Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = bio-impedance spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3081 KB  
Article
Fractional-Order Bioimpedance Modelling for Early Detection of Tissue Freezing in Cryogenic and Thermal Medical Applications
by Noelia Vaquero-Gallardo, Herminio Martínez-García and Oliver Millán-Blasco
Sensors 2026, 26(2), 603; https://doi.org/10.3390/s26020603 - 15 Jan 2026
Viewed by 268
Abstract
Cryotherapy and radiofrequency (RF) treatments modulate tissue temperature to induce therapeutic effects; however, improper application can result in thermal injury. Traditional temperature-based monitoring methods rely on multiple thermal sensors whose accuracy strongly depends on their number and spatial positioning, often failing to detect [...] Read more.
Cryotherapy and radiofrequency (RF) treatments modulate tissue temperature to induce therapeutic effects; however, improper application can result in thermal injury. Traditional temperature-based monitoring methods rely on multiple thermal sensors whose accuracy strongly depends on their number and spatial positioning, often failing to detect early tissue crystallization. This study introduces a fractional order bioimpedance modelling framework for the early detection of tissue freezing during cryogenic and thermal medical treatments, with the feasibility and effectiveness of this approach having been reported in our prior publications. While bioimpedance spectroscopy itself is a well-est. The corresponablished technique in biomedical engineering, its novel application to predict and identify premature freezing events provides a new pathway for safe and efficient energy-based therapies. Fractional-order models derived from the Cole family accurately reproduce the complex electrical behavior of biological tissues using fewer parameters than classical integer-order models, thus reducing both hardware requirements and computational cost. Experimental impedance data from human abdominal, gluteal, and femoral regions were modelled to extract fractional parameters that serve as sensitive indicators of phase-transition onset. The results demonstrate that the proposed approach enables real-time identification of freezing-induced electrical transitions, offering a physiologically grounded alternative to conventional temperature-based monitoring. Furthermore, the fractional order bioimpedance method exhibits high reproducibility and selectivity, and its analytical figures of merit, including the limits of detection and quantification, support its use for reliable real-time tissue monitoring and early injury detection. Overall, the proposed fractional order bioimpedance framework enhances both safety and control precision in cryogenic and thermal medical applications. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

24 pages, 3207 KB  
Article
Research on Two-Stage Parameter Identification for Various Lithium-Ion Battery Models Using Bio-Inspired Optimization Algorithms
by Shun-Chung Wang and Yi-Hua Liu
Appl. Sci. 2026, 16(1), 202; https://doi.org/10.3390/app16010202 - 24 Dec 2025
Viewed by 275
Abstract
Lithium-ion batteries (LIBs) are vital components in electric vehicles (EVs) and battery energy storage systems (BESS). Accurate estimation of the state of charge (SOC) and state of health (SOH) depends heavily on precise battery modeling. This paper examines six commonly used equivalent circuit [...] Read more.
Lithium-ion batteries (LIBs) are vital components in electric vehicles (EVs) and battery energy storage systems (BESS). Accurate estimation of the state of charge (SOC) and state of health (SOH) depends heavily on precise battery modeling. This paper examines six commonly used equivalent circuit models (ECMs) by deriving their impedance transfer functions and comparing them with measured electrochemical impedance spectroscopy (EIS) data. The particle swarm optimization (PSO) algorithm is first utilized to identify the ECM with the best EIS fit. Then, thirteen bio-inspired optimization algorithms (BIOAs) are employed for parameter identification and comparison. Results show that the fractional-order R(RQ)(RQ) model with a mean absolute percentage error (MAPE) of 10.797% achieves the lowest total model fitting error and possesses the highest matching accuracy. In model parameter identification using BIOAs, the marine predators algorithm (MPA) reaches the lowest estimated MAPE of 10.694%, surpassing other algorithms in this study. The Friedman ranking test further confirms MPA as the most effective method. When combined with an Internet-of-Things-based online battery monitoring system, the proposed approach provides a low-cost, high-precision platform for rapid modeling and parameter identification, supporting advanced SOC and SOH estimation technologies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 9663 KB  
Article
Chitosan-Coated Fe3O4 Nanoparticles for Magnetic Hyperthermia
by Aleksandra Wilczyńska, Leszek Ruchomski, Mateusz Łakomski, Małgorzata Góral-Kowalczyk, Zbigniew Surowiec and Arkadiusz Miaskowski
Materials 2025, 18(24), 5629; https://doi.org/10.3390/ma18245629 - 15 Dec 2025
Viewed by 448
Abstract
This work investigated the electrical, dielectric, and magnetic properties of ferrofluids containing Fe3O4 nanoparticles and their composites with chitosan (30–100 cP and 100–300 cP), relevant to magnetic hyperthermia. The nanoparticles were synthesized by coprecipitation and characterized using impedance spectroscopy, X-ray [...] Read more.
This work investigated the electrical, dielectric, and magnetic properties of ferrofluids containing Fe3O4 nanoparticles and their composites with chitosan (30–100 cP and 100–300 cP), relevant to magnetic hyperthermia. The nanoparticles were synthesized by coprecipitation and characterized using impedance spectroscopy, X-ray diffraction, scanning microscopy with X-ray microanalysis, Mössbauer spectroscopy, and calorimetry. The study showed that the chitosan coating altered the textural properties of Fe3O4, reducing the specific surface area from 76.3 m2/g to 68.9–72.5 m2/g. The zeta potential and particle size showed strong pH dependence. Impedance measurements showed that the conductivity of ferrofluids was frequency- and temperature-dependent, with both metallic and dielectric conductivity observed. The complex dielectric permittivity exhibited Maxwell–Wagner–Sillars interface polarization. Calorimetry revealed that specific absorption rate (SAR) ranged from 11.4 to 23.4 W/g, depending on the chitosan concentration and type, while the chitosan coating reduced SAR by 12–40%. These results confirm that the electrical and dielectric parameters of ferrofluids significantly influence their thermal capabilities, which is important for optimizing magnetic hyperthermia therapy when energy dissipation is considered in bio-heat models. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 2026 KB  
Article
Eco-Friendly Enhancement of Silicate Coatings for Steel Using Lawsonia inermis Extract as a Dual-Function Dispersant and Corrosion Inhibitor
by Le Thi Nhung, Nguyen Hoang, Truong Anh Khoa, Phan Minh Phuong and Thanh-Danh Nguyen
Constr. Mater. 2025, 5(4), 87; https://doi.org/10.3390/constrmater5040087 - 5 Dec 2025
Viewed by 343
Abstract
Corrosion of steel structures remains a persistent challenge in construction, particularly in coastal and industrial environments where chloride-induced degradation accelerates structural failure. This study presents an eco-friendly approach to improve the corrosion protection of the steel by incorporating Lawsonia inermis (henna) leaf extract [...] Read more.
Corrosion of steel structures remains a persistent challenge in construction, particularly in coastal and industrial environments where chloride-induced degradation accelerates structural failure. This study presents an eco-friendly approach to improve the corrosion protection of the steel by incorporating Lawsonia inermis (henna) leaf extract into zinc–aluminum silicate coatings. The henna extract was added at varying concentrations (0–12 wt%) to evaluate its influence on structure, adhesion, and electrochemical performance of the coating. Physicochemical characterizations including FTIR, XRD, XRF, and SEM revealed that a 5 wt% addition optimized pigment dispersion, resulting in a denser and more homogeneous coating microstructure. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 35 days of immersion in 3.5 wt% NaCl solution demonstrated that this formulation achieved the highest impedance and polarization resistance, confirming enhanced corrosion resistance. The improvement was attributed to the dual action of the henna extract: (i) as a dispersant, promoting uniform Zn–Al pigment distribution and reducing porosity, and (ii) as a green corrosion inhibitor, forming an adsorbed protective film on the steel surface. This work highlights the potential of bio-derived additives to enhance the long-term durability of steel infrastructure and supports the development of sustainable protective materials for construction applications. Full article
Show Figures

