Novel Graphene-Based Biosensors for Biomedical Applications

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensors and Healthcare".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 3472

Special Issue Editor


E-Mail
Guest Editor
Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
Interests: biosensors; novel diagnostic techniques

Special Issue Information

Dear Colleagues,

The primary objective of this Special Issue is to gather cutting-edge research on the design, fabrication, and characterization of novel graphene-based biosensors. Contributions are sought that elucidate the underlying principles, methodologies, and applications of these biosensors in various biomedical domains, including, but not limited to, medical diagnostics, therapeutics, drug discovery, and point-of-care testing.

Dr. Sabina Żołędowska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • graphene
  • biomedical applications
  • electrochemical sensing
  • surface modification
  • sensing mechanisms
  • transduction principles
  • medical diagnostics
  • point-of-care testing
  • biomarker detection
  • drug discovery
  • functionalization
  • nanoparticle integration
  • sensitivity
  • specificity
  • stability
  • performance evaluation
  • validation
  • biocompatibility
  • clinical translation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 - 6 Sep 2025
Viewed by 859
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

24 pages, 3719 KB  
Review
Recent Advances in Electrochemical Biosensors for Neurodegenerative Disease Biomarkers
by Mingyu Bae, Nayoung Kim, Euni Cho, Taek Lee and Jin-Ho Lee
Biosensors 2025, 15(3), 151; https://doi.org/10.3390/bios15030151 - 28 Feb 2025
Cited by 4 | Viewed by 2126
Abstract
Neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), represent a growing global health challenge with overlapping biomarkers. Key biomarkers, including α-synucleins, amyloid-β, and Tau proteins, are critical for accurate detection but are often assessed using conventional methods like enzyme-linked immunosorbent [...] Read more.
Neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), represent a growing global health challenge with overlapping biomarkers. Key biomarkers, including α-synucleins, amyloid-β, and Tau proteins, are critical for accurate detection but are often assessed using conventional methods like enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), which are invasive, costly, and time-intensive. Electrochemical biosensors have emerged as promising tools for biomarker detection due to their high sensitivity, rapid response, and potential for miniaturization. The integration of nanomaterials has further enhanced their performance, improving sensitivity, specificity, and practical application. To this end, this review provides a comprehensive overview of recent advances in electrochemical biosensors for detecting neurodegenerative disease biomarkers, highlighting their strengths, limitations, and future opportunities. By addressing the challenges of early diagnosis, this work aims to stimulate interdisciplinary innovation and improve clinical outcomes for neurodegenerative disease patients. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop