2017, 42, 148–156. [Google Scholar] [CrossRef]
- Cook, J.J.; Wei, M.; Segovia, B.; Cosio-Lima, L.; Simpson, J.; Taylor, S.; Koh, Y.; Kim, S.; Lee, Y. Endurance exercise-mediated metabolic reshuffle attenuates high-caloric diet-induced non-alcoholic fatty liver disease. Ann. Hepatol. 2022, 27, 100709. [Google Scholar] [CrossRef]
- Laval, T.; Ouimet, M. A role for lipophagy in atherosclerosis. Nat. Rev. Cardiol. 2023, 20, 431–432. [Google Scholar] [CrossRef]
- Ballabio, A.; Bonifacino, J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 101–118. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Liu, Z.; Ruan, X.; Wang, H.; Zhang, Q.; Cao, L.; Song, L.; Chen, Y.; Sun, Y. Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet. Nutrients 2022, 14, 4910. [Google Scholar] [CrossRef]
- Goncalves, I.O.; Passos, E.; Diogo, C.V.; Rocha-Rodrigues, S.; Santos-Alves, E.; Oliveira, P.J.; Ascensao, A.; Magalhaes, J. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl. Physiol. Nutr. Metab. 2016, 41, 298–306. [Google Scholar] [CrossRef]
- Su, P.; Chen, J.G.; Tang, D.H. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci. 2023, 327, 121837. [Google Scholar] [CrossRef]
- Pi, H.; Liu, M.; Xi, Y.; Chen, M.; Tian, L.; Xie, J.; Chen, M.; Wang, Z.; Yang, M.; Yu, Z.; et al. Long-term exercise prevents hepatic steatosis: A novel role of FABP1 in regulation of autophagy-lysosomal machinery. FASEB J. 2019, 33, 11870–11883. [Google Scholar] [CrossRef]
- Guarino, M.; Kumar, P.; Felser, A.; Terracciano, L.M.; Guixe-Muntet, S.; Humar, B.; Foti, M.; Nuoffer, J.M.; St-Pierre, M.V.; Dufour, J.F. Exercise Attenuates the Transition from Fatty Liver to Steatohepatitis and Reduces Tumor Formation in Mice. Cancers 2020, 12, 1407. [Google Scholar] [CrossRef]
- Li, H.; Dun, Y.; Zhang, W.; You, B.; Liu, Y.; Fu, S.; Qiu, L.; Cheng, J.; Ripley-Gonzalez, J.W.; Liu, S. Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD. Life Sci. 2021, 273, 119314. [Google Scholar] [CrossRef]
- Yang, J.; Sainz, N.; Felix-Soriano, E.; Gil-Iturbe, E.; Castilla-Madrigal, R.; Fernandez-Galilea, M.; Martinez, J.A.; Moreno-Aliaga, M.J. Effects of Long-Term DHA Supplementation and Physical Exercise on Non-Alcoholic Fatty Liver Development in Obese Aged Female Mice. Nutrients 2021, 13, 501. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W.; Zeng, L.Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.Y.; Fang, C.W.; Wang, F.; Qin, X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020, 36, 101635. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Ren, Y.; Huang, J.; Jin, B.; Wang, G.; Chen, N. A Preclinical Systematic Review of the Effects of Chronic Exercise on Autophagy-Related Proteins in Aging Skeletal Muscle. Front. Physiol. 2022, 13, 930185. [Google Scholar] [CrossRef]
- Martin-Rincon, M.; Morales-Alamo, D.; Calbet, J.A.L. Exercise-mediated modulation of autophagy in skeletal muscle. Scand. J. Med. Sci. Sports 2018, 28, 772–781. [Google Scholar] [CrossRef]
- McCormick, J.J.; King, K.E.; Goulet, N.; Carrillo, A.E.; Fujii, N.; Amano, T.; Boulay, P.; Kenny, G.P. The effect of an exercise- and passive-induced heat stress on autophagy in young and older males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2025, 328, R289–R299. [Google Scholar] [CrossRef]
- McCormick, J.J.; McManus, M.K.; King, K.E.; Goulet, N.; Kenny, G.P. The intensity-dependent effects of exercise and superimposing environmental heat stress on autophagy in peripheral blood mononuclear cells from older men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, 326, R29–R42. [Google Scholar] [CrossRef]
- Yabiku, K. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Patients With Concurrent Type 2 Diabetes Mellitus and Non-Alcoholic Steatohepatitis: A Review of the Evidence. Front. Endocrinol. 2021, 12, 768850. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; DeFronzo, R.A.; Norton, L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes 2013, 62, 3324–3328. [Google Scholar] [CrossRef]
- Androutsakos, T.; Nasiri-Ansari, N.; Bakasis, A.D.; Kyrou, I.; Efstathopoulos, E.; Randeva, H.S.; Kassi, E. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int. J. Mol. Sci. 2022, 23, 3107. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, X.; Li, T.; Fang, T.; Cheng, Y.; Han, L.; Sun, B.; Chen, L. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int. Immunopharmacol. 2021, 94, 107492. [Google Scholar] [CrossRef]
