Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Alloy Casting
2.2. MAO Coating Preparation
2.3. Characterizations
2.3.1. Microstructure
2.3.2. Mechanical Properties
2.3.3. Electrochemical Analyses
2.3.4. Antibacterial Tests
2.3.5. Wettability Test
3. Results and Discussion
3.1. Properties of ZQ Alloys
3.1.1. Phase Composition and Elemental Composition of ZQ Alloys
3.1.2. Microscopic Morphology of ZQ Alloys
3.1.3. Mechanical Properties of ZQ Alloys
3.1.4. Potentiodynamic Polarization
3.1.5. Antibacterial Capacity and Wettability of ZQ Alloys
3.2. Properties of ZQ 0.8-MAO Coating
3.2.1. Microstructure of ZQ 0.8-MAO Coating
3.2.2. Phases and Elemental Compositions of MAO Coating on the ZQ Alloys
3.2.3. Comprehensive Properties of ZQ 0.8-MAO Coating
4. Conclusions
- 1.
- The newly developed magnesium alloys have an elastic modulus closer to that of human bone, approximately 25.8 GPa, which can effectively reduce the stress shielding effect when implanted in the human body. The primary phases present in the alloy include the α-Mg matrix, Mg2Ca, Mg7Zn3, and Mg6Ca2Zn3 phases, with Mg2Ca mainly distributed in the form of dots within the magnesium alloy matrix and Mg6Ca2Zn3 distributed along the grain boundaries. The addition of alloying elements improved the mechanical properties of the magnesium alloys, making them more akin to human bone.
- 2.
- Variations in phase content resulted in differences in corrosion resistance among the alloys. The ZQ 0.8 magnesium alloy exhibited the highest electrochemical impedance value of 57.52 Ω·cm2, while the ZQ 0.2 magnesium alloy had a much lower value of 9.68 Ω·cm2. The addition of Ag to the magnesium alloy conferred excellent antibacterial properties, with antibacterial rates exceeding 97%, meeting the requirements for biomedical materials.
- 3.
- ZQ 0.8-MAO coating was compact with a smooth surface, low porosity, and substantial thickness, providing the best surface and cross-sectional morphology. Phase analysis revealed the presence of MgO, Mg2SiO4, Ca3(PO4)2, CaCO3, and Ag2O on the surface of MAO coating. This MAO coating also exhibited the best adhesion to the substrate and excellent antibacterial properties, with an antibacterial rate of up to 96.2%. Electrochemical tests also revealed that ZQ 0.8-MAO coating demonstrated good corrosion resistance, with a fitted impedance value of 2.56 × 104 Ω·cm2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wang, J.; Han, E.; Ke, W. Electrochemical corrosion and mechanical behaviors of the charged magnesium. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008, 494, 257–262. [Google Scholar] [CrossRef]
- Berglund, I.S.; Dirr, E.W.; Ramaswamy, V.; Allen, J.B.; Allen, K.D.; Manuel, M.V. The effect of Mg-Ca-Sr alloy degradation products on human mesenchymal stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Maddegalla, A.; Mukherjee, A.; Blázquez, J.A.; Azaceta, E.; Leonet, O.; Mainar, A.R.; Kovalevsky, A.; Sharon, D.; Martin, J.F.; Sotta, D. AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries. ChemSusChem 2021, 14, 4690–4696. [Google Scholar] [CrossRef]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Anvari-Yazdi, A.F.; Tahermanesh, K.; Hadavi, S.M.M.; Talaei-Khozani, T.; Razmkhah, M.; Abed, S.M.; Mohtasebi, M.S. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 584–597. [Google Scholar] [CrossRef]
- Li, B.; Sun, J.; Han, J.; Wu, G. Gradient age-precipitation behavior induced by gradient nano-grain in Mg–Gd–Ag–Zr alloy. J. Iron Steel Res. Int. 2024, 32, 19–24. [Google Scholar] [CrossRef]
