Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
Abstract
1. Introduction
2. Graphene’s Properties Relevant to Detection Devices
2.1. Lattice Structure and Optical Properties
2.2. Electrical Conductivity
2.3. Flexibility and Mechanical Strength
2.4. Surface Area and Chemical Reactivity
2.5. Graphene Substrates in Biosensor Design and Application
2.5.1. Pristine Graphene
2.5.2. Graphene Oxide (GO)
2.5.3. Reduced Graphene Oxide (rGO)
2.5.4. Graphene Quantum Dots (GQDs)
2.5.5. Other Graphene Derivatives
3. Graphene Biofunctionalisation
3.1. Functionalisation
3.2. Immobilisation of Bioreceptors
3.3. Blocking
4. Detection Mechanisms
4.1. Optical Biosensors
4.1.1. Surface Plasmon Resonance (SPR)
4.1.2. Photoluminescence (PL)
4.1.3. Raman Spectroscopy-Based Biosensors
4.2. Piezoelectric Biosensors
4.2.1. Mass-Sensitive Piezoelectric Biosensors
4.2.2. Strain-Sensitive Piezoelectric Biosensors
4.3. Electrochemical Biosensors
4.3.1. Impedance-Based Biosensors
4.3.2. Amperometric Biosensors
4.3.3. Voltammetric Biosensors
4.3.4. Advances in Portability
4.3.5. Modular Architecture of Electrochemical Biosensors
4.4. Transistor Biosensors
Dirac Point-Based Detection Mechanism in GFETs
5. Multiplex Detection
5.1. Single Graphene–Single Bioreceptor Architecture
5.2. Portable Multiplex Devices for Disease Detection
5.3. Single Graphene–Multiple Bioreceptors
5.4. Linker-Enabled Multiplex Detection on a Single Medium
5.5. Evolving Strategies in Multiplex Detection
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Analogue-to-digital Converter |
AIV | Avian Influenza Virus |
AMI | Acute Myocardial Infarction |
APTES | (3-Aminopropyl) triethoxysilane |
AuNPs | Gold Nanoparticles |
AuPs | Gold Particles |
BSA | Bovine Serum Albumin |
CESA | Cyclic Enzymatic Signal Amplification |
CHA | Catalytic Hairpin Assembly |
CL | Chemiluminescence |
CNT | Carbon Nanotubes |
CNT-FET | CNT field-effect transistor |
COOH | Carboxyl Group |
Cr(VI) | Chromium(VI) |
CRP | C-Reactive Protein |
CSV | Cell-Surface Vimentin |
CTC | Circulating Tumour Cell |
CTM | Circulating Tumour Microemboli |
cTnI | Cardiac Troponin I |
cTnT | Cardiac troponin T |
CVD | Chemical Vapour Deposition |
CV | Cyclic voltammetry |
CNP | Charge Neutrality Point |
DBCO | Dibenzocyclooctyne |
DCM | Dichloromethane |
DENV | Dengue virus |
DPV | Differential Pulse Voltammetry |
DNA | Deoxyribonucleic acid |
DNT | 2,4-dinitrotoluene |
DSU | Dithiobis(succinimidyl undecanoate) |
DVS | Divinyl Sulfone |
EC | Electrochemical |
EDC/NHS | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide |
EIS | Electrochemical Impedance Spectroscopy |
ELISA | Enzyme-Linked Immunosorbent Assay |
EpCAM | Epithelial Cell Adhesion Molecule |
enPSERS | Enhanced Plasmonic SERS |
ETA | Ethanolamine |
FAM | 6-Carboxyfluorescein |
FETs | Field-Effect Transistors |
FRET | Fluorescence Resonance Energy Transfer |
FTH1 | Ferritin Heavy Chain 1 |
FVIII | Factor VIII |
G-PLA | Graphene-polylactic acid |
GEMS | Graphene Electronic Multiplexed Sensor |
GERS | Graphene-Enhanced Raman Scattering |
GET | Graphene Electronic Tattoo |
GFET | Graphene Field-Effect Transistor |
GNR | Graphene nanoribbons |
GNS | Gold nanostar |
GNW | Graphene Nanowalls |
GO | Graphene Oxide |
GOQD | Graphene Oxide Quantum Dots |
GQDs | Graphene Quantum Dots |
Gr | Graphene |
H2 | Hydrogen |
H2S | Hydrogen Sulphide |
Hg(II) | Mercury(II) |
IgG | Immunoglobulin G |
IgM | Immunoglobulin M |
IL-6R | Interleukin-6 Receptor |
ITO | Indium Tin Oxide |
LIG | Laser-induced graphene |
LoD | Limit of Detection |
LSG | Laser-Scribed Graphene |
LSV | Linear Sweep Voltammetry |
mAb | Monoclonal Antibody |
MB-Chi | Methylene Blue-Chitosan |
MCU | Microcontroller Unit |
MGF | Monolayer graphene film |
MI | Myocardial Infarction |
MEMS/NEMS | Micro- and Nano-Electro-Mechanical Systems |
MMP-9 | Matrix Metallopeptidase 9 |
NGO | Nanoporous Graphene Oxide |
NH2 | Amino Group |
NH3 | Ammonia |
NO2 | Nitrogen dioxide |
NP | Nucleocapsid protein |
NPC | Nasopharyngeal Carcinoma |
nf-EIS | non-faradaic Electrochemical Impedance Spectroscopy |
PAD | Paper-Based Analytical Device |
PAMAM | Polyamidoamine |
PBA | 1-Pyrenebutyric acid |
PBASE | 1-Pyrenebutyric acid N-hydroxysuccinimide ester |
PBS | Phosphate-Buffered Saline |
PCC | Protein-Catalysed Capture |
PCA | Principal Component Analysis |
PCA3 | Prostate Cancer Antigen 3 |
Pd | Palladium |
PDMS | polydimethylsiloxane |
pDNA | Plasmid deoxyribonucleic acid |
PE | Pulmonary Embolism |
PEDOT:PSS | poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate) |
PEG4 | Polyethylene Glycol (with 4 repeating units) |
PEI | Polyethyleneimine |
PTDA | Pyrene-Tagged DNA Aptamer |
PVDF | Polyvinylidene fluoride |
PL | Photoluminescence |
POC | Point-of-care |
QCM | Quartz Crystal Microbalance |
rGO | Reduced Graphene Oxide |
RABV | Rabies Virus |
RhB | Rhodamine B |
RNA | Ribonucleic Acid |
RSV | Respiratory Syncytial Virus |
SAM | Self-Assembled Monolayer |
SARS-CoV | Severe Acute Respiratory Syndrome Coronavirus |
SERS | Surface-Enhanced Raman Spectroscopy |
SNP | Single-Nucleotide Polymorphism |
SO2 | Sulphur dioxide |
SPR | Surface Plasmon Resonance |
SWV | Square Wave Voltammetry |
T-GO-C | Thymine-Graphene Oxide-Carbohydrazide |
TMA | Trimethylamine |
TNF-α | Tumour Necrosis Factor alpha |
TPET | Tetraphenylethylene Pyrene |
TPU | Thermoplastic Polyurethane |
TrGO | Thermally Reduced Graphene Oxide |
VOC | Volatile Organic Compound |
VS-PEI | Vinylsulfonated-polyethyleneimine |
XPS | X-ray Photoelectron Spectroscopy |
References
- Swinkels, P.J.M.; Gong, Z.; Sacanna, S.; Noya, E.G.; Schall, P. Visualizing defect dynamics by assembling the colloidal graphene lattice. Nat. Commun. 2023, 14, 1–9. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Fan, X.; Xu, Y.; Chen, S.; Zhang, X.; Man, B.; Yang, C.; Du, J. Review on two-dimensional material-based field-effect transistor biosensors: Accomplishments, mechanisms, and perspectives. J. Nanobiotechnol. 2023, 21, 1–32. [Google Scholar] [CrossRef]