- Chun, H.J.; Kim, E.R.; Lee, M.; Choi, D.H.; Kim, S.H.; Shin, E.; Kim, J.H.; Cho, J.W.; Han, D.H.; Cha, B.S.; et al. Increased expression of sodium-glucose cotransporter 2 and O-GlcNAcylation in hepatocytes drives non-alcoholic steatohepatitis. Metabolism 2023, 145, 155612. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, W.; Wang, B.; Xu, T.; Wang, J.; Wei, D. Canagliflozin Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Inhibiting Inflammation through Induction of Autophagy. Yonsei Med. J. 2022, 63, 619–631. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, W.; Han, Y.; Tan, H.; An, M.; Xiang, Q.; Zhou, R.; Yang, L.; Cheng, Y. Dapagliflozin Alleviates Hepatic Steatosis by Restoring Autophagy via the AMPK-mTOR Pathway. Front. Pharmacol. 2021, 12, 589273. [Google Scholar] [CrossRef]
- Papamargaritis, D.; le Roux, C.W.; Holst, J.J.; Davies, M.J. New therapies for obesity. Cardiovasc. Res. 2022, 119, 2825–2842. [Google Scholar] [CrossRef]
- Gilbert, M.P.; Pratley, R.E. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. 2020, 11, 178. [Google Scholar] [CrossRef]
- Dai, Y.; He, H.; Li, S.; Yang, L.; Wang, X.; Liu, Z.; An, Z. Comparison of the Efficacy of Glucagon-Like Peptide-1 Receptor Agonists in Patients With Metabolic Associated Fatty Liver Disease: Updated Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 622589. [Google Scholar] [CrossRef]
- Tong, W.; Ju, L.; Qiu, M.; Xie, Q.; Chen, Y.; Shen, W.; Sun, W.; Wang, W.; Tian, J. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol. Res. 2016, 46, 933–943. [Google Scholar] [CrossRef]
- Yu, X.; Hao, M.; Liu, Y.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Shao, N.; Kuang, H. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur. J. Pharmacol. 2019, 864, 172715. [Google Scholar] [CrossRef]
- Shao, N.; Yu, X.Y.; Ma, X.F.; Lin, W.J.; Hao, M.; Kuang, H.Y. Exenatide Delays the Progression of Nonalcoholic Fatty Liver Disease in C57BL/6 Mice, Which May Involve Inhibition of the NLRP3 Inflammasome through the Mitophagy Pathway. Gastroenterol. Res. Pract. 2018, 2018, 1864307. [Google Scholar] [CrossRef]
- Yu, H.H.; Wang, H.C.; Hsieh, M.C.; Lee, M.C.; Su, B.C.; Shan, Y.S. Exendin-4 Attenuates Hepatic Steatosis by Promoting the Autophagy-Lysosomal Pathway. Biomed. Res. Int. 2022, 2022, 4246086. [Google Scholar] [CrossRef]
- Lin, C.; Fang, J.; Xiang, Q.; Zhou, R.; Yang, L. Exendin-4 promotes autophagy to relieve lipid deposition in a NAFLD cell model by activating AKT/mTOR signaling pathway. Nan Fang Yi Ke Da Xue Xue Bao 2021, 41, 1073–1078. [Google Scholar]
- Zhou, J.; Massey, S.; Story, D.; Li, L. Metformin: An Old Drug with New Applications. Int. J. Mol. Sci. 2018, 19, 2863. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.Q.; Wang, Y.D.; Shen, C.; Zhao, C.Y. Metformin alleviates inflammatory response in non-alcoholic steatohepatitis by restraining signal transducer and activator of transcription 3-mediated autophagy inhibition in vitro and in vivo. Biochem. Biophys. Res. Commun. 2019, 513, 64–72. [Google Scholar] [CrossRef]
- Song, Y.M.; Lee, Y.H.; Kim, J.W.; Ham, D.S.; Kang, E.S.; Cha, B.S.; Lee, H.C.; Lee, B.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 2015, 11, 46–59. [Google Scholar] [CrossRef]
- Song, Y.M.; Lee, W.K.; Lee, Y.H.; Kang, E.S.; Cha, B.S.; Lee, B.W. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53. Int. J. Mol. Sci. 2016, 17, 122. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Y.; Liu, J.; Deng, Y.; Zhou, B.; Wen, Y.; Li, M.; Wen, D.; Ying, Y.; Luo, S.; et al. Metformin Alleviates Hepatic Steatosis and Insulin Resistance in a Mouse Model of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Promoting Transcription Factor EB-Dependent Autophagy. Front. Pharmacol. 2021, 12, 689111. [Google Scholar] [CrossRef]
- Park, J.; Rah, S.Y.; An, H.S.; Lee, J.Y.; Roh, G.S.; Ryter, S.W.; Park, J.W.; Yang, C.H.; Surh, Y.J.; Kim, U.H.; et al. Metformin-induced TTP mediates communication between Kupffer cells and hepatocytes to alleviate hepatic steatosis by regulating lipophagy and necroptosis. Metabolism 2023, 141, 155516. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P.; Mantzoros, C.S. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 2016, 65, 1109–1123. [Google Scholar] [CrossRef]
- Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARalpha agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism 2021, 120, 154798. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Y.; Liu, J.; Wang, D.; Geng, Z.; Wen, D.; Chen, H.; Wang, H.; Li, L.; Zhu, X.; et al. Fenofibrate improves hepatic steatosis, insulin resistance, and shapes the gut microbiome via TFEB-autophagy in NAFLD mice. Eur. J. Pharmacol. 2023, 960, 176159. [Google Scholar] [CrossRef]
- Chang, E.; Kim, L.; Park, S.E.; Rhee, E.J.; Lee, W.Y.; Oh, K.W.; Park, S.W.; Park, C.Y. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats. World J. Gastroenterol. 2015, 21, 7754–7763. [Google Scholar] [CrossRef]