- Zhuo, X.; Huang, T.; Huang, Y.; Dong, X.; Zhao, L.; Wang, X.; Xu, G.; Qiao, Y.; Jiang, J.; Ma, A.; et al. Strengthening Zn–Ag alloys with Mg addition. J. Iron Steel Res. Int. 2024, 32, 2641–2650. [Google Scholar] [CrossRef]
- Long, H.; An, J.; Li, X.; Wu, T.; He, S.; Lei, J. Mechanism analysis of effect of MgO on reduction swelling behaviour of iron pellets in CO/H2 atmosphere based on first-principles calculations. J. Iron Steel Res. Int. 2024, 32, 73–84. [Google Scholar] [CrossRef]
- Xia, D.; Liu, Y.; Wang, S.; Zeng, R.-C.; Liu, Y.; Zheng, Y.; Zhou, Y. In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Sci. China Mater. 2019, 62, 256–272. [Google Scholar] [CrossRef]
- Yu, W.; Chen, D.; Ding, Z.; Qiu, M.; Zhang, Z.; Shen, J.; Zhang, X.; Zhang, S.; He, Y.; Shi, Z. Synergistic effect of a biodegradable Mg-Zn alloy on osteogenic activity and anti-biofilm ability: An in vitro and in vivo study. RSC Adv. 2016, 6, 45219–45230. [Google Scholar] [CrossRef]
- Zhang, E.; Yin, D.; Xu, L.; Yang, L.; Yang, K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2009, 29, 987–993. [Google Scholar] [CrossRef]
- Zhou, W.R.; Zheng, Y.F.; Leeflang, M.A.; Zhou, J. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application. Acta Biomater. 2013, 9, 8488–8498. [Google Scholar] [CrossRef]
- Razzaghi, M.; Kasiri-Asgarani, M.; Bakhsheshi-Rad, H.R.; Ghayour, H. Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn-0.5 Ag alloy: Prepared by mechanical alloying for implant applications. Compos. Part B Eng. 2020, 190, 107947. [Google Scholar] [CrossRef]
- Elen, L.; Turen, Y.; Cicek, B.; Bozer, B.M.; Saud, A.N.; Koc, E. The cytotoxic and genotoxic assays of Mg-Ag Alloy doped with Zn, Ca, and Nd elements. J. Mater. Eng. Perform. 2023, 32, 7337–7347. [Google Scholar] [CrossRef]
- Bryla, K.; Horky, J.; Krystian, M.; Litynska-Dobrzynska, L.; Mingler, B. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110543. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gong, Z.Y.; Li, H.L.; Yang, Q.G.; Cao, W.J.; Hu, J.; Pu, J.; Guo, X.Y.; Xiang, D. Effect of CoSO4 on the characteristics of micro-arc oxidation coatings. Surf. Eng. 2020, 36, 216–224. [Google Scholar] [CrossRef]
- Teng, Y.-X.; Liu, F.; Li, C.-Y.; Xu, Z.; Guo, J. Fabrication and Degradation Properties of Ca/P Contained Micro-Arc Oxidation Coating on Pure Magnesium. Sci. Adv. Mater. 2020, 12, 755–759. [Google Scholar] [CrossRef]
- Wang, D.-D.; Liu, X.-T.; Su, Y.; Wu, Y.-K.; Yang, Z.; Han, H.-P.; Zhang, X.-Z.; Wu, G.-R.; Shen, D.-J. Influences of edge effect on microstructure and corrosion behaviour of PEO coating. Surf. Eng. 2020, 36, 184–191. [Google Scholar] [CrossRef]
- Huan, Z.G.; Leeflang, M.A.; Zhou, J.; Fratila-Apachitei, L.E.; Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. J. Mater. Sci.-Mater. Med. 2010, 21, 2623–2635. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, L.; Lv, W.; Gu, J.; Ye, F.; Oleksandr, D.; Lu, S.; Wang, Z. Growth pattern of MAO coating under constant voltage–current two-step power mode. J. Iron Steel Res. Int. 2025, 32, 1245–1262. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef]