- Béraud, A.; Sauvage, M.; Bazán, C.M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene field-effect transistors as bioanalytical sensors: Design, operation and performance. Analyst 2020, 146, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Yook, J.-G. Graphene Nanomaterials-Based Radio-Frequency/Microwave Biosensors for Biomaterials Detection. Materials 2019, 12, 952. [Google Scholar] [CrossRef]
- Novodchuk, I.; Bajcsy, M.; Yavuz, M. Graphene-based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon 2021, 172, 431–453. [Google Scholar] [CrossRef]
- Nurrohman, D.T.; Chiu, N.-F. A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects. Nanomaterials 2021, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xu, T.; Zhang, X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines 2020, 11, 60. [Google Scholar] [CrossRef]
- Yin, T.; Xu, L.; Gil, B.; Merali, N.; Sokolikova, M.S.; Gaboriau, D.C.A.; Liu, D.S.K.; Mustafa, A.N.M.; Alodan, S.; Chen, M.; et al. Graphene Sensor Arrays for Rapid and Accurate Detection of Pancreatic Cancer Exosomes in Patients’ Blood Plasma Samples. ACS Nano 2023, 17, 14619–14631. [Google Scholar] [CrossRef] [PubMed]
- Alsharabi, R.M.; Rai, S.; Mohammed, H.Y.; A Farea, M.; Srinivasan, S.; Saxena, P.S.; Srivastava, A. A comprehensive review on graphene-based materials as biosensors for cancer detection. Oxf. Open Mater. Sci. 2022, 3, itac013. [Google Scholar] [CrossRef]
- Yadav, S.; Sehrawat, N.; Sharma, S.; Sharma, M.; Yadav, S. Lab-on-Chip biosensing methods based on graphene and its derivatives for food safety monitoring. Food Control. 2024, 163, 110536. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Q.; Ma, B.; Zhang, B.; Sun, K.; Yu, X.; Ye, Z.; Zhang, M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int. J. Mol. Sci. 2023, 24, 17157. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Dkhar, D.S.; Chandra, P.; Azad, U.P. Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis. Biosensors 2023, 13, 166. [Google Scholar] [CrossRef]
- Diforti, J.F.; Cunningham, T.; Piccinini, E.; Marmisollé, W.A.; Piccinini, J.M.; Azzaroni, O. Noninvasive and Multiplex Self-Test of Kidney Disease Biomarkers with Graphene-Based Lab-on-a-Chip (G-LOC): Toward Digital Diagnostics in the Hands of Patients. Anal. Chem. 2024, 96, 5832–5842. [Google Scholar] [CrossRef]
- Xu, L.; Ramadan, S.; Akingbade, O.E.; Zhang, Y.; Alodan, S.; Graham, N.; Zimmerman, K.A.; Torres, E.; Heslegrave, A.; Petrov, P.K.; et al. Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array. ACS Sens. 2021, 7, 253–262. [Google Scholar] [CrossRef]
- Han, Q.; Pang, J.; Li, Y.; Sun, B.; Ibarlucea, B.; Liu, X.; Gemming, T.; Cheng, Q.; Zhang, S.; Liu, H.; et al. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens. 2021, 6, 3841–3881. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Wang, P.; Cui, W.-G.; Wang, X.; Yang, Y.; Gao, F.; Zhang, M.; Gan, J.; Li, C.; et al. Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage. Nat. Commun. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Dantham, V.R. Observation of reversible and irreversible charge transfer processes in dye-monolayer graphene systems using Raman spectroscopy as a tool. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 317, 124431. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. Biosensors 2024, 14, 356. [Google Scholar] [CrossRef]
- Jin, S.; Lednev, I.K.; Jung, Y.M. Recent Trends in Surface-Enhanced Raman Spectroscopy-Based Biosensors: Label-Free Early Disease Diagnosis. J. Phys. Chem. C 2024, 128, 8861–8873. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, M.; Wu, W.; Fu, L.; Yin, C.; Karimi-Maleh, H. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Sensing: Bibliometrics Based Analysis and Review. Chemosensors 2022, 10, 317. [Google Scholar] [CrossRef]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater. 2021, 13, 1–36. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Q.; Shen, H.; Li, G. Review—Wearable Graphene Devices for Sensing. J. Electrochem. Soc. 2020, 167, 037541. [Google Scholar] [CrossRef]
- Abdullah; Rasheed, A.; Younis, A.; Khan, M.A. Wearable Piezoelectric BioMEMS-based Sensor for SARS-CoV-2 (COVID-19) Virus Droplets Detection. In Proceedings of the 2021 IEEE 15th International Conference on Nano/Molecular Medicine & Engineering (NANOMED), Taipei, China, 15–17 November 2021; pp. 34–37. [Google Scholar]
- Ashraf, G.; Aziz, A.; Iftikhar, T.; Zhong, Z.-T.; Asif, M.; Chen, W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. Biosensors 2022, 12, 1183. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Cotchim, S.; Thavarungkul, P.; Kanatharana, P.; Limbut, W. Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal. Chim. Acta 2020, 1130, 60–71. [Google Scholar] [CrossRef]
- Liu, J.; Bao, S.; Wang, X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines 2022, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Recum, P.; Hirsch, T. Graphene-based chemiresistive gas sensors. Nanoscale Adv. 2023, 6, 11–31. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Charca, G.; Salahandish, R.; Khalghollah, M.; Sadighbayan, D.; Haghayegh, F.; Sanati-Nezhad, A.; Ghafar-Zadeh, E. A Low-Cost Handheld Impedimetric Biosensing System for Rapid Diagnostics of SARS-CoV-2 Infections. IEEE Sens. J. 2022, 22, 15673–15682. [Google Scholar] [CrossRef]
- Szunerits, S.; Rodrigues, T.; Bagale, R.; Happy, H.; Boukherroub, R.; Knoll, W. Graphene-based field-effect transistors for biosensing: Where is the field heading to? Anal. Bioanal. Chem. 2023, 416, 2137–2150. [Google Scholar] [CrossRef]