- Lee, D.H.; Han, D.H.; Nam, K.T.; Park, J.S.; Kim, S.H.; Lee, M.; Kim, G.; Min, B.S.; Cha, B.S.; Lee, Y.S.; et al. Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis. Free Radic. Biol. Med. 2016, 99, 520–532. [Google Scholar] [CrossRef]
- Hsiao, P.J.; Chiou, H.C.; Jiang, H.J.; Lee, M.Y.; Hsieh, T.J.; Kuo, K.K. Pioglitazone Enhances Cytosolic Lipolysis, beta-oxidation and Autophagy to Ameliorate Hepatic Steatosis. Sci. Rep. 2017, 7, 9030. [Google Scholar] [CrossRef]
- Song, Y.; Yang, H.; Kim, J.; Lee, Y.; Kim, S.H.; Do, I.G.; Park, C.Y. Gemigliptin, a DPP4 inhibitor, ameliorates nonalcoholic steatohepatitis through AMP-activated protein kinase-independent and ULK1-mediated autophagy. Mol. Metab. 2023, 78, 101806. [Google Scholar] [CrossRef]
- He, J.; Ding, J.; Lai, Q.; Wang, X.; Li, A.; Liu, S. Irbesartan Ameliorates Lipid Deposition by Enhancing Autophagy via PKC/AMPK/ULK1 Axis in Free Fatty Acid Induced Hepatocytes. Front. Physiol. 2019, 10, 681. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L.; Zhu, H.D.; Sheng, J.Q.; Wu, X.L.; He, X.X.; Tian, D.A.; Liao, J.Z.; Li, P.Y. Celecoxib alleviates nonalcoholic fatty liver disease by restoring autophagic flux. Sci. Rep. 2018, 8, 4108. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, W.; Abd, E.-A.A.M.; Hacimuftuoglu, A.; Jeong, J.H.; Jung, T.W. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem. Pharmacol. 2022, 199, 115022. [Google Scholar] [CrossRef]
- Tawfiq, R.A.; Nassar, N.N.; Hammam, O.A.; Allam, R.M.; Elmazar, M.M.; Abdallah, D.M.; Attia, Y.M. Obeticholic acid orchestrates the crosstalk between ileal autophagy and tight junctions in non-alcoholic steatohepatitis: Role of TLR4/TGF-β1 axis. Chem. Biol. Interact. 2022, 361, 109953. [Google Scholar] [CrossRef]
- Nasiri-Ansari, N.; Nikolopoulou, C.; Papoutsi, K.; Kyrou, I.; Mantzoros, C.S.; Kyriakopoulos, G.; Chatzigeorgiou, A.; Kalotychou, V.; Randeva, M.S.; Chatha, K.; et al. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE((-/-)) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int. J. Mol. Sci. 2021, 22, 818. [Google Scholar] [CrossRef]
- He, Q.; Sha, S.; Sun, L.; Zhang, J.; Dong, M. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem. Biophys. Res. Commun. 2016, 476, 196–203. [Google Scholar] [CrossRef]
- Yu, X.; Bian, X.; Zhang, H.; Yang, S.; Cui, D.; Su, Z. Liraglutide ameliorates hepatic steatosis via retinoic acid receptor-related orphan receptor alpha-mediated autophagy pathway. IUBMB Life 2023, 75, 856–867. [Google Scholar] [CrossRef]
- Trefts, E.; Shaw, R.J. AMPK: Restoring metabolic homeostasis over space and time. Mol. Cell 2021, 81, 3677–3690. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Li, F.; Zou, J.; Wang, Y.H.; Xu, M.X.; Wang, Y.L.; Li, R.X.; Sun, Y.T.; Lu, S.; et al. Icaritin Attenuates Lipid Accumulation by Increasing Energy Expenditure and Autophagy Regulated by Phosphorylating AMPK. J. Clin. Transl. Hepatol. 2021, 9, 373–383. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, H.J.; Huang, B.M.; Chen, Y.C.; Chang, C.F. Polyphenol-Rich Extracts from Toona sinensis Bark and Fruit Ameliorate Free Fatty Acid-Induced Lipogenesis through AMPK and LC3 Pathways. J. Clin. Med. 2019, 8, 1664. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Zou, J.; Wang, Y.H.; Xu, M.X.; Huang, W.; Yu, D.J.; Zhang, L.; Zhang, Y.Y.; Sun, X.D. Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Enhancing Energy Expenditure and Regulating Autophagy via AMPK. Front. Pharmacol. 2021, 12, 687095. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, F.; Zou, J.; Li, X.; Xu, M.; Yu, D.; Ma, Y.; Huang, W.; Sun, X.; et al. Psoralen Suppresses Lipid Deposition by Alleviating Insulin Resistance and Promoting Autophagy in Oleate-Induced L02 Cells. Cells 2022, 11, 1067. [Google Scholar] [CrossRef]
- Yan, L.S.; Zhang, S.F.; Luo, G.; Cheng, B.C.; Zhang, C.; Wang, Y.W.; Qiu, X.Y.; Zhou, X.H.; Wang, Q.G.; Song, X.L.; et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022, 131, 155200. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Y.; Cheng, J.; Peng, Y.; Zhang, Q.; Li, Z.; Zhao, L.; Deng, X.; Feng, H. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine 2023, 109, 154561. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.Y.; Wang, L.; Teng, T.; Zhou, M.; Wang, S.G.; Tian, Y.Z.; Du, L.; Yin, X.X.; Sun, Y. Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed. Pharmacother. 2017, 96, 328–335. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, X.; Sun, H.; Li, Y.; Mei, W.; Zeng, C. Atractyloside Protect Mice Against Liver Steatosis by Activation of Autophagy via ANT-AMPK-mTORC1 Signaling Pathway. Front. Pharmacol. 2021, 12, 736655. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Y.; Hu, K.; Yang, Q.; Li, Y.; Huang, M. Sweroside alleviates hepatic steatosis in part by activating AMPK/mTOR-mediated autophagy in mice. J. Cell Biochem. 