Figure 1

26 pages, 2227 KB  
Article
Maternal Adiposity, Milk Production and Removal, and Infant Milk Intake During Established Lactation
by Zoya Gridneva, Ashleigh H. Warden, Xuehua Jin, Jacki L. McEachran, Ching Tat Lai, Sharon L. Perrella and Donna T. Geddes
Nutrients 2025, 17(23), 3726; https://doi.org/10.3390/nu17233726 - 27 Nov 2025
Viewed by 858
Abstract
Background: Whilst maternal body mass index (BMI) is linked to suboptimal breastfeeding outcomes, maternal body composition has not been assessed with respect to milk production (MP). Methods: Lactating mothers 1–6 months postpartum (n = 281) completed a demographic questionnaire and a 24 [...] Read more.
Background: Whilst maternal body mass index (BMI) is linked to suboptimal breastfeeding outcomes, maternal body composition has not been assessed with respect to milk production (MP). Methods: Lactating mothers 1–6 months postpartum (n = 281) completed a demographic questionnaire and a 24 h MP measurement using the test-weigh method, enabling the calculation of 24 h MP parameters, breast storage capacity (BSC) and the percentage of available milk removed (PAMR). Body composition was measured with bioimpedance spectroscopy. Linear regression models were used to determine maternal and infant factors associated with MP parameters; structural equation modelling was used to assess the mediating role of BSC. Results: Higher maternal adiposity was associated with lower BSC (p ≤ 0.028), MP (p ≤ 0.003), infant breast milk intake (p ≤ 0.003) and total milk intake (p ≤ 0.026). Higher BSC was associated with higher MP (p < 0.001), with BSC confirmed as a mediator of the relationship between adiposity and MP (67.5%). Mean PAMR was negatively associated with BSC and milk removal frequency (both p < 0.001), and was lower in occasionally pumping compared to breastfeeding only (p = 0.037) and exclusively pumping mothers (p = 0.012). Conclusions: Our findings confirm maternal adiposity as a major contributor to low MP and reveal BSC, which is a measure of glandular tissue volume or breast development, as a mediator between adiposity and MP. This provides a rationale for antenatal lactation assessment of mothers and timely intervention in high-risk mothers to ensure they reach their full lactation potential. Full article
Show Figures

Graphical abstract

16 pages, 682 KB  
Article
Exploratory Evaluation of Topical Tacrolimus for Prevention of Breast Cancer-Related Arm Lymphedema: A Multicenter Non-Randomized Pilot Study
by Frederik Gulmark Hansen, Mads Gustaf Jørgensen, Kim Gordon, Christina Kjær, Lena Felicia Carstensen, Mette Tambour, Bibi Gram, Jørn Bo Thomsen and Jens Ahm Sørensen
Cancers 2025, 17(23), 3753; https://doi.org/10.3390/cancers17233753 - 24 Nov 2025
Viewed by 756
Abstract
Background: Breast cancer-related lymphedema (BCRL) remains a challenging complication for breast cancer survivors. Currently, there are no effective pharmacological options available to address this condition. Emerging research highlights the critical role of inflammation, lymphatic dysfunction, and T-cell activity in the development of BCRL. [...] Read more.
Background: Breast cancer-related lymphedema (BCRL) remains a challenging complication for breast cancer survivors. Currently, there are no effective pharmacological options available to address this condition. Emerging research highlights the critical role of inflammation, lymphatic dysfunction, and T-cell activity in the development of BCRL. Tacrolimus, a calcineurin inhibitor, has demonstrated promising results in preclinical studies for reducing inflammation, enhancing lymphatic function, and modulating T-cell activity—key mechanisms implicated in BCRL pathogenesis. This study investigates whether topical tacrolimus ointment can reduce the incidence and severity of BCRL, providing a novel approach to mitigate this debilitating condition. Methods: A parallel, open-label non-randomized controlled multicenter clinical pilot trial was conducted from February 2020 to June 2022. Female participants undergoing axillary lymph node dissection (ALND) were recruited and divided into an intervention group (n = 22) receiving topical tacrolimus 0.1% ointment daily for 12 months and a control group (n = 39). Outcomes included lymphedema diagnosis (primary), arm volume, bioimpedance spectroscopy, quality of life (QOL) scores, and adverse events. Assessments were performed at baseline and at 3, 6, 9, and 12 months. Results: At 12 months, lymphedema was diagnosed in 3 of 18 patients (16.7%) in the intervention group and 4 of 37 patients (10.8%) in the control group (p > 0.05). Mean increase in at-risk arm volume was 80.7 mL in the intervention group versus 116.1 mL in the control group (p > 0.05). Disease-specific quality of life scores worsened in both groups, but scores returned to baseline at 12 months in the intervention group only. Adverse events were mild and manageable, with no serious events reported. Conclusions: While topical tacrolimus did not significantly reduce the incidence of lymphedema, exploratory patterns in symptom onset and quality-of-life measures indicate that further investigation in larger randomized trials may be warranted. Full article
Show Figures