- Ono, T.; Okuda, S.; Ushiba, S.; Kanai, Y.; Matsumoto, K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials 2024, 17, 333. [Google Scholar] [CrossRef] [PubMed]
- Parkula, V.; Berto, M.; Diacci, C.; Patrahau, B.; Di Lauro, M.; Kovtun, A.; Liscio, A.; Sensi, M.; Samorì, P.; Greco, P.; et al. Harnessing Selectivity and Sensitivity in Electronic Biosensing: A Novel Lab-on-Chip Multigate Organic Transistor. Anal. Chem. 2020, 92, 9330–9337. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Qu, H.; Dong, B.; Mao, Y.; Zheng, L. Highly sensitive and selective detection of enrofloxacin residues in chicken based on solution-gated graphene field-effect transistors. J. Electroanal. Chem. 2023, 935, 117325. [Google Scholar] [CrossRef]
- Baruah, A.; Newar, R.; Das, S.; Kalita, N.; Nath, M.; Ghosh, P.; Chinnam, S.; Sarma, H.; Narayan, M. Biomedical applications of graphene-based nanomaterials: Recent progress, challenges, and prospects in highly sensitive biosensors. Nanoscale Res. Lett. 2024, 19, 1–29. [Google Scholar] [CrossRef]
- Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J. 2011, 11, 3161–3170. [Google Scholar] [CrossRef]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef]
- Perala, R.S.; Chandrasekar, N.; Balaji, R.; Alexander, P.S.; Humaidi, N.Z.N.; Hwang, M.T. A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications. Mater. Sci. Eng. R Rep. 2024, 159, 100805. [Google Scholar] [CrossRef]
- Dutta, R.; Rajendran, K.; Jana, S.K.; Saleena, L.M.; Ghorai, S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. Biosensors 2023, 13, 349. [Google Scholar] [CrossRef]
- Youn, H.; Lee, K.; Her, J.; Jeon, J.; Mok, J.; So, J.-I.; Shin, S.; Ban, C. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Tong, Z.; Pecchia, A.; Yam, C.; Dumitrică, T.; Frauenheim, T. Ultrahigh Electron Thermal Conductivity in T-Graphene, Biphenylene, and Net-Graphene. Adv. Energy Mater. 2022, 12, 2200657. [Google Scholar] [CrossRef]
- Aziz, A.; Asif, M.; Ashraf, G.; Iftikhar, T.; Hussain, W.; Wang, S. Environmental significance of wearable sensors based on MXene and graphene. Trends Environ. Anal. Chem. 2022, 36, e00180. [Google Scholar] [CrossRef]
- Hu, Q.; Nag, A.; Zhang, L.; Wang, K. Reduced graphene oxide-based composites for wearable strain-sensing applications. Sens. Actuators A Phys. 2022, 345, 113767. [Google Scholar] [CrossRef]
- Idris, A.O.; Akanji, S.P.; Orimolade, B.O.; Olorundare, F.O.G.; Azizi, S.; Mamba, B.; Maaza, M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. Biosensors 2023, 13, 192. [Google Scholar] [CrossRef]
- Zhan, J.; Lei, Z.; Zhang, Y. Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022, 8, 947–979. [Google Scholar] [CrossRef]
- Singh, A.P.; Shankar, P.N.; Baghel, R.; Tirkey, S. A Review on Graphene Transistors. In Proceedings of the 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18 February 2023; pp. 1–6. [Google Scholar]
- Sengupta, J.; Adhikari, A.; Hussain, C.M. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends 2021, 4, 100072. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Detection of an IL-6 Biomarker Using a GFET Platform Developed with a Facile Organic Solvent-Free Aptamer Immobilization Approach. Sensors 2021, 21, 1335. [Google Scholar] [CrossRef]
- Fernandes, E.; Cabral, P.D.; Campos, R.; Machado, G.; Cerqueira, M.F.; Sousa, C.; Freitas, P.P.; Borme, J.; Petrovykh, D.Y.; Alpuim, P. Functionalization of single-layer graphene for immunoassays. Appl. Surf. Sci. 2019, 480, 709–716. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, K.; Ding, Y.; Liu, H.; Xie, S.; Cao, Y.; Yue, W. Magnetically controlled graphene field-effect transistor biosensor for highly sensitive detection of cardiac troponin I. Nanoscale Res. Lett. 2023, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.; Borme, J.; Guerreiro, J.R.; Machado, G., Jr.; Cerqueira, M.F.; Petrovykh, D.Y.; Alpuim, P. Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens. 2019, 4, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, A.K.; Shieh, H.; Low, K.; Tasnim, N.; Najjaran, H.; Hoorfar, M. Experimental comparison of direct and indirect aptamer-based biochemical functionalization of electrolyte-gated graphene field-effect transistors for biosensing applications. Anal. Chim. Acta 2022, 1222, 340177. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Siao, F.-Y.; Lin, E.-Y. An Electrochemical Biosensor for the Detection of Pulmonary Embolism and Myocardial Infarction. Biosensors 2024, 14, 386. [Google Scholar] [CrossRef]
- Piccinini, E.; Fenoy, G.E.; Cantillo, A.L.; Allegretto, J.A.; Scotto, J.; Piccinini, J.M.; Marmisollé, W.A.; Azzaroni, O. Biofunctionalization of Graphene-Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID-19 Diagnostics and Monitoring. Adv. Mater. Interfaces 2022, 9, 2102526. [Google Scholar] [CrossRef]
- Thriveni, G.; Ghosh, K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors 2022, 12, 647. [Google Scholar] [CrossRef]
- Stergiou, A.; Cantón-Vitoria, R.; Psarrou, M.N.; Economopoulos, S.P.; Tagmatarchis, N. Functionalized graphene and targeted applications—Highlighting the road from chemistry to applications. Prog. Mater. Sci. 2020, 114, 100683. [Google Scholar] [CrossRef]
- Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2020, 33, e2001105. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-C.; Lin, G.-Y.; Hoe, Z.-Y.; Pan, C.-T. Development of Piezoelectric Silk Sensors Doped with Graphene for Biosensing by Near-Field Electrospinning. Sensors 2022, 22, 9131. [Google Scholar] [CrossRef]
- Ghosh, S.; Khan, N.I.; Tsavalas, J.G.; Song, E. Selective Detection of Lysozyme Biomarker Utilizing Large Area Chemical Vapor Deposition-Grown Graphene-Based Field-Effect Transistor. Front. Bioeng. Biotechnol. 2018, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron. 2020, 166, 112471. [Google Scholar] [CrossRef]
- Lopez, A.; Liu, J. Covalent and Noncovalent Functionalization of Graphene Oxide with DNA for Smart Sensing. Adv. Intell. Syst. 2020, 2, 2000123. [Google Scholar] [CrossRef]
- Abdelbasset, W.K.; Jasim, S.A.; Bokov, D.O.; Oleneva, M.S.; Islamov, A.; Hammid, A.T.; Mustafa, Y.F.; Yasin, G.; Alguno, A.C.; Kianfar, E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. 2022, 32, 927–951. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Wu, Q.-Y.; Gu, L. Non-covalent functionalization of graphene sheets by pyrene-endcapped tetraphenylethene: Enhanced aggregation-induced emission effect and application in explosive detection. Front. Chem. 2022, 10, 970033. [Google Scholar] [CrossRef]
- Gupta, A.; Bhardwaj, S.K.; Sharma, A.L.; Deep, A. A graphene electrode functionalized with aminoterephthalic acid for impedimetric immunosensing of Escherichia coli. Microchim. Acta 2019, 186, 800. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.R.A.; Hjort, R.G.; Pola, C.C.; Parate, K.; Reis, E.L.; Soares, N.F.F.; McLamore, E.S.; Claussen, J.C.; Gomes, C.L. Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth. ACS Sens. 2020, 5, 1900–1911. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.Y.; Chung, C.-M.; Hsieh, J.C.-H.; Chen, G.-Y. A Graphene Oxide-interfaced Microfluidics System for Isolating and Capturing Circulating Tumor Cells and Microemboli. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1–5 November 2021; pp. 7260–7263. [Google Scholar]
- Lee, T.-L.; Huang, S.-C.; Huang, C.-C.; Lee, S.-W.; Huang, C.-H.; Lan, M.-Y.; Su, C.-Y. Enhancing circulating tumor cell capture: Amin-functionalized bilayer graphene biosensing with integrated chip-level system for point-of-care testing. Carbon 2023, 216, 118576. [Google Scholar] [CrossRef]
- Jayaraman, N.; Palani, Y.; Jonnalagadda, R.R.; Shanmugam, E. Covalently dual functionalized graphene oxide-based multiplex electrochemical sensor for Hg(II) and Cr(VI) detection. Sens. Actuators B Chem. 2022, 367, 132165. [Google Scholar] [CrossRef]
- Krsihna, B.V.; Gangadhar, A.; Ravi, S.; Mohan, D.; Panigrahy, A.K.; Rajeswari, V.R.; Prakash, M.D. A Highly Sensitive Graphene-based Field Effect Transistor for the Detection of Myoglobin. Silicon 2022, 14, 11741–11748. [Google Scholar] [CrossRef]
- Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021, 146, 4000–4009. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Sadrolhosseini, A.R.; Kamil, Y.M.; Fauzi, N.I.M.; Hashim, H.S.; Mahdi, M.A. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide–polyamidoamine nanocomposite for detection of dengue virus E-Proteins. Nanomaterials 2020, 10, 569. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Lu, X.; Xiao, D.; Zhou, C. Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO3 for time-resolved multiplex detection of avian influenza virus biomarkers. Anal. Biochem. 2024, 693, 115583. [Google Scholar] [CrossRef]
- Hossain, Z.; Nagasawa, F. Selective detection of biotinylated IL-6R protein using both CVD and epitaxial graphene-based electrochemical sensor and its reusability. Sens. Bio-Sens. Res. 2024, 44, 100659. [Google Scholar] [CrossRef]
- Kudriavtseva, A.; Jarić, S.; Nekrasov, N.; Orlov, A.V.; Gadjanski, I.; Bobrinetskiy, I.; Nikitin, P.I.; Knežević, N. Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors. Biosensors 2024, 14, 215. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; De Moraes, C.G.; Suh, L.H.; Zhao, X.; Lin, Q. An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring. Adv. Funct. Mater. 2019, 29, 1905202. [Google Scholar] [CrossRef]
- Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter 2020, 3, 1981–1998. [Google Scholar] [CrossRef]
- Huang, J.; Xie, Z.; Xie, L.; Luo, S.; Zeng, T.; Zhang, Y.; Zhang, M.; Wang, S.; Li, M.; Wei, Y.; et al. Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, B.M.; Srinivasan, S.; Ezhilan, M.; Nesakumar, N. Nucleic acid-based electrochemical biosensors. Clin. Chim. Acta 2024, 559, 119715. [Google Scholar] [CrossRef]
- Parolo, C.; Idili, A.; Heikenfeld, J.; Plaxco, K.W. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. Lab Chip 2023, 23, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Dkhar, D.S.; Kumari, R.; Malode, S.J.; Shetti, N.P.; Chandra, P. Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J. Pharm. Biomed. Anal. 2022, 223, 115120. [Google Scholar] [CrossRef]
- Jin, C.; Wu, Z.; Molinski, J.H.; Zhou, J.; Ren, Y.; Zhang, J.X. Plasmonic nanosensors for point-of-care biomarker detection. Mater. Today Bio 2022, 14, 100263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gautam, R.; Singh, A.; Singh, S.; Kumar, P. Effect of band gap of graphene oxide on interaction with bovine serum albumin: Correlation of band gap with sensitivity. Carbon Trends 2024, 15, 100367. [Google Scholar] [CrossRef]
- Pandey, P.S.; Raghuwanshi, S.K.; Shadab, A.; Ansari, T.I.; Tiwari, U.K.; Kumar, S. SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sens. J. 2022, 22, 13800–13810. [Google Scholar] [CrossRef]
- Park, M.; Seo, T.S. An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosens. Bioelectron. 2019, 126, 405–411. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A.; Kumar, D.; Kant, K.; Mathur, A. Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. Biosensors 2024, 14, 534. [Google Scholar] [CrossRef] [PubMed]
- Puiu, M.; Bala, C. Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens. TrAC Trends Anal. Chem. 2020, 125, 115831. [Google Scholar] [CrossRef]
- Pan, X.; Li, L.; Lin, H.; Tan, J.; Wang, H.; Liao, M.; Chen, C.; Shan, B.; Chen, Y.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, A.K.; Dwivedi, P.K.; Jha, S.K. Metal-free Nitrogen-doped reduced graphene oxide (N-rGO) SERS platform for detecting Rhodamine B. Sens. Actuators A Phys. 2025, 383, 116263. [Google Scholar] [CrossRef]
- Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines 2022, 13, 119. [Google Scholar] [CrossRef]
- Polat, E.O.; Cetin, M.M.; Tabak, A.F.; Güven, E.B.; Uysal, B.Ö.; Arsan, T.; Kabbani, A.; Hamed, H.; Gül, S.B. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors 2022, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Li, X.; Hirtz, T.; Deng, G.; Wei, Y.; Li, M.; Ji, S.; Wu, Q.; Jian, J.; Wu, F.; et al. Graphene-based wearable sensors. Nanoscale 2019, 11, 18923–18945. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Abu Serea, E.S.; Salah-Eldin, R.E.; Al-Hafiry, S.A.; Ali, M.K.; Shalan, A.E.; Lanceros-Méndez, S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater. Sci. Eng. 2022, 8, 964–1000. [Google Scholar] [CrossRef]
- Purwidyantri, A.; Azinheiro, S.; Roldán, A.G.; Jaegerova, T.; Vilaça, A.; Machado, R.; Cerqueira, M.F.; Borme, J.; Domingues, T.; Martins, M.; et al. Integrated Approach from Sample-to-Answer for Grapevine Varietal Identification on a Portable Graphene Sensor Chip. ACS Sens. 2023, 8, 640–654. [Google Scholar] [CrossRef]
- Zuñiga, J.; Akashi, L.; Pinheiro, T.; Rivera, M.; Barreto, L.; Albertin, K.; Champi, A. Synthesis of lysozyme-reduced graphene oxide films for biosensor applications. Diam. Relat. Mater. 2022, 126, 109093. [Google Scholar] [CrossRef]
- Didier, C.M.; Kundu, A.; Shoemaker, J.T.; Vukasinovic, J.; Rajaraman, S. SeedEZTM Interdigitated Electrodes and Multifunctional Layered Biosensor Composites (MLBCs): A Paradigm Shift in the Development of In Vitro BioMicrosystems. J. Microelectromechanical Syst. 2020, 29, 653–660. [Google Scholar] [CrossRef]
- Kaushal, J.B.; Raut, P.; Kumar, S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. Biosensors 2023, 13, 976. [Google Scholar] [CrossRef]
- Pinzón, E.; Domingues, T.; Wrege, R.; Lopes, L.C.; Borme, J.; Darós, T.; Piteira, J.; Costa, B.M.; Bueno, P.R.; Alpuim, P. Graphene Biosensors Operated in DC Transistor and AC Electrochemical Modes for DNA Sensing. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–44. [Google Scholar]
- Randviir, E.P.; Banks, C.E. A review of electrochemical impedance spectroscopy for bioanalytical sensors. Anal. Methods 2022, 14, 4602–4624. [Google Scholar] [CrossRef]
- Nazari-Vanani, R.; Negahdary, M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. Environ. Res. 2023, 243, 117850. [Google Scholar] [CrossRef]
- Shaikh, A.M.; Patel, R.; Vinchurkar, M.; Patkar, R.; Adami, A.; Giacomozzi, F.; Lorenzelli, L.; Baghini, M.S. Addressing Non-Idealities and EIS Measurement: From Inspection to Implementation. IEEE Instrum. Meas. Mag. 2023, 26, 45–52. [Google Scholar] [CrossRef]
- Tabrizi, H.O.; Salahandish, R.; Jalali, P.; Khalghollah, M.; Haghayegh, F.; Sanati-Nezhad, A.; Ghafar-Zadeh, E. A Low-Cost Handheld Reconfigurable Impedimetric Readout System for Diagnostics of Viral Infections. IEEE Trans. Instrum. Meas. 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Kireev, D.; Sel, K.; Ibrahim, B.; Kumar, N.; Akbari, A.; Jafari, R.; Akinwande, D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 2022, 17, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Razumiene, J.; Gureviciene, V.; Sakinyte, I.; Rimsevicius, L.; Laurinavicius, V. The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies. Sensors 2020, 20, 4496. [Google Scholar] [CrossRef] [PubMed]
- Hosnedlova, B.; Werle, J.; Cepova, J.; Narayanan, V.H.B.; Vyslouzilova, L.; Fernandez, C.; Parikesit, A.A.; Kepinska, M.; Klapkova, E.; Kotaska, K.; et al. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit. Rev. Anal. Chem. 2024, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dang, A.; Li, T.; Sun, Y.; Deng, W.; Lee, T.-C.; Yang, Y.; Zada, A.; Wang, B.; Liu, Y.; et al. Efficient multiplexed label-free detection by flexible MXene/graphene oxide fibers with enhanced charge transfer and hot spots effect. Sens. Actuators B Chem. 2023, 390, 133888. [Google Scholar] [CrossRef]
- Zhu, Y.; Kang, K.; Jia, Y.; Guo, W.; Wang, J. General and fast synthesis of graphene frameworks using sugars for high-performance hydrogen peroxide nonenzymatic electrochemical sensor. Microchim. Acta 2020, 187, 1–8. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Stefano, J.S.; Orzari, L.O.; Brazaca, L.C.; Carrilho, E.; Marcolino-Junior, L.H.; Bergamini, M.F.; Munoz, R.A.A.; Janegitz, B.C. Electrochemical Biosensor for SARS-CoV-2 cDNA Detection Using AuPs-Modified 3D-Printed Graphene Electrodes. Biosensors 2022, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Wirojsaengthong, S.; Chailapakul, O.; Tangkijvanich, P.; Henry, C.S.; Puthongkham, P. Size-dependent electrochemistry of laser-induced graphene electrodes. Electrochimica Acta 2024, 494, 144452. [Google Scholar] [CrossRef]
- Beduk, D.; Beduk, T.; Lahcen, A.A.; Mani, V.; Celik, E.G.; Iskenderoglu, G.; Demirci, F.; Turhan, S.; Ozdogan, O.; Ozgur, S.; et al. Multiplexed aptasensor for detection of acute myocardial infraction (AMI) biomarkers. Sens. Diagn. 2024, 3, 1020–1027. [Google Scholar] [CrossRef]
- Challhua, R.; Akashi, L.; Zuñiga, J.; Batista, H.B.d.C.R.; Moratelli, R.; Champi, A. Portable reduced graphene oxide biosensor for detection of rabies virus in bats using nasopharyngeal swab samples. Biosens. Bioelectron. 2023, 232, 115291. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, C.; Huang, X.; Zeng, S.; Liu, L.; Li, J.; Jiang, Y.-G.; Zhang, D.W.; Zhou, P. A Steep-Slope MoS2/Graphene Dirac-Source Field-Effect Transistor with a Large Drive Current. Nano Lett. 2021, 21, 1758–1764. [Google Scholar] [CrossRef]
- Graphenea. Graphene Field-Effect Transistor: mGFET-D 4x4. Available online: https://cdn.shopify.com/s/files/1/0191/2296/files/2025_mGFET-D_4x4_v4_TDS_28-04-2025.pdf?v=1746022393 (accessed on 4 July 2025).