2023, 124, 1012–1022. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Wang, Z.; Lei, L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1-dependent pathway in nonalcoholic fatty liver disease. Phytother. Res. 2023, 37, 781–797. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, H.J.; You, M.; Kim, H.A. Red Pepper Seeds Inhibit Hepatic Lipid Accumulation by Inducing Autophagy via AMPK Activation. Nutrients 2022, 14, 4247. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, T.; Yang, L.; Wang, H.Y. Ginsenoside Rb2 Alleviates Hepatic Lipid Accumulation by Restoring Autophagy via Induction of Sirt1 and Activation of AMPK. Int. J. Mol. Sci. 2017, 18, 1063. [Google Scholar] [CrossRef]
- Mei, Y.; Hu, H.; Deng, L.; Sun, X.; Tan, W. Therapeutic effects of isosteviol sodium on non-alcoholic fatty liver disease by regulating autophagy via Sirt1/AMPK pathway. Sci. Rep. 2022, 12, 12857. [Google Scholar] [CrossRef]
- Li, D.; Cui, Y.; Wang, X.; Liu, F.; Li, X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother. Res. 2021, 35, 1416–1431. [Google Scholar] [CrossRef]
- Ren, H.; Wang, D.; Zhang, L.; Kang, X.; Li, Y.; Zhou, X.; Yuan, G. Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging 2019, 11, 9461–9477. [Google Scholar] [CrossRef]
- Zhou, F.; Ding, M.; Gu, Y.; Fan, G.; Liu, C.; Li, Y.; Sun, R.; Wu, J.; Li, J.; Xue, X.; et al. Aurantio-Obtusin Attenuates Non-Alcoholic Fatty Liver Disease Through AMPK-Mediated Autophagy and Fatty Acid Oxidation Pathways. Front. Pharmacol. 2021, 12, 826628. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, X.; Zhai, Y.; Liu, H.; Guan, L.; Qiao, Y.; Jiang, J.; Peng, L. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine 2022, 103, 154235. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Zhong, W.; Xia, G.; Xia, H.; Wang, L.; Wei, X.; Li, Y.; Shang, H.; He, H.; et al. Multiple anti-non-alcoholic steatohepatitis (NASH) efficacies of isopropylidenyl anemosapogenin via farnesoid X receptor activation and TFEB-mediated autophagy. Phytomedicine 2022, 102, 154148. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, J.; Liu, H.; Guan, L.; Xu, S.; Wang, Z.; Qiu, Y.; Liu, H.; Peng, L.; Men, X. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol. Res. 2021, 174, 105964. [Google Scholar] [CrossRef]
- Chen, X.; Chan, H.; Zhang, L.; Liu, X.; Ho, I.H.T.; Zhang, X.; Ho, J.; Hu, W.; Tian, Y.; Kou, S.; et al. The phytochemical polydatin ameliorates non-alcoholic steatohepatitis by restoring lysosomal function and autophagic flux. J. Cell Mol. Med. 2019, 23, 4290–4300. [Google Scholar] [CrossRef]
- Du, X.; Di Malta, C.; Fang, Z.; Shen, T.; Niu, X.; Chen, M.; Jin, B.; Yu, H.; Lei, L.; Gao, W.; et al. Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy-lysosomal pathway. Acta Pharm. Sin. B 2022, 12, 2869–2886. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Li, X.; Wang, Q.; Yan, M.; Zhang, H.; Zhao, T.; Zhang, N.; Zhang, P.; Peng, L.; et al. Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy. J. Nutr. Biochem. 2019, 73, 108214. [Google Scholar] [CrossRef]
- Bessone, F.; Razori, M.V.; Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol. Life Sci. 2019, 76, 99–128. [Google Scholar] [CrossRef]
- Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol. 2018, 114, 52–60. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, Z.; Luan, H.; Huang, Y.; Shen, Y.; Sheng, L.; Liang, J.; Wu, F. Scutellarin ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing IRE1alpha/XBP1 pathway. Phytother. Res. 2022, 36, 433–447. [Google Scholar] [CrossRef]
- Yu, H.; Yan, S.; Jin, M.; Wei, Y.; Zhao, L.; Cheng, J.; Ding, L.; Feng, H. Aescin can alleviate NAFLD through Keap1-Nrf2 by activating antioxidant and autophagy. Phytomedicine 2023, 113, 154746. [Google Scholar] [CrossRef]
- Zhang, M.H.; Li, J.; Zhu, X.Y.; Zhang, Y.Q.; Ye, S.T.; Leng, Y.R.; Yang, T.; Zhang, H.; Kong, L.Y. Physalin B ameliorates nonalcoholic steatohepatitis by stimulating autophagy and NRF2 activation mediated improvement in oxidative stress. Free Radic. Biol. Med. 2021, 164, 1–12. [Google Scholar] [CrossRef]
- Arrese, M.; Cabrera, D.; Kalergis, A.M.; Feldstein, A.E. Innate Immunity and Inflammation in NAFLD/NASH. Dig. Dis. Sci. 2016, 61, 1294–1303. [Google Scholar] [CrossRef]
- Fukada, H.; Yamashina, S.; Izumi, K.; Komatsu, M.; Tanaka, K.; Ikejima, K.; Watanabe, S. Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatol. Res. 2012, 42, 1112–1118. [Google Scholar] [CrossRef]
- Ji, G.; Wang, Y.; Deng, Y.; Li, X.; Jiang, Z. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis. 2015, 14, 134. [Google Scholar] [CrossRef]