Figure 1

21 pages, 7671 KB  
Article
Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings
by Wei-Gang Lv, Ze-Xin Wang, Zi-Meng Xiao, Shu-Fan Zhou, Jun Ma, Liang-Yu Chen, Sheng Lu and Dubovyy Oleksandr
Coatings 2025, 15(11), 1357; https://doi.org/10.3390/coatings15111357 - 20 Nov 2025
Viewed by 764
Abstract
This study investigates the influence of Ag addition on the microstructure, mechanical behavior, corrosion resistance, and antibacterial performance of Mg-Zn-Ca-Ag alloys and their micro-arc oxidation (MAO) coatings. Four casting alloys containing 0.2, 0.4, 0,6 and 0.8 wt.% Ag were fabricated and characterized by [...] Read more.
This study investigates the influence of Ag addition on the microstructure, mechanical behavior, corrosion resistance, and antibacterial performance of Mg-Zn-Ca-Ag alloys and their micro-arc oxidation (MAO) coatings. Four casting alloys containing 0.2, 0.4, 0,6 and 0.8 wt.% Ag were fabricated and characterized by SEM, XRD, and TEM. The microstructure consisted mainly of α-Mg, Mg2Ca, Mg7Zn3, and Mg6Ca2Zn3 phases, and the elastic modulus (~25.8 GPa) was comparable to that of human bone. MAO coatings produced in a bio-functional electrolyte exhibited pit-like morphologies due to Ag-induced melt fluidity and self-sealing effects. The coatings were composed primarily of MgO, Mg2SiO4, Ca3(PO4)2, CaCO3, and Ag2O, with the ZQ 0.8-MAO sample showing the highest Ca/P ratio (1.75), indicative of superior bioactivity. Electrochemical impedance spectroscopy revealed optimal corrosion resistance (2.56 × 104 Ω·cm2), while antibacterial efficiency exceeded 96%. Overall, Ag alloying enhanced both the bulk and surface properties of Mg-Zn-Ca alloys, yielding robust, corrosion-resistant, and antibacterial coatings with excellent biocompatibility-highlighting their potential for biodegradable orthopedic implant applications. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