- Sreejith, S.; Ajayan, J.; Radhika, J.; Sivasankari, B.; Tayal, S.; Saravanan, M. A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 2022, 206, 112202. [Google Scholar] [CrossRef]
- Peng, S.; Jin, Z.; Yao, Y.; Huang, X.; Zhang, D.; Niu, J.; Shi, J.; Zhang, Y.; Yu, G. Controllable p-to-n Type Conductance Transition in Top-Gated Graphene Field Effect Transistor by Interface Trap Engineering. Adv. Electron. Mater. 2020, 6, 2000496. [Google Scholar] [CrossRef]
- Candia, M.L.; Piccinini, E.; Azzaroni, O.; Marmisollé, W.A. Digitalization of Enzyme-Linked Immunosorbent Assay with Graphene Field-Effect Transistors (G-ELISA) for Portable Ferritin Determination. Biosensors 2024, 14, 394. [Google Scholar] [CrossRef]
- Elli, G.; Hamed, S.; Petrelli, M.; Ibba, P.; Ciocca, M.; Lugli, P.; Petti, L. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. Sensors 2022, 22, 4178. [Google Scholar] [CrossRef]
- Khan, N.I.; Mousazadehkasin, M.; Ghosh, S.; Tsavalas, J.G.; Song, E. An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst 2020, 145, 4494–4503. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.; Li, C.; Zhu, Z.; Kaxiras, E.; Sachdev, S.; Kruchkov, A.J. Ultraheavy and Ultrarelativistic Dirac Quasiparticles in Sandwiched Graphenes. Nano Lett. 2020, 20, 3030–3038. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, J.; Rawat, G.; Mummaneni, K. Highly sensitivity Non-Uniform Tunnel FET based biosensor using source engineering. Mater. Sci. Eng. B 2023, 293, 116455. [Google Scholar] [CrossRef]
- Chandrasekar, N.; Balaji, R.; Perala, R.S.; Humaidi, N.Z.N.; Shanmugam, K.; Liao, Y.-C.; Hwang, M.T.; Govindaraju, S. A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers. Biosensors 2023, 13, 307. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, X.; Fredj, Z.; Bian, S.; Sawan, M. Challenges and perspectives of multi-virus biosensing techniques: A review. Anal. Chim. Acta 2023, 1244, 340860. [Google Scholar] [CrossRef]
- Li, T.; Zhu, X.; Hai, X.; Bi, S.; Zhang, X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens. 2023, 8, 994–1016. [Google Scholar] [CrossRef]
- Madhivanan, K.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Utilization of nanomaterials functionalized bio-field-effect transistors for detection of cancer biomarkers. Oral Oncol. Rep. 2024, 10, 100363. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Yu, H.; Lee, G.; Shackery, I.; Seong, J.; Jung, Y.; Sung, S.-H.; Choi, J.; Jun, S.C. Multiplexed DNA-functionalized graphene sensor with artificial intelligence-based discrimination performance for analyzing chemical vapor compositions. Microsyst. Nanoeng. 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Geiwitz, M.; Page, O.R.; Marello, T.; Nichols, M.E.; Kumar, N.; Hummel, S.; Belosevich, V.; Ma, Q.; van Opijnen, T.; Batten, B.; et al. Graphene Multiplexed Sensor for Point-of-Need Viral Wastewater-Based Epidemiology. ACS Appl. Bio Mater. 2024, 7, 4622–4632. [Google Scholar] [CrossRef]
- Behera, P.; De, M. Nano-Graphene Oxide Based Multichannel Sensor Arrays towards Sensing of Protein Mixtures. Chem.—Asian J. 2019, 14, 553–560. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, P.; Li, S.; Wang, D.; Zhang, K.; Zheng, D.; Yue, D.; Zhang, G.; He, S.; Li, Y.; et al. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024, 272, 125759. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef]
- Gil, B.; Keshavarz, M.; Wales, D.; Darzi, A.; Yeatman, E. Orthogonal Surface-Enhanced Raman Scattering/Field-Effect Transistor Detection of Breast and Colorectal Cancer-Derived Exosomes using Graphene as a Tag-Free Diagnostic Template. Adv. NanoBiomed Res. 2023, 3, 2300055. [Google Scholar] [CrossRef]
- Gil, B.; Anastasova, S.; Lo, B. Graphene field-effect transistors array for detection of liquid conductivities in the physiological range through novel time-multiplexed impedance measurements. Carbon 2022, 193, 394–403. [Google Scholar] [CrossRef]
- Ban, D.K.; Hajian, R.; Winton, A.J.; Eom, R.; Gupta, A.; Kane, A.A.; Liu, S.; Sampath, R.; Farrell, M.L.; Coppock, M.B.; et al. A Single Multiomics Transistor for Electronic Detection of SARS-Cov2 Variants Antigen and Viral RNA Without Amplification. Adv. Mater. Technol. 2023, 8, 2201945. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosens. Bioelectron. 2019, 126, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, H.; Qin, J.; Liu, X.; Zhao, S.; Chen, Z.-F.; Liang, H. A graphene oxide-based multiplexed fluorescence assay for the detection of protein kinase activity in cell lysates and the evaluation of protein kinase inhibition. Sens. Actuators B Chem. 2017, 238, 908–916. [Google Scholar] [CrossRef]
- Panicker, L.R.; Kummari, S.; Keerthanaa, M.; Bommi, J.R.; Reddy, K.K.; Goud, K.Y. Trends and challenges in electroanalytical biosensing methodologies for infectious viral diseases. Bioelectrochemistry 2023, 156, 108594. [Google Scholar] [CrossRef]
- Shi, L.; Tang, P.; Hu, J.; Zhang, Y. A Strategy for Multigas Identification Using Multielectrical Parameters Extracted from a Single Carbon-Based Field-Effect Transistor Sensor. ACS Sens. 2024, 9, 3126–3136. [Google Scholar] [CrossRef]
- Buckley, D.J.; Black, N.C.G.; Castanon, E.G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 2020, 7, 032002. [Google Scholar] [CrossRef]