- Liu, B.; Deng, X.; Jiang, Q.; Li, G.; Zhang, J.; Zhang, N.; Xin, S.; Xu, K. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed. Pharmacother. 2020, 125, 109895. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, W.; Wang, Y.; Zhu, S.; Chai, R.; Xu, Z.; Zhang, X.; Yan, Y.; Yang, L.; Bian, Y. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease. Front. Immunol. 2022, 13, 959495. [Google Scholar] [CrossRef]
- Chhimwal, J.; Goel, A.; Sukapaka, M.; Patial, V.; Padwad, Y. Phloretin mitigates oxidative injury, inflammation, and fibrogenic responses via restoration of autophagic flux in in vitro and preclinical models of NAFLD. J. Nutr. Biochem. 2022, 107, 109062. [Google Scholar] [CrossRef]
- Kuo, N.C.; Huang, S.Y.; Yang, C.Y.; Shen, H.H.; Lee, Y.M. Involvement of HO-1 and Autophagy in the Protective Effect of Magnolol in Hepatic Steatosis-Induced NLRP3 Inflammasome Activation In Vivo and In Vitro. Antioxidants 2020, 9, 924. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, X.; Liao, R. Mechanism and regulation of mitophagy in nonalcoholic fatty liver disease (NAFLD): A mini-review. Life Sci. 2023, 312, 121162. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br. J. Pharmacol. 2020, 177, 3591–3607. [Google Scholar] [CrossRef]
- Gong, L.L.; Yang, S.; Zhang, W.; Han, F.F.; Lv, Y.L.; Wan, Z.R.; Liu, H.; Jia, Y.J.; Xuan, L.L.; Liu, L.H. Akebia saponin D alleviates hepatic steatosis through BNip3 induced mitophagy. J. Pharmacol. Sci. 2018, 136, 189–195. [Google Scholar] [CrossRef]
- Cao, P.; Wang, Y.; Zhang, C.; Sullivan, M.A.; Chen, W.; Jing, X.; Yu, H.; Li, F.; Wang, Q.; Zhou, Z.; et al. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J. Nutr. Biochem. 2023, 120, 109414. [Google Scholar] [CrossRef]
- Liu, P.; Lin, H.; Xu, Y.; Zhou, F.; Wang, J.; Liu, J.; Zhu, X.; Guo, X.; Tang, Y.; Yao, P. Frataxin-Mediated PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol. Nutr. Food Res. 2018, 62, e1800164. [Google Scholar] [CrossRef]
- van den Berg, E.H.; van Tienhoven-Wind, L.J.; Amini, M.; Schreuder, T.C.; Faber, K.N.; Blokzijl, H.; Dullaart, R.P. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: The Lifelines Cohort Study. Metabolism 2017, 67, 62–71. [Google Scholar] [CrossRef]
- Chi, H.C.; Tsai, C.Y.; Tsai, M.M.; Yeh, C.T.; Lin, K.H. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J. Biomed. Sci. 2019, 26, 24. [Google Scholar] [CrossRef]
- Zhou, J.; Tripathi, M.; Ho, J.P.; Widjaja, A.A.; Shekeran, S.G.; Camat, M.D.; James, A.; Wu, Y.; Ching, J.; Kovalik, J.P.; et al. Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid 2022, 32, 725–738. [Google Scholar] [CrossRef]
- Iannucci, L.F.; Cioffi, F.; Senese, R.; Goglia, F.; Lanni, A.; Yen, P.M.; Sinha, R.A. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep. 2017, 7, 2023. [Google Scholar] [CrossRef]
- Joshi, A.; Upadhyay, K.K.; Vohra, A.; Shirsath, K.; Devkar, R. Melatonin induces Nrf2-HO-1 reprogramming and corrections in hepatic core clock oscillations in Non-alcoholic fatty liver disease. FASEB J. 2021, 35, e21803. [Google Scholar] [CrossRef]
- Sun, J.; Bian, Y.; Ma, Y.; Ali, W.; Wang, T.; Yuan, Y.; Gu, J.; Bian, J.; Liu, Z.; Zou, H. Melatonin alleviates cadmium-induced nonalcoholic fatty liver disease in ducks by alleviating autophagic flow arrest via PPAR-alpha and reducing oxidative stress. Poult. Sci. 2023, 102, 102835. [Google Scholar] [CrossRef]
- Zhou, H.; Du, W.; Li, Y.; Shi, C.; Hu, N.; Ma, S.; Wang, W.; Ren, J. Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J. Pineal Res. 2018, 64, e12450. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Zeng, J.; Acin-Perez, R.; Assali, E.A.; Martin, A.; Brownstein, A.J.; Petcherski, A.; Fernandez-Del-Rio, L.; Xiao, R.; Lo, C.H.; Shum, M.; et al. Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease. Nat. Commun. 2023, 14, 2573. [Google Scholar] [CrossRef]
- Salem, G.A.; Mohamed, A.A.; Khater, S.I.; Noreldin, A.E.; Alosaimi, M.; Alansari, W.S.; Shamlan, G.; Eskandrani, A.A.; Awad, M.M.; El-Shaer, R.A.A.; et al. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023, 883, 147670. [Google Scholar] [CrossRef]
- Lee, S.; Han, D.; Kang, H.G.; Jeong, S.J.; Jo, J.E.; Shin, J.; Kim, D.K.; Park, H.W. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver disease by restoring autophagic clearance. Biomaterials 2019, 197, 1–11. [Google Scholar] [CrossRef]
- Zagkou, S.; Marais, V.; Zeghoudi, N.; Guillou, E.L.; Eskelinen, E.L.; Panasyuk, G.; Verrier, B.; Primard, C. Design and Evaluation of Autophagy-Inducing Particles for the Treatment of Abnormal Lipid Accumulation. Pharmaceutics 2022, 14, 1379. [Google Scholar] [CrossRef]
- Hu, H.; Lin, A.; Kong, M.; Yao, X.; Yin, M.; Xia, H.; Ma, J.; Liu, H. Intestinal microbiome and NAFLD: Molecular insights and therapeutic perspectives. J. Gastroenterol. 2020, 55, 142–158. [Google Scholar] [CrossRef]