- Larionova, T.V.; Park, W.-W.; You, B.-S. A ternary phase observed in rapidly solidified Mg–Ca–Zn alloys. Scr. Mater. 2001, 45, 7–12. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Wang, Y.; Geng, L.; Jiao, X. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater. Des. 2012, 34, 58–64. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.; Hamzah, E.; Fereidouni-Lotfabadi, A.; Daroonparvar, M.; Yajid, M.; Mezbahul-Islam, M.; Kasiri-Asgarani, M.; Medraj, M. Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications. Mater. Corros. 2014, 65, 1178–1187. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Z.; Sun, Z.; Wen, J.; Duan, T.; Zhang, B. In vivo and in vitro performances of chitosan-coated Mg-Zn-Zr-Gd-Ca alloys as bone biodegradable materials in rat models. J. Biomater. Appl. 2022, 36, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, Y.; Geng, L.; Lu, C. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Shen, S.; Li, Q.; Luo, X.; Xiong, P.; Gao, S.; Yan, J.; Cheng, Y.; Xi, T. In Vitro and In Vivo Studies on Two-Step Alkali-Fluoride-Treated Mg-Zn-Y-Nd Alloy for Vascular Stent Application: Enhancement in Corrosion Resistance and Biocompatibility. Acs Biomater. Sci. Eng. 2019, 5, 3279–3292. [Google Scholar] [CrossRef] [PubMed]
- Feser, K.; Kietzmann, M.; Baeumer, W.; Krause, C.; Bach, F.W. Effects of Degradable Mg-Ca Alloys on Dendritic Cell Function. J. Biomater. Appl. 2011, 25, 685–697. [Google Scholar] [CrossRef]
- Mezbahul-Islam, M.; Mostafa, A.O.; Medraj, M. Essential magnesium alloys binary phase diagrams and their thermochemical data. J. Mater. 2014, 2014, 704283. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Z.; Tang, C.; Li, W.; You, C.; Chen, M. The mechanical and corrosion resistance of Mg-Zn-Ca-Ag alloys: The influence of Ag content. J. Mater. Res. Technol. 2020, 9, 10863–10875. [Google Scholar] [CrossRef]
- Sykaras, N.; Iacopino, A.M.; Marker, V.A.; Triplett, R.G.; Woody, R.D. Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. Int. J. Oral Maxillofac. Implant. 2000, 15, 675–690. [Google Scholar]
- Moghadasi, K.; Isa, M.S.M.; Ariffin, M.A.; Raja, S.; Wu, B.; Yamani, M.; Muhamad, M.R.B.; Yusof, F.; Jamaludin, M.F.; bin Ab Karim, M.S. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. J. Mater. Res. Technol. 2022, 17, 1054–1121. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Shin, K. Influence of Si, Ca and Ag addition on corrosion behaviour of new wrought Mg–Zn alloys. Mater. Sci. Technol. 2006, 22, 1213–1218. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Yu, J.; Liu, X.-F.; Zhang, H.-J.; Zhang, D.-W.; Yin, Y.-X.; Wang, L.-N. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8 Mn alloy. Mater. Sci. Eng. C 2019, 99, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Tie, D.; Feyerabend, F.; Muller, W.D.; Schade, R.; Liefeith, K.; Kainer, K.U.; Willumeit, R. Antibacterial biodegradable Mg-Ag alloys. Eur. Cells Mater. 2013, 25, 284–298; discussion 298. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Kaya, A.; Na, Y.G.; Shin, K.S. Microstructure and corrosion behavior of Mg–Zn–Ag alloys. Mater. Sci. Eng. A 2006, 435–436, 579–587. [Google Scholar] [CrossRef]
- Cha, P.-R.; Han, H.-S.; Yang, G.-F.; Kim, Y.-C.; Hong, K.-H.; Lee, S.-C.; Jung, J.-Y.; Ahn, J.-P.; Kim, Y.-Y.; Cho, S.-Y.; et al. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 2013, 3, 367. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Yang, H. The Role of Antibacterial Metallic Elements in Simultaneously Improving the Corrosion Resistance and Antibacterial Activity of Magnesium Alloys. Mater. Des. 2021, 198, 9350. [Google Scholar] [CrossRef]
- Yu, X.; Ibrahim, M.; Liu, Z.; Yang, H.; Tan, L.; Yang, K. Biofunctional Mg coating on PEEK for improving bioactivity. Bioact. Mater. 2018, 3, 139–143. [Google Scholar] [CrossRef]
- Ren, L.; Lin, X.; Tan, L.; Yang, K. Effect of surface coating on antibacterial behavior of magnesium based metals. Mater. Lett. 2011, 65, 3509–3511. [Google Scholar] [CrossRef]