- Mishra, A.; Roy, S.; Shaikh, N.I.; Malave, P.; Mishra, A.; Alam, A.; Ghorpade, Y.; Hasan, M.R.; Nizam, A. Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches. Biosens. Bioelectron. X 2023, 16, 100417. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Chen, J.; Li, H.; Han, L.; Li, X.; Wang, J.; Song, W.; Xu, C.; Cai, X.; et al. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens. 2024, 9, 2705–2727. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Qu, F.; Zhang, L.; Chen, S.; Bai, M.; Hu, M.; Lv, X.; Zhang, J.; Wang, Z.; Chen, W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors 2022, 22, 9939. [Google Scholar] [CrossRef] [PubMed]
Strategy | Sub-Strategy | Application | Bioreceptor | Immobilisation | Blocking | Ref. |
---|---|---|---|---|---|---|
Covalent | Amide coupling | H5N1, H7N9, and H9N2 | antibodies | Crosslinker (EDC/NHS) for bonding of COOH-CNTs | BSA | [58] |
E. coli | E. coli antibody | NH2-GO and EDC/NHS | Tween 20 | [64] | ||
Salmonella Typhimurium | polyclonal antibody | EDC/NHS | Superblock | [65] | ||
Amide coupling and Click Chemistry | CTCs and CTM | EpCAM and CSV Monoclonal Antibody | EDC/NHS and DBCO-PEG4-amine | N/A | [66] | |
NPC CTC | anti-EpCAM | NH2-functionalised bilayer graphene and EDC/NHS | N/A | [67] | ||
Epoxide Ring-Opening | Hg(II) and Cr(VI) | Thymine and Carbohydrazide | T-GO-C | N/A | [68] | |
Silanisation and Amide coupling | SARS-CoV-2 Antigen | SARS-CoV-2 mAb | APTES and EDC/NHS | N/A | [69] | |
Thiol–Gold Chemistry | miRNA-21, -155, and -210 | AQ, MB, and PDA | dye/AuNPs/GO/GQD | MCH | [70] | |
Thiol–Gold Chemistry, SAM, then Amide Coupling | DENV 2, DENV 1, and ZIKV E-proteins | IgMs | Au/DSU/amine-functionalised rGO–PAMAM/IgM and EDC/NHS | N/A | [71] | |
Hybrid | Non-covalent (π–π Stacking) and Covalent | SARS-CoV-2 spike protein and human ferritin | SARS-CoV-2-mAb and FTH1-mAb | Linker (PBASE-PEI) and Binding (DVS) | PEG and ETA | [54] |
Non-covalent | Adsorption | PE (FVIII) and MI (cTnI) | mix anti-FVIII and anti-cTnI antibodies | Direct | Tween-20 buffer | [53] |
Electrostatic Adsorption | AIV biomarkers (H1N1, H7N9, and H5N1) | B–H2, B–H4, and B–H6 | CHA-amplified Lum/PEI/CaCO3 | N/A | [72] | |
Nanoparticle Adsorption | biotinylated IL-6R protein | Avidin * | AuNP | BSA | [73] | |
π–π Stacking (SAM) | MMP-9 | MMP-9 antibody | Linker (PBASE) | BSA and ETA | [49] | |
SNP | pDNA | Linker (PBASE) | ETA | [51] | ||
π–π Stacking | IL-6 protein (lysozyme) | PTDA | Direct (PTDA) with applied a negative electric field | N/A | [48] | |
1X PBS | VR11 aptamer * | Linker (PBASE) and Direct (pyrene-tagged VR11) | Tween 20 solution | [52] | ||
Lysozyme protein from chicken egg white | amino linker modified anti-lysozyme DNA oligonucleotide | Linker (PBASE) | Tween 20 | [59] | ||
DNT | TPET | rGO-TPET | N/A | [63] | ||
peptide (NT-proBNP) | aptamer | Linker (PBASE) with negative potential applied | ETA and BSA | [74] | ||
TNF-α protein | VR11 | Linker (PBASE) | ETA and Tween 20 | [75] | ||
SARS-CoV-2 NP, CRP, and S1-IgG and S1-IgM | CRP- and SARS-CoV-2-specific IgG assay configurations | Linker (PBA) | BSA | [76] |
Biosensor Type | Detection Mechanism | Application | Graphene Used | Detection Metrics | Ref. |
---|---|---|---|---|---|
Optical Biosensors | Surface Plasmon Resonance | Detect dengue virus e-proteins | rGO-PAMAM dendrimer | Sensitivity of 0.08–0.5 pM | [71] |
Photoluminescence | Demonstration of reversible charge transfer in the IR-780 iodide-MGF system | MGF | N/A | [18] | |
Simultaneous detection of trace As3+, Cd2+, and Pb2+ | GOQD | Achieved LoDs of 5.03 nM, 41.1 nM, and 4.44 nM | [84] | ||
Prostate cancer detection using PCA3 DNA probe | Au-GQD | LoD of up to 211 fM with 5 min response time | [85] | ||
Raman Spectroscopy-based | Label-free SERS detection of serum bilirubin for jaundice screening | GO-plasmonic gold nanostar | LoD of 0.436 μM | [87] | |
Metal-free SERS platform for Rhodamine B sensing | Nitrogen-doped rGO | Enhanced Raman signal by the 103 order and LoD in micromolar (~10−6 M) | [88] | ||
Piezoelectric Biosensors | Mass-sensitive | Wearable piezoelectric bio-MEMS device for detecting SARS-CoV-2 droplets | N/A | LoD of up to 79 ng/mL with 8 min response time | [24] |
Dual-mode gas sensor for TMA detection | NGO | LoD of 0.38 ppm with dual-signal QCM response | [139] | ||
Strain-sensitive | Wearable biosensor for human motion and swallowing detection | Graphene nanoparticles-doped PVDF fibre | 4.56 V output at 5 wt% graphene | [58] | |
Electrochemical (EC) Biosensors | Impedimetric | Multiplexed glioblastoma DNA biomarkers detector | Graphene in DC and AC modes | LoD of 1 aM | [97] |
Portable impedimetric biosensor for SARS-CoV-2 N-protein detection | Graphene on PEDOT: PSS screen-printed strip | LoD of 56 fg/mL with range up to 10,000 pg/mL | [101] | ||
Bioimpedance tattoo sensor for continuous blood pressure monitoring | Graphene electronic tattoos | Grade A accuracy: SBP 0.2 ± 5.8 mmHg; DBP 0.2 ± 4.5 mmHg | [102] | ||
Amperometric | Urea monitoring using a urease/TrGO-based amperometric biosensor | Urease-functionalised TrGO | Sensitivity of 2.3 ± 0.1 μA cm−2 mM−1 | [103] | |