- Pant, R.; Sharma, N.; Kabeer, S.W.; Sharma, S.; Tikoo, K. Selenium-Enriched Probiotic Alleviates Western Diet-Induced Non-alcoholic Fatty Liver Disease in Rats via Modulation of Autophagy Through AMPK/SIRT-1 Pathway. Biol. Trace Elem. Res. 2023, 201, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Song, Y.; Yuan, M.; Chen, L.; Zhang, Q.; Hu, J.; Meng, Y.; Li, S.; Zheng, G.; Qiu, Z. Ellagitannins-Derived Intestinal Microbial Metabolite Urolithin A Ameliorates Fructose-Driven Hepatosteatosis by Suppressing Hepatic Lipid Metabolic Reprogramming and Inducing Lipophagy. J. Agric. Food Chem. 2023, 71, 3967–3980. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Tao, F.; Peng, L.; Chen, S.; Ren, Z.; Chen, J.; Yu, B.; Wei, H.; Wan, C. In Vitro Probiotic Properties of Bifidobacterium animalis subsp. lactis SF and Its Alleviating Effect on Non-Alcoholic Fatty Liver Disease. Nutrients 2023, 15, 1355. [Google Scholar] [CrossRef] [PubMed]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Cavallo, M.G. Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients 2020, 12, 3302. [Google Scholar] [CrossRef]
- Nagashimada, M.; Ota, T. Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life 2019, 71, 516–522. [Google Scholar] [CrossRef]
- Li, R.; Guo, E.; Yang, J.; Li, A.; Yang, Y.; Liu, S.; Liu, A.; Jiang, X. 1,25(OH)2 D3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity 2017, 25, 561–571. [Google Scholar] [CrossRef]
- Lim, H.; Lee, H.; Lim, Y. Effect of vitamin D3 supplementation on hepatic lipid dysregulation associated with autophagy regulatory AMPK/Akt-mTOR signaling in type 2 diabetic mice. Exp. Biol. Med. 2021, 246, 1139–1147. [Google Scholar] [CrossRef]
- Shen, C.; Dou, X.; Ma, Y.; Ma, W.; Li, S.; Song, Z. Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction. Nutr. Res. 2017, 40, 40–47. [Google Scholar] [CrossRef]
- Stacchiotti, A.; Grossi, I.; Garcia-Gomez, R.; Patel, G.A.; Salvi, A.; Lavazza, A.; De Petro, G.; Monsalve, M.; Rezzani, R. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells 2019, 8, 1053. [Google Scholar] [CrossRef]
- Palecek, E.J.; Kimzey, M.M.; Zhang, J.; Marsden, J.; Bays, C.; Moran, W.P.; Mauldin, P.D.; Schreiner, A.D. Glucagon-like peptide-1 receptor agonist therapy effects on glycemic control and weight in a primary care clinic population. J. Investig. Med. 2024, 72, 911–919. [Google Scholar] [CrossRef]
- Suzuki, A.; Hayashi, A.; Oda, S.; Fujishima, R.; Shimizu, N.; Matoba, K.; Taguchi, T.; Toki, T.; Miyatsuka, T. Prolonged impacts of sodium glucose cotransporter-2 inhibitors on metabolic dysfunction-associated steatotic liver disease in type 2 diabetes: A retrospective analysis through magnetic resonance imaging. Endocr. J. 2024, 71, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; D’Alessio, D.A. Slow and Steady Wins the Race: 25 Years Developing the GLP-1 Receptor as an Effective Target for Weight Loss. J. Clin. Endocrinol. Metab. 2022, 107, 2148–2153. [Google Scholar] [CrossRef]
- Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs. 2019, 79, 219–230. [Google Scholar] [CrossRef] [PubMed]
- van Ruiten, C.C.; Hesp, A.C.; van Raalte, D.H. Sodium glucose cotransporter-2 inhibitors protect the cardiorenal axis: Update on recent mechanistic insights related to kidney physiology. Eur. J. Intern. Med. 2022, 100, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Huelgas, R.; Sanz-Cánovas, J.; Cobos-Palacios, L.; López-Sampalo, A.; Pérez-Belmonte, L.M. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors for cardiovascular and renal protection: A treatment approach far beyond their glucose-lowering effect. Eur. J. Intern. Med. 2022, 96, 26–33. [Google Scholar] [CrossRef]
- Xu, R.; Liu, B.; Zhou, X. Comparison of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter Protein-2 Inhibitors on Treating Metabolic Dysfunction-Associated Steatotic Liver Disease or Metabolic Dysfunction-Associated Steatohepatitis: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Endocr. Pract. 2025, 31, 521–535. [Google Scholar]
- Wiegley, N.; So, P.N. Sodium-Glucose Cotransporter 2 Inhibitors and Urinary Tract Infection: Is There Room for Real Concern? Kidney360 2022, 3, 1991–1993. [Google Scholar] [CrossRef]
- Gorgojo-Martínez, J.J.; Mezquita-Raya, P.; Carretero-Gómez, J.; Castro, A.; Cebrián-Cuenca, A.; de Torres-Sánchez, A.; García-de-Lucas, M.D.; Núñez, J.; Obaya, J.C.; Soler, M.J.; et al. Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with Glp-1 Receptor Agonists: A Multidisciplinary Expert Consensus. J. Clin. Med. 2022, 12, 145. [Google Scholar] [CrossRef]