14 pages, 1864 KB  
Article
Near-Infrared Spectroscopy for Oedema Quantification: An Ex Vivo Porcine Skin Model
by Mariana Castro-Montano, Meha Qassem and Panayiotis A. Kyriacou
Sensors 2025, 25(22), 6971; https://doi.org/10.3390/s25226971 - 14 Nov 2025
Viewed by 688
Abstract
Oedema is a common clinical finding in critically ill neonates and may reflect systemic illness such as congestive heart failure, hepatic cirrhosis, nephrotic syndrome, sepsis, and acute kidney injury. Oedema is characterised by tissue swelling due to water accumulation in the interstitial space. [...] Read more.
Oedema is a common clinical finding in critically ill neonates and may reflect systemic illness such as congestive heart failure, hepatic cirrhosis, nephrotic syndrome, sepsis, and acute kidney injury. Oedema is characterised by tissue swelling due to water accumulation in the interstitial space. Currently, the gold standard in clinical practice is visual assessment, which is subjective and limited in accuracy. Alternative methods, such as ultrasound and bioimpedance, have been explored; however, they are unsuitable in neonates and do not provide direct water quantification. Near-infrared spectroscopy (NIRS) is a non-invasive optical method that could measure water content through light interaction between near-infrared light and OH particles within the tissue. This study validated NIRS for oedema assessment using an ex vivo porcine skin model, where controlled oedema was induced by phosphate-buffered saline (PBS) injection. Continuous spectroscopic data were collected via optical fibres positioned perpendicularly and parallel to the tissue. Regression models were developed and evaluated using the spectral data, with partial least squares (PLS) regression outperforming ridge regression (RR) and support vector regression (SVR). Notably, spectra acquired in the parallel configuration yielded superior results (R2 = 0.97, RMSE = 0.15). These findings support the potential of NIRS as a reliable, quantitative tool for neonatal oedema assessment. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 733 KB  
Article
Linking Intradialytic Blood Volume Dynamics to Extracellular Fluid Status: Toward Personalized Fluid Assessment in Hemodialysis
by Martin Russwurm, Marvin Braun, Julia Menne, Lara Ploeger, Marc Miran, Fabian Max, Lotte Dahmen, Joachim Hoyer and Johannes Wild
J. Clin. Med. 2025, 14(20), 7188; https://doi.org/10.3390/jcm14207188 - 12 Oct 2025
Viewed by 782
Abstract
Background: Accurate assessment of volume status remains a central challenge in hemodialysis (HD). Although bioimpedance spectroscopy (BIS) can quantify fluid compartments, it is time-consuming and requires a lot of personnel. Modern HD machines provide continuous relative blood volume (RBV) monitoring. We examined [...] Read more.
Background: Accurate assessment of volume status remains a central challenge in hemodialysis (HD). Although bioimpedance spectroscopy (BIS) can quantify fluid compartments, it is time-consuming and requires a lot of personnel. Modern HD machines provide continuous relative blood volume (RBV) monitoring. We examined whether intradialytic RBV dynamics reflect pre-dialysis extracellular fluid (ECW) status to inform personalized fluid management. Methods: In an ancillary, monocentric, prospective study of the SkInDialysis trial (DRKS00036332), 11 maintenance-HD patients underwent three standardized dialysis sessions with simultaneous measurement of RBV and BIS. BIS was performed at five time points per session (pre-HD; 20, 80, and 160 min after the start of HD; and post-HD). Ultrafiltration (UF), RBV, total body water (TBW), ECW, and intracellular water (ICW) were recorded. Results: Mean total UF was 2809 ± 894 mL/session. RBV declined to 94.7 ± 3.1% at 20 min and to 87.6 ± 5.5% by the end of the session. TBW decreased by 2.9 ± 2.7%, driven by ECW reduction (−3.15 ± 2.9%) over ICW (−1.1 ± 1.65%). Cumulative UF correlated with declines in TBW (R2 = 0.18; p = 0.02) and ECW (R2 = 0.23; p = 0.01) and more modestly with ICW (R2 = 0.16; p = 0.04). In contrast, ΔRBV (pre- vs. post-HD) did not correlate with UF, weight loss, or compartmental water changes. Early steady-state RBV at 80 min correlated with pre-HD ECW (R2 = 0.19; p = 0.02) and more strongly with the pre-HD ECW/ICW ratio (R2 = 0.34; p = 0.001). Conclusions: In this small, repeated-measures cohort, absolute early steady state RBV levels were associated with pre-dialysis ECW and the ECW/ICW ratio, whereas RBV change (ΔRBV) did not track absolute fluid removal. Our data support a time-anchored RBV level as a pragmatic, device-embedded indicator of the pre-dialysis extracellular reservoir. Full article
(This article belongs to the Special Issue Hemodialysis: Clinical Updates and Advances)
Show Figures

Figure 1

17 pages, 1758 KB  
Review
A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing
by Alexandros Lazanas and Beatriz Prieto Simón
Sensors 2025, 25(19), 6260; https://doi.org/10.3390/s25196260 - 9 Oct 2025
Cited by 1 | Viewed by 2308
Abstract
Electrochemical impedance spectroscopy (EIS) is a highly versatile electrochemical technique capable of discretizing each electrochemical parameter in complex systems by employing a broad frequency spectrum. When EIS is employed in (bio)sensing applications, the electrochemical parameters are usually fitted into a relatively limited equivalent [...] Read more.
Electrochemical impedance spectroscopy (EIS) is a highly versatile electrochemical technique capable of discretizing each electrochemical parameter in complex systems by employing a broad frequency spectrum. When EIS is employed in (bio)sensing applications, the electrochemical parameters are usually fitted into a relatively limited equivalent circuit model regardless of the system at hand. This work thoroughly discusses the meaning of each physical parameter in the Randles circuit, the most common equivalent circuit to model (bio)sensing systems based on EIS transduction. Additionally, it pinpoints the most suitable modifications to the Randles circuit for modern-day electrodes, where coatings of non-biological and/or biological materials can radically impact the measured impedance compared to that of unmodified electrodes. The discussion is supported by simulations that clearly exhibit the effect of each examined parameter, providing guidance for experimentalists to improve the accuracy of their work. Full article
Show Figures