Enzymatic glucose biosensor | GOx/Fc-functionalised laser-induced graphene for glucose sensing | LoD of 0.04 µM with range of 0-11 mM and sensitivity of 11.3 µA mM−1 cm−2 | [105] | ||
Non-enzymatic hydrogen peroxide (H2O2) sensing | 3D GFs synthesized from glucose | LoD of 0.032 ± 0.005 μM | [106] | ||
Voltammetric | Label-free multiplexed immunosensor for precision breast cancer detection | MB-Chi/Gr/ITO electrodes | LoD of 0.04 pg/mL (CEA) and 0.04 mU/mL (CA153 and CA125) | [27] | |
Label-free multiplexed detection of clinically relevant breast cancer microRNAs | AuNPs/GQDs/GO modified three-screen-printed carbon electrode (3SPCE) array | LoD of 0.04 fM (miRNA-21), 0.33 fM (miRNA-155), and 0.28 fM (miRNA-210) | [70] | ||
Multiplexed detection of Hg(II) and Cr(VI) using covalently dual-functionalised graphene | T-GO-C | Minimum LoD estimated at 1 ppb (Hg(II)) and 20 ppb (Cr(VI)) | [68] | ||
Saliva-based biosensing of SARS-CoV-2 RNA | Lysozyme-dispersed rGO | 200 ng/µL produced a ±25 µA current | [94] | ||
Non-enzymatic creatinine sensor | AuPs on a G-PLA 3D-printed electrode | LoD of 0.016 mmol/L | [107] | ||
Biosensor for SARS-CoV-2 cDNA | LoD of 0.30 µmol/L with sensitivity of 0.583 µA µmol−1 L | ||||
Multiplexed aptasensor for AMI biomarkers | Nanostructured gold-modified LSG | LoD of 1.65 ng/mL (cTnT), 2.58 ng/mL (cTnI), and 1.84 ng/mL (CRP) | [109] | ||
Portable rabies virus detector in bats using nasopharyngeal swab samples | rGO | LoD of 0.104 ng/µL with sensitivity of 0.321 µA (ng/µL)−1 | [110] | ||
Transistor Biosensors (e.g., GFETs) | Dirac Point | Aptamer-immobilised GFET for IL-6 biomarker detection | PTDA on a GFET | LoD of 100 pM | [48] |
VS-PEI nanoscaffold immobilisation of SARS-CoV-2 spike protein and human ferritin on GFET | Coplanar gated rGO FET | LoD of 0.74 nM (SARS-CoV-2 spike protein) and 0.23 nM (human ferritin) | [54] | ||
Label-free lysozyme protein sensor | Liquid-gated CVD-grown graphene FET | Concentration range at 10 nM to 1 uM | [59] | ||
Portable grapevine varietal detector | In-plane receded gated graphene FET | LoD of ~0.19aM | [93] | ||
Integrated ELISA protocol on a GFET for portable biosensing of ferritin | Coplanar gated rGO FET | Concentration range at 0.05 to 10 nM | [115] | ||
Microfluidic-GFET platform for detecting thrombin biomarkers | In-plane gated GFET array | LoD of 2.6 pM | [117] |
Multiplex Detection | Configuration | Application | Graphene Integration | Main Insights | Ref. |
---|---|---|---|---|---|
Single Graphene–Single Bioreceptor | Three graphene electrodes functionalised individually | Multiplexed aptasensor for acute myocardial infarction (AMI) biomarkers | Nanostructured gold-modified LSG | LoD of 1.65 ng/mL (cTnT), 2.58 ng/mL (cTnI), and 1.84 ng/mL (CRP) | [109] |
20 GFETs in groups of five | Virus proteins (SARS-CoV-2, RSV, Influenza A) and caffeine detection in wastewater | GFETs in PDMS wells with individual coplanar side gates | LoD of 55 ag/mL (SARS-CoV-2 spike protein), 408 ag/mL (Flu A), 453 ag/mL (RSV), and 26 fg/mL (on Caff209) | [125] | |
12 coplanar liquid-gated GFET array with two common-source | Mathematical modelling of a liquid-gated GFET | Graphenea S-20 chip | Schwan’s Dispersion Theory Combined with Electron–Hole Puddle Theory for Graphene | [130] | |
4-plex chip | Dual-mode GFET biosensor for SARS-CoV-2 antigen and RNA detection | Five-channel GFETs | LoD of 103 PFU mL−1 (buffer), 104 PFU mL−1 (saliva), and ~65 aM (amplification-free viral RNA isolate) | [131] | |
Single Graphene–Multiple Bioreceptors | Covalently dual-functionalised Hg(II) and Cr(VI) on graphene electrode | Multiplexed metal ion detection | T-GO-C | Minimum LoD of 1 ppb for Hg(II) and 20 ppb for Cr(VI), with no cross-reactivity due to specific potential requirements | [68] |
Spatially functionalised paper substrate | μPAD-based chemiluminescence (CL) assay for multiplex detection of AIV biomarkers | N/A | LoD of 0.32 pM (H1N1), 0.34 pM (H7N9), and 0.29 pM (H5N1) | [72] | |
Multiplexed fluorescence assay | Using distinct peptide substrates tagged with specific fluorescent dyes | Multicolor GO nanosensor | Protein kinase detection with LoD of 0.005 U/mL (A), 0.02 U/mL (Ab1), and 0.05 U/mL(Src) | [133] | |
Eight electrical variables analysed with PCA | Multigas identification by analysing multiple electrical parameters of CNT-FET sensors | Pd/CNTs FET-type gas sensor | Operating concentration of 1 ppm (NO2, SO, CO, and H2S),10 ppm (H2), and 200 ppm (NH3) | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramoso, J.P.; Rasekh, M.; Balachandran, W. Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review. Biosensors 2025, 15, 586. https://doi.org/10.3390/bios15090586
Ramoso JP, Rasekh M, Balachandran W. Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review. Biosensors. 2025; 15(9):586. https://doi.org/10.3390/bios15090586
Chicago/Turabian StyleRamoso, John Paolo, Manoochehr Rasekh, and Wamadeva Balachandran. 2025. "Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review" Biosensors 15, no. 9: 586. https://doi.org/10.3390/bios15090586
APA StyleRamoso, J. P., Rasekh, M., & Balachandran, W. (2025). Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review. Biosensors, 15(9), 586. https://doi.org/10.3390/bios15090586