- D’Marco, L.; Morillo, V.; Gorriz, J.L.; Suarez, M.K.; Nava, M.; Ortega, Á.; Parra, H.; Villasmil, N.; Rojas-Quintero, J.; Bermúdez, V. SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence. J. Diabetes Res. 2021, 2021, 9032378. [Google Scholar] [CrossRef]
- Wilbon, S.S.; Kolonin, M.G. GLP1 Receptor Agonists-Effects beyond Obesity and Diabetes. Cells 2023, 13, 65. [Google Scholar] [CrossRef]
- Choi, J.G.; Winn, A.N.; Skandari, M.R.; Franco, M.I.; Staab, E.M.; Alexander, J.; Wan, W.; Zhu, M.; Huang, E.S.; Philipson, L.; et al. First-Line Therapy for Type 2 Diabetes With Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists: A Cost-Effectiveness Study. Ann. Intern. Med. 2022, 175, 1392–1400. [Google Scholar] [CrossRef]
Items | NAFLD Models | Mechanisms for Improving NAFLD | Years | Ref |
---|---|---|---|---|
IF | C57BL/6J male mice fed HFD | Activation of MIF/AMPK pathway and attenuation of lipotoxicity | 2023 | [27] |
ADF | Sprague Dawley male rats fed HFF | Modulation of adipogenesis, autophagy, apoptosis and inflammation | 2021 | [28] |
ADF | C57BL/6J male mice fed HFD | Through activation of the AMPK/ULK1 pathway and inhibition of mTOR phosphorylation | 2022 | [29] |
Increasing the proportion | C57BL/6 male mice fed HFD | Restoring autophagy inhibited by rubicon | 2017 | [30] |
of medium-chain fatty acids | HepG2 cells + FA | |||
Corn peptides | Sprague Dawley male rats fed HFD | Through PINK1/Parkin-mediated mitophagy | 2023 | [31] |
HepG2 cells + FFA | ||||
γ-Linolenic acid | AML-12 cells + PA | Balancing autophagy and apoptosis through the LKB1-AMPK-mTOR pathway | 2021 | [32] |
Voluntary wheel running | C57BL/6J mice fed WD | Enhancing basal autophagy in the liver | 2017 | [37] |
Endurance exercise | C57BL/6J female mice fed HFD/HF | Prevention of autophagy deficiency | 2022 | [38] |
Treadmill exercise | C57BL/6 male mice fed HFD | Regulating the biogenesis and autophagy of lipid droplets | 2022 | [41] |
Voluntary physical activity | Sprague Dawley male rats fed HFD | Promotion of autophagy/mitochondrial autophagy and mitochondrial fusion | 2016 | [42] |
and endurance training | ||||
Swimming | C57BL/6J male mice fed HFD | Restoration of autophagy-lysosomal machinery by reducing FABP1 | 2019 | [44] |
Treadmill exercise | C57Bl/6N male mice fed CD-HFD | Through the AMPK/mTOR pathway to promote hepatic autophagy | 2020 | [45] |
Swim training | C57BL/6J male mice fed HFD | Through the AMPK/SIRT1 pathway and lipophagy | 2021 | [46] |
Treadmill running+ | Sprague Dawley male rats fed HFD | Activation of AMPK/ULK1 and inhibition of Akt/mTOR/ULK1 pathway to enhance lipophagy | 2020 | [48] |
dietary intervention | ||||
Treadmill running + DHA | C57BL/6J female mice fed HFD | Inhibition of inflammation and autophagy marker alterations and promotion of FAO | 2021 | [47] |
Items | Western Medicines | NAFLD Models | Mechanisms for Improving NAFLD | Years | Ref |
---|---|---|---|---|---|
SGLT-2i | Empagliflozin | C57BL/6J male mice fed HFD | Negative regulation of the IL-17/IL-23 axis through | 2021 | [56] |
AMPK/mTOR autophagy pathway | |||||
ApoE−/− male mice fed HFD | Activation of autophagy and reduction of ERS and apoptosis | 2021 | [85] | ||
C57BL/6J male mice fed AMLN, Liver samples from subjects | Activation of the AMPK-TFEB pathway by reducing | 2023 | [57] | ||
with NASH, HepG2/MIHA cells + FFA | O-GlcNAcylation and promotion of autophagic flux | ||||
Canagliflozin | C57BL/6J male mice fed HFD, AML-12 cells + LM | Regulation of lipid metabolism and inhibition of | 2022 | [58] | |
Inflammation by inducing autophagy | |||||
Dapagliflozin | ZDF male rats fed HFD, HepG2/LO2 cells + PA | Through the AMPK/mTOR pathway to restore autophagy | 2021 | [59] | |
GLP1-RA | Liraglutide | C57BL/6J male mice fed HFD | Through the SIRT1/SIRT3-FOXO3a pathway to enhance autophagy | 2016 | [63] |
and reinforce mitochondrial structure | |||||
HepG2 cells + PA + LPS | Through mitophagy to inhibit the NLRP3 inflammasome | 2019 | [64] | ||
and hepatocyte pyroptosis | |||||
C57BL/6J male mice fed HFD, LO2 cells + FFA | Induction of autophagy through the AMPK/mTOR pathway | 2016 | [86] | ||
Rora LKO C57BL/6Jmice fed HFD, | Through the RORα-mediated autophagy pathway | 2023 | [87] | ||
Rora LKO AML-12 cells + PA | |||||
Exenatide | C57BL/6J male mice fed HFD | Through the mitophagy pathway to inhibit the NLRP3 inflammasome | 2018 | [65] | |
HepG2 cells + PA/OA | Enhancing the autophagy-lysosomal pathway | 2022 | [66] | ||
LO2/HepG2 cells + PA | Activation of the AKT/mTOR pathway to promote autophagy | 2021 | [67] | ||
Biguanides | Metformin | C57BL/6J male mice fed MCD, AML-12 + MCD medium | Reducing hepatic inflammation through STAT3-mediated autophagy | 2019 | [69] |