Figure 1

26 pages, 5362 KB  
Article
Maternal Factors, Breast Anatomy, and Milk Production During Established Lactation—An Ultrasound Investigation
by Zoya Gridneva, Alethea Rea, David Weight, Jacki L. McEachran, Ching Tat Lai, Sharon L. Perrella and Donna T. Geddes
J. Imaging 2025, 11(9), 313; https://doi.org/10.3390/jimaging11090313 - 12 Sep 2025
Cited by 2 | Viewed by 2600
Abstract
Obesity is linked to suboptimal breastfeeding outcomes, yet the relationships between maternal adiposity, breast anatomy, and milk production (MP) have not been investigated. We conducted ultrasound imaging to assess the breast anatomy of 34 lactating women. The amount of glandular tissue (glandular tissue [...] Read more.
Obesity is linked to suboptimal breastfeeding outcomes, yet the relationships between maternal adiposity, breast anatomy, and milk production (MP) have not been investigated. We conducted ultrasound imaging to assess the breast anatomy of 34 lactating women. The amount of glandular tissue (glandular tissue representation (GTR)) was classified as low, moderate, or high. Number and diameters of main milk ducts and mammary blood flow (resistive index) were measured. Women completed a 24 h MP measurement and an obstetric/lactation history questionnaire. Body composition was measured with bioimpedance spectroscopy. Statistical analysis employed correlation networks. Multiple relationships were revealed, with later menarche correlating with minimal pubertal and pregnancy breast growth. A minimal breast growth was further correlated with lower mammary blood flow during lactation and lower numbers and smaller diameters of main milk ducts, which in turn correlated with a lower MP. Importantly, higher adiposity also correlated with minimal breast growth during pregnancy and low GTR and MP. Several modifiable and non-modifiable maternal factors may be associated with breast development and MP. Antenatal lactation assessment and intervention in high-risk women may ensure they reach their full lactation potential and inform future interventions, such as maintaining healthy adiposity. Full article
(This article belongs to the Special Issue Imaging in Healthcare: Progress and Challenges)
Show Figures

Figure 1

40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 - 6 Sep 2025
Cited by 5 | Viewed by 8602
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

23 pages, 8079 KB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 - 2 Aug 2025
Cited by 2 | Viewed by 1704
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
Show Figures

Figure 1

17 pages, 913 KB  
Review
Cell Membrane Capacitance (Cm) Measured by Bioimpedance Spectroscopy (BIS): A Narrative Review of Its Clinical Relevance and Biomarker Potential
by Steven Brantlov, Leigh C. Ward, Søren Isidor, Christian Lodberg Hvas, Charlotte Lock Rud and Lars Jødal
Sensors 2025, 25(14), 4362; https://doi.org/10.3390/s25144362 - 12 Jul 2025
Cited by 4 | Viewed by 2994
Abstract
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be [...] Read more.
Cell membrane capacitance (Cm) is a potential biomarker that reflects the structural and functional integrity of cell membranes. It is essential for physiological processes such as signal transduction, ion transport, and cellular homeostasis. In clinical practice, Cm can be determined using bioimpedance spectroscopy (BIS), a non-invasive technique for analysing the intrinsic electrical properties of biological tissues across a range of frequencies. Cm may be relevant in various clinical fields, where high capacitance is associated with healthy and intact membranes, while low capacitance indicates cellular damage or disease. Despite its promise as a prognostic indicator, several knowledge gaps limit the broader clinical application of Cm. These include variability in measurement techniques (e.g., electrode placement, frequency selection), the lack of standardised measurement protocols, uncertainty on how Cm is related to pathology, and the relatively low amount of Cm research. By addressing these gaps, Cm may become a valuable tool for examining cellular health, early disease detection, and evaluating treatment efficacy in clinical practice. This review explores the fundamental principles of Cm measured with the BIS technique, its mathematical basis and relationship to the biophysical Cole model, and its potential clinical applications. It identifies current gaps in our knowledge and outlines future research directions to enhance the understanding and use of Cm. For example, Cm has shown promise in identifying membrane degradation in sepsis, predicting malnutrition in anorexia nervosa, and as a prognostic factor in cancer. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

14 pages, 4370 KB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Cited by 1 | Viewed by 977
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

Back to TopTop