- Mocanu, A.; Furtos, G.; Rapuntean, S.; Horovitz, O.; Flore, C.; Garbo, C.; Danisteanu, A.; Rapuntean, G.; Prejmerean, C.; Tomoaia-Cotisel, M. Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles. Appl. Surf. Sci. 2014, 298, 225–235. [Google Scholar] [CrossRef]
- Wang, Y.M.; Guo, J.W.; Shao, Z.K.; Zhuang, J.P.; Jin, M.S.; Wu, C.J.; Wei, D.Q.; Zhou, Y. A metasilicate-based ceramic coating formed on magnesium alloy by microarc oxidation and its corrosion in simulated body fluid. Surf. Coat. Technol. 2013, 219, 8–14. [Google Scholar] [CrossRef]
- Zander, D.; Zumdick, N.A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys. Corros. Sci. 2015, 93, 222–233. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Shen, P.; Zhang, L.; Lu, S.; Chai, L.; Yang, Z.; Zhang, L.-C. Corrosion behavior of non-equilibrium Zr-Sn-Nb-Fe-Cu-O alloys in high-temperature 0.01 M LiOH aqueous solution and degradation of the surface oxide films. Corros. Sci. 2018, 136, 221–230. [Google Scholar] [CrossRef]
- Zhao, Y.; He, P.; Wang, B.; Bai, J.; Xue, F.; Chu, C. Incorporating pH/NIR responsive nanocontainers into a smart self-healing coating for a magnesium alloy with controlled drug release, bacteria killing and osteogenesis properties. Acta Biomater. 2024, 174, 463–481. [Google Scholar] [CrossRef]
- Qu, H.; Yao, Q.; Chen, T.; Wu, H.; Liu, Y.; Wang, C.; Dong, A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv. Colloid Interface Sci. 2024, 325, 99. [Google Scholar] [CrossRef]
- Shimabukuro, M. Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics 2020, 9, 716. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, T.; Yu, X.; Sun, X.; Yang, H. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: A review. J. Alloys Compd. 2021, 879, 453. [Google Scholar] [CrossRef]











| Samples | Zn (wt.%) | Ca (wt.%) | Ag (wt.%) | Mg (wt.%) |
|---|---|---|---|---|
| ZQ 0.2 | 4.0 | 0.8 | 0.2 | Balance |
| ZQ 0.4 | 4.0 | 0.6 | 0.4 | Balance |
| ZQ 0.6 | 4.0 | 0.4 | 0.6 | Balance |
| ZQ 0.8 | 4.0 | 0.2 | 0.8 | Balance |
| Alloys | Corrosion Current Density (A·cm2) | Corrosion Potential (V) |
|---|---|---|
| ZQ 0.2 | 4.70 × 10−4 | −1.42 |
| ZQ 0.4 | 5.46 × 10−4 | −1.45 |
| ZQ 0.6 | 5.39 × 10−4 | −1.41 |
| ZQ 0.8 | 1.87 × 10−4 | −1.40 |
| Sample | Rs (Ω·cm2) | CPE1 (Ω−1·cm−2 sn) | Rc (Ω·cm2) | Rct (Ω·cm2) | CPE2 (Ω−1·cm−2 sn) |
|---|---|---|---|---|---|
| ZQ 0.8-MAO | 18.12 | 9.97 × 10−7 | 2.15 × 103 | 2.56 × 104 | 1.29 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, W.-G.; Wang, Z.-X.; Xiao, Z.-M.; Zhou, S.-F.; Ma, J.; Chen, L.-Y.; Lu, S.; Oleksandr, D. Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings. Coatings 2025, 15, 1357. https://doi.org/10.3390/coatings15111357
Lv W-G, Wang Z-X, Xiao Z-M, Zhou S-F, Ma J, Chen L-Y, Lu S, Oleksandr D. Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings. Coatings. 2025; 15(11):1357. https://doi.org/10.3390/coatings15111357
Chicago/Turabian StyleLv, Wei-Gang, Ze-Xin Wang, Zi-Meng Xiao, Shu-Fan Zhou, Jun Ma, Liang-Yu Chen, Sheng Lu, and Dubovyy Oleksandr. 2025. "Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings" Coatings 15, no. 11: 1357. https://doi.org/10.3390/coatings15111357
APA StyleLv, W.-G., Wang, Z.-X., Xiao, Z.-M., Zhou, S.-F., Ma, J., Chen, L.-Y., Lu, S., & Oleksandr, D. (2025). Microstructure and Properties of Biomedical Mg-Zn-Ca-Ag Alloy and the Micro-Arc Oxidation Coatings. Coatings, 15(11), 1357. https://doi.org/10.3390/coatings15111357