Ob/ob mice fed NCD, MHPs/HepG2 | Restoration of SIRT1-mediated autophagy via | 2015 | [70] | ||
cells + OA + high glucose | AMPK-independent pathway | ||||
Ob/ob mice fed NCD, HepG2 cells + OA + high glucose | Restoration of parkin-mediated mitophagy | 2016 | [71] | ||
C57BL/6J male mice fed HFD | Through TFEB-dependent autophagy | 2021 | [72] | ||
Ttp+/+/Ttp−/− mice fed MCD, AML12 + MCD medium | Promoting lipophagy via mTORC1 inhibition and increased | 2023 | [73] | ||
nuclear TFEB | |||||
Lipid-modifying | Fenofibrate | TFEB knockdown mice fed HFD | Through the upregulation of TFEB-mediated lipophagy | 2021 | [75] |
drugs | |||||
C57BL/6J male mice fed HFD | Through TFEB-autophagy axis | 2023 | [76] | ||
Ezetimibe | NAFLD patients, C57BL/6J male mice fed MCD | Through p62-dependent Nrf2 activation | 2016 | [78] | |
Obese and diabetic male rats, Huh7cells + PA | Promoting autophagy gene expression and increasing autophagic flux | 2015 | [77] | ||
Others | Pioglitazone | C57BL/6J male mice fed HFD, AML12cells + PA | Enhancing cytosolic lipolysis, β-oxidation and autophagy | 2017 | [79] |
in a PPARα and PPARγ dependent manner | |||||
Gemigliptin | NAFLD patients, C57BL/6NCrj male mice fed | Through AMPK-independent, ULK1-mediated effects on autophagy | 2023 | [80] | |
MCD, HepG2 cells + MCD medium | |||||
Irbesartan | LO2/AML-12 cells + FFA | Induction of autophagy through the PKC/AMPK/ULK1 axis | 2019 | [81] | |
Celecoxib | Sprague Dawly male rats fed HFD, LO2 cells + PA | Restoration of autophagic flux by downregulating COX-2 | 2018 | [82] | |
Valdecoxib | C57BL/6J male mice fed HFD, MPHs + PA | Inhibition of ERS through AMPK/SIRT6 autophagy pathway | 2022 | [83] | |
Obeticholic | Swiss albino male mice fed HFD and dextran sulfate sodium | Through autophagy induction via interfering with the TLR4/TGF-β1 | 2022 | [84] | |
acid | pathway to protect intestinal integrity in NASH |
Items | Others | NAFLD Models | Mechanisms for Improving NAFLD | Years | Ref |
---|---|---|---|---|---|
Hormones | T3/T4 | C57BL/6J male mice fed WDF, | Restoration of autophagy and mitochondrial biogenesis | 2022 | [130] |
HepG2-TRβ cells + PA/LPS | and promotion of fatty acid β-oxidation | ||||
T2/T3 | Wistar male mice fed HFD | Strong induction of autophagy and intrahepatic | 2017 | [131] | |
acylcarnitine flux | |||||
Melatonin | Shaoxing male ducks fed Cd | Restoring the expression of PPAR-α and autophagy flux | 2023 | [133] | |
AML-12 cells + cadmium chloride | |||||
C57BL/6J male mice fed HFD | Restoration of autophagy flux by regulating miR-34a-5p/Sirt1 axis | 2019 | [150] | ||
C57BL/6 mice fed HFD | Restoration of mitophagy by blocking NR4A1/DNA-PKcs/p53 pathway | 2018 | [135] | ||
NPs | acNPs | C57BL/6J male mice fed HFD, | Restoration of autophagy and mitochondrial | 2023 | [136] |
HepG2 cells + PA | function by lysosomal acidification | ||||
Lip-Lyco | Sprague Dawley male rats fed HFD | Exhibiting antioxidant, anti-inflammatory, hypoglycemic, | 2023 | [137] | |
antiapoptotic, and autophagy-inducing | |||||
NFD-NPs | C57BL/6 male mice fed HFD, | Enhancing autophagic clearance through Ca2+/CaMKII phosphorylation | 2019 | [138] | |
HepG2 cells + PA | |||||
NP T-B | ob/ob male mice fed NCD, | Inducing autophagy with a long-lasting and enhanced effect | 2022 | [139] | |
HeLa cells + FFAs | |||||
Intestinal microbiota | SP | Sprague Dawley male rats fed HFHFr | Modulation of autophagy through AMPK/SIRT-1 pathway | 2023 | [141] |
UroA | C57BL/6 female mice fed HFrD, | Facilitating hepatic lipophagy through the AMPK/ULK1 pathway | 2023 | [142] | |
HepG2 cells/MPHs + fructose | |||||
B. lactis SF | C57BL/6N male mice fed HFD | Reduction of OS and autophagy | 2023 | [143] | |
Vitamins | 1,25(OH)2 D3 | C57BL/6 male mice fed HFD, | Induction of autophagy by upregulation of ATG16L1 | 2017 | [147] |
HepG2 cells + FFA | |||||
Vitamin D3 | C57BL/6J male mice fed HFD | Activating autophagy regulatory AMPK/Akt-mTOR signalling | 2021 | [148] | |
Vitamin B3 | HepG2 cells + PA | Through SIRT1-dependent autophagy | 2017 | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, M.; Wang, Y. Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives. Biology 2025, 14, 989. https://doi.org/10.3390/biology14080989
Liu Y, Zhang M, Wang Y. Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives. Biology. 2025; 14(8):989. https://doi.org/10.3390/biology14080989
Chicago/Turabian StyleLiu, Yanke, Mingkang Zhang, and Yazhi Wang. 2025. "Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives" Biology 14, no. 8: 989. https://doi.org/10.3390/biology14080989
APA StyleLiu, Y., Zhang, M., & Wang, Y. (2025). Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives. Biology, 14(8), 989. https://doi.org/10.3390/biology